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Abstract

Automatic road graph extraction from aerial and satel-
lite images is a long-standing challenge. Existing algo-
rithms are either based on pixel-level segmentation fol-
lowed by vectorization, or on iterative graph construction
using next move prediction. Both of these strategies suffer
from severe drawbacks, in particular high computing re-
sources and incomplete outputs. By contrast, we propose
a method that directly infers the final road graph in a single
pass. The key idea consists in combining a Fully Convolu-
tional Network in charge of locating points of interest such
as intersections, dead ends and turns, and a Graph Neural
Network which predicts links between these points. Such
a strategy is more efficient than iterative methods and al-
lows us to streamline the training process by removing the
need for generation of starting locations while keeping the
training end-to-end. We evaluate our method against exist-
ing works on the popular RoadTracer dataset and achieve
competitive results. We also benchmark the speed of our
method and show that it outperforms existing approaches.
Our method opens the possibility of in-flight processing on
embedded devices for applications such as real-time road
network monitoring and alerts for disaster response.

1. Introduction
Vector-based maps are heavily used in Geographic In-

formation Systems (GIS) such as online maps and naviga-
tion systems. The extraction of roads from overhead images
has been, and mainly still is, performed by expert annota-
tors. For a long time, handcrafted methods have been de-
veloped with the aim of reducing the burden of the anno-
tators. However, they were not precise enough to replace
them. Indeed, their outputs were imperfect and had a high
dependence on user-adjustable parameters [23]. In recent
years, the availability of large amounts of data [32], com-
bined with the increase in compute capabilities, has led to
a rise in the popularity of deep learning methods based on
Convolutional Neural Networks [19]. Modern road extrac-
tion methods mostly fall into two kinds of approaches, each

Figure 1. Result of our method on an image from the Road-
Tracer [3] test set. Our method regresses an entire graph without
the need of pre or post-processing. This 8192x8192 pixel image
was processed in 22 seconds on a single GPU, which is up to 91
times faster than previous approaches. The extracted graphs have
a low complexity and retain good accuracy compared to existing
works.

coming with its own drawbacks. The first kind [5,26,44,45]
relies on a pixel-based segmentation which is then con-
verted to a graph using compute-intensive handcrafted al-
gorithms that require a lot of manual tuning and can often
yield partial graphs. The production of raster road masks
using neural networks is a computationally expensive task
in itself because of the large number of layers required to
retrieve a segmentation that has the same resolution as the
input image. Iterative graph construction methods are the
second kind of deep learning based methods for road extrac-
tion [3, 21, 22, 36]. These approaches explore the map from
an initial starting location using successive applications of
a neural network on patches centered on the current point
to predict the location of the next point (i.e. next move pre-
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diction). While having the advantage of directly inferring
a graph, this is a very slow process. In addition, several
starting locations may need be picked in order to cover the
possible multiple connected components of the final graph.

Our approach aims to solve the aforementioned issues of
current deep learning based methods by offering a fast and
convenient way to extract roads from satellite or aerial im-
ages. Inspired by recent advances in neural networks for
object detection [37], we design a fully convolutional de-
tection head that learns to precisely locate multiple points
of interest such as intersections, turns, and dead ends across
the whole image in a single pass. Node features attached
to these points are simultaneously regressed by this head,
and fed to a Graph Neural Network (GNN) which predicts
links between them to form the final graph without requir-
ing any post-processing. Both networks are jointly trained
end-to-end from ground truth road graphs, which are widely
available from sources such as OpenStreetMap. We bench-
mark our method against state-of-the-art approaches on the
RoadTracer [3] dataset and find that it is orders of magni-
tude faster than recent competing methods while retaining
competitive accuracy.

With the increasing interest in deep learning inference
on embedded hardware, such as satellites or drones [1], our
method, combined with recent advances in CNN and GNN
quantization [2, 6], opens the possibility of on board in-
flight road extraction, which could reduce ground computa-
tion and bandwidth needs by transmitting graphs instead of
images. Real-time road network monitoring is also a future
possibility which would greatly benefit applications such as
disaster response, by rapidly obtaining and transmitting up-
dated maps to facilitate evacuation (e.g. in the event of a
flood or earthquake).

The main contribution of our work is threefold. First,
we propose a fast fully convolutional method for precise lo-
calisation of points of interest. Second, we design a Graph
Neural Network for road link prediction. Third, we pro-
pose a performance-oriented architecture highly competi-
tive against state-of-the art approaches.

2. Related Works

2.1. Detection Neural Networks

In recent works, Convolutional Neural Networks (CNN)
such as VGG [35] or ResNet [12] which were originally
used for image classification, are stripped of their final
classifier and repurposed as fully convolutional feature ex-
tractors (often called backbones) for other computer vision
tasks, such as semantic segmentation [25]. Object detection
methods such as YOLO [30] or FCOS [37] have taken ad-
vantage of the fully convolutional nature of these backbones
to design very fast single stage object detection neural net-
works, which infer bounding boxes and classes in a single

forward pass and can be trained end-to-end, as opposed to
two-stage approaches that perform these tasks separately.
Single-stage architectures often follow a similar structure
composed of a backbone which extracts features, a neck
outputting feature representations at different scales [24],
and several detection heads performing the final task.

2.2. Road Extraction

A large number of unsupervised methods have been de-
veloped for road graphs extraction. We refer the reader to
recent extensive surveys on the subject for more informa-
tion [22]. In this section, we focus on recent road extraction
methods based on deep learning. Early deep learning based
methods for road extraction were patch-based applications
of fully connected neural networks [28]. However, most re-
cent neural network-based methods proceed differently and
can be sorted into two groups.

The first group of methods is based on pixel-level seg-
mentation. Inspired by the success of FCN [25] and U-
Net [31], these methods use a backbone as an encoder and
learned upscaling as a decoder to retrieve a classification
of individual pixels of an input image. In [44], residual
connections are added to a U-Net to improve road predic-
tions. D-LinkNet [45] adapts the LinkNet architecture to
form a U-Net-like network and achieve better connectiv-
ity. DeepRoadMapper [26] uses a ResNet-based [12] FCN
to produce a segmentation which is then converted to a
graph using thinning and an additional connection classi-
fier. In [5], the authors improve the connectivity of extracted
networks by jointly learning the segmentation and orienta-
tion of roads. All segmentation-based approaches have the
drawback of relying on post-processing techniques such as
morphological thinning to convert the predicted road pixels
to a road graph. Thus, these methods are slow and the final
graphs can lack connectivity.

The second kind of approaches iteratively construct a
graph from an initial starting point by successively apply-
ing a neural network that predicts the location of next point
of the graph on a patch around the current point. These
methods are inspired by the way human annotators itera-
tively create road graphs. In [39], a network predicts which
points from the border of the output patch are linked to the
center point. RoadTracer [3] uses a CNN to predict the di-
rection of the next move with a fixed step size. PolyMap-
per [21] uses a Recurrent Neural Network (RNN) guided by
segmentation cues to predict the road topology and building
polygons. VecRoad [36] implements a variable step size for
next move prediction in order to achieve better alignment of
intersections. DeepWindow [22] estimates the road direc-
tion along a center line regressed by a CNN using a Fourier
spectrum analysis algorithm. While these methods have the
advantage of outputting a road graph directly, they cannot
guarantee the exploration of the whole map from a single
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starting location. The choice of initial starting locations is
a hard problem in itself. Moreover, the repeated application
of CNNs makes these approaches very slow.

2.3. Relational Inference and GNNs

Graph Neural Networks (GNNs) [33] are effective mod-
els for encoding interactions, and have recently been ap-
plied to link prediction [43], relational structure discovery,
such as to model the dynamics of complex systems [15],
and to the modeling of relational knowledge [34]. Kipf and
Welling [16] proposed a graph autoencoder using a Graph
Convolutional Network (GCN) encoder [17] and a simple
dot-product decoder to model undirected networks and ap-
plied it to the link prediction task. Follow-up work [34]
models different edge types in relational data using a graph
neural network encoder and a decoder based on the DistMul
[42] factorization. In [15] the authors propose a message-
passing [10] encoder that alternates between the computa-
tion of node and edge features that can later be leveraged to
predict the evolution of the system of interest several time
steps in advance. The aforementioned models assume the
ground-truth graph is partially known, or operate on the
complete graph as an uninformative prior [15]. A paral-
lel line of work is that of learning the unknown graph ex-
plicitly. The Dynamic Graph CNN model [41] proposes to
dynamically build a graph by k-NN search in the feature
space after each application of the EdgeConv operator also
introduced in [41]. The approach has been extended in [13],
where the authors address the question of the differentiable
construction of a discrete graph using the recently proposed
Gumbel Top-k trick [18] - a stochastic and differentiable
relaxation of k-NN search - and decouple the construction
of the graph and the learning of graph features amenable
for downstream tasks. With the introduction of deeper ar-
chitectures [11,20] came increased interest for efficient im-
plementations of GNNs, an issue relevant to our work as
on-board processing of satellite images, such as for road
graph extraction, is a pressing issue. [40] applied bucket-
based quantization of matrix-matrix products to accelerate
the GCN [17] operator. [2] proposed a general framework
for binarizing graph neural networks and introduced effi-
cient binarized versions of the Dynamic EdgeConv opera-
tor [41] with real-world speed-ups on a low-power device.

3. Method
In this section, we present our method based on a fully

convolutional head for regression of points of interest and
a Graph Neural Network (GNN) for link prediction. An
overview of our method is available in Figure 2.

3.1. General architecture

Our neural network architecture follows the trend of us-
ing a pre-trained CNN as a feature extractor (backbone). We

choose to work at a single level of detail and thus feed the
output feature maps of the feature extractor directly to a sin-
gle head. Using a single head allows us to save computation
time and to make the training process more streamlined. In-
deed, we remove all ground truth assignment complications
that arise when using multiple heads.

Each branch of our head is composed of three convo-
lutional layers working on Nfeat feature maps. The first
two branches are the junction-ness and offset branch, which
form the point-of-interest detection model. The third branch
is a node feature branch, which computes features that will
be used to predict links between points detected by the
”point-of-interest” branch.

Let HI ,WI be the dimensions of the input RGB image
I ∈ RHI×WI×3. We call ”detection cells” the pixels of the
final output feature maps of the point-of-interest detection
network. With the ResNet-50 [12] backbone used in our
experiments, the height and width H,W of the input feature
maps F in ∈ RH×W×Nin are 32 times smaller than the ones
of I . This means that the final layers of our head have H ×
W output cells. In the case of an input image size of 512×
512 pixels, for example, we thus obtain 16x16=256 output
cells, which can each regress the position of one point.

3.2. Point detection branch

Our point of interest detection branch, shown in Figure 2
is inspired by recent developments in single shot detection
neural networks [30, 37], which regress a bounding box for
each output ”cell” of a detection head, even if they do not
necessarily contain an object. This allows object detection
to be performed using very fast Fully Convolutional Net-
works. These methods represent bounding boxes as offsets
relative to the center of the cell regressed by a first output
and filter the detected objects using a second separate out-
put. We adapt this design to the regression of points of inter-
est by outputting a ”junction-ness” score Jj for each output
cell j (middle of Figure 2), as well as a two-dimensional
vector oj = [uj , vj ] ∈ [−0.5; 0.5]2 representing the offset
of the regressed point with respect to the center of its cell
(top of Figure 2). A point pj is detected in an output cell
j if Jj > Jthr, where Jthr is the junction-ness detection
threshold. We can retrieve the coordinates (xj , yj) of pj in
the original input image:

xj =
uj +Xj + 0.5

W
·WI , yj =

vj + Yj + 0.5

H
·HI (1)

where (Xj , Yj) are the coordinates of the cell j in the
output feature map F out. The ”junction-ness” and offset
ground truths are generated on the fly during data loading by
reversing Equation 1 using the sub-graph covered by each
input patch.
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Figure 2. Our single-shot road graph extraction neural network. Features computed using a ResNet [12] backbone are fed to three branches.
The junction prediction branch identifies cells which contain points of interest and is trained with binary cross-entropy. The offset prediction
branch regresses the precise location of these points inside of the cells by outputting a two-dimensional vector field and is trained with a
Mean Squared Error loss. Points selected by the junction and offset branch are paired with node features from a third branch and fed to a
Graph Neural Network which predicts the presence of edges between pairs of points to create the final output.

3.3. Edge prediction

Once junctions have been extracted from the image, our
task is to predict links between connected points of interest.
This is a relational inference - or a latent graph learning -
problem which we solve with a graph neural network. Start-
ing with an initial prior connectivity estimation - i.e. a set
of edges - E0, we aim at both inferring missing edges and
discarding irrelevant ones to learn the true road graph.

Formally, let j be one of the detected junctions. We de-
note by Xj = F out

j the corresponding features in the out-
put feature map of the backbone, and pj = (xj , yj) the
2D Cartesian coordinates of the junction in the input image,
computed from the offset vectors.

Our method computes initial node embeddings

xj = f(Xj ,pj). (2)

We choose the function f to be either a 2D Convolutional
Neural Network defining an additional node features branch
responsible for dimensionality reduction and transforma-
tion of the raw image features, or the identity. In the latter
case the task of transforming the raw image features is left
to the GNN. We then perform several (e.g. three) message-

passing iterations using the EdgeConv operator [41]:

e
(l)
ij = ReLU

(
θ(l)(x

(l−1)
j − x

(l−1)
i ) + ϕ(l)x

(l−1)
i

)
(3)

= ReLU
(
Θ(l)X̃(l−1)

)
(4)

x
(l)
i = max

j∈N (i)
e
(l)
ij (5)

followed by Batch Normalization, where X̃(l−1) =[
x
(l−1)
i ||x(l−1)

j − x
(l−1)
i

]
, θ and ϕ are trainable weights,

and Θ their concatenation. The resulting increase in re-
ceptive field allows for connectivity patterns to be learned
based on both local image and graph properties, and shared
context across junctions.

Finally, each possible edge is scored using a simple scor-
ing function g applied on the final node features of the
graph. Edge features must be computed explicitly for all
possible edge, we therefore choose node features to prevent
combinatorial explosion. We note

pij = σ(g(xi,xj)) (6)

the inferred probability that the edge eij exists, where σ is
the sigmoid function. In practice, we choose g to be either
a single bilinear layer, i.e.

g(xi,xj) = xT
i Wgxj (7)
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Figure 3. k = 4-NN graph constructed in feature space on fea-
tures learned by an additional node features head combined with
an MLP edge classifier.

or a multi-layer MLP classifier (please refer to the sup-
plementary material for more details and comparison with
other decoders such as the dot product).

Connectivity estimation Our choice of operator is mo-
tivated by the fact that the connectivity is unknown, and
therefore we may initialize the graph learning process with
the complete graph (i.e. considering all possible connec-
tions between junctions), or introduce a sparse prior by
building the graph dynamically by k-NN search in feature
space. We also considered the case where the initial graph
is complete, while subsequent iterations of message passing
are done on dynamically inferred connectivity. We choose
k = 4 motivated by the observations that junctions with
more than four incident roads are rare. To verify this in-
tuition, we trained a model using a three-layer (2D convo-
lutions followed by Batch Normalization and ReLU activa-
tions) node features head and an MLP classifier for each
possible edge. The model was trained to convergence, and
the four nearest neighbours graph was built on the output of
the node features branch. The resulting graph is shown in
Figure 3, and demonstrates that a high quality sparse initial-
ization of the connectivity can be obtained in this manner.

3.4. Loss function

To train our neural network our loss function is defined
as a sum of three terms:

L = Ljun + Loff + Ledge (8)

where Ljun and Ledge are the binary cross-entropy loss
which we use to train our junction-ness branch and our edge
prediction Graph Neural Network.

Loff is a Mean Squared Error offset loss masked with

the positive junction predictions, which we use to train our
offset regression branch. We define it as:

Loff =
1∑

1Ji,j>Jthr

∑
i,j

1Ji,j>Jthr
(vi,j − Vi,j)

2 (9)

Where V is the ground truth offset vector field. The mask
is used so that the predictions of the offset branch are not
conditionned to the presence of nodes.

4. Experiments
In this section, we compare our method against other

road extraction approaches on the widely-used RoadTracer
dataset [3], which is composed of 35 training cities (180 im-
ages of 4096x4096 pixels) and 15 test cities of 8192x8192
pixels. The low number of training images, low ground
sampling distance, high resolution and high annotation den-
sity of this dataset make it quite challenging. For iterative
methods [3, 36], we used the starting locations hard-coded
into the provided code.

4.1. Implementation details

We implement our method in the Pytorch 1.9.1 [29]
framework based on CUDA 11. We choose a ResNet-50
backbone (thus Nin = 2048) and Nfeat = 256. We per-
form edge classification on the complete graph (other cases
included in the supplementary material) using a three-layer
GNN and a 2-layer MLP scoring function. Jthr is set to
0.5 for the main results. We use basic data augmentation
techniques such as random flips, and train our network on
512x512 pixel random crops for 2350 epochs, which took
24 hours on our system with a single Nvidia RTX 3090 GPU
with 24GB of VRAM, an AMD Ryzen 9 3900X CPU and
64GB of RAM. We use the Adam [14] optimizer with a
learning rate of 1e−3. We did not use any loss balancing.

We also run performance benchmarks. All numbers
were obtained on a computer with two Intel Cascade Lake
6248 20-core CPUs, 192GB of RAM, and four Nvidia Tesla
V100 GPU with 16GB of VRAM. 10 CPU cores, a single
GPU, and a quarter of the available memory were assigned
to each run.

4.2. Choice of input resolution

By design, our method is only able to find a single point
of interest by output cell and is directly trained on ground
truth annotations. However, depending on the dataset, and
especially in very dense neighborhoods, several ground
truth points may fall into the same cell. We chose that
these points would effectively be merged into their centroid,
while keeping incoming edges from outside of that cell
linked to that new point. However, this situation should be
avoided as much as possible, since it can shift intersections,
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Ours RoadTracer [3] DeepRoadMapper [26]
Figure 4. Comparison of our method against an iterative method [3] and a segmentation based method [26] on a challenging area of the
RoadTracer dataset. The first line is the full image. The second line shows crops of the regions in red squares. Our method is able to find
more roads, even in sections that are completely missed by other methods.

and link close points that should not be linked (e.g. paral-
lel roads). Images are often resized when being forwarded
through a neural network, as a compromise between speed,
memory and accuracy. In our case, the resizing ratio has to
be chosen carefully according to the ground sampling dis-
tance (GSD) of the dataset and the density of ground truth
annotations. To estimate the correct ratio for each dataset,
we evaluate the average number of points in each positive
cell over the whole dataset, at a wide range of ratios. This
average should be as close to one as possible, in order to
limit the effects of point merging. Figure 5 shows this av-
erage for the popular RoadTracer [3], SpaceNet3 [38] and
Massachussetts roads [27] datasets.

4.3. Qualitative results

Figure 4 shows qualitative results against an iterative
method and a segmentation-based method. Our method is
able to find a noticeably larger number of roads than Road-
Tracer [3] and DeepRoadMapper [26] in this challenging
image. We can also notice that there are a few areas with
low connectivity compared to RoadTracer. Indeed, since
their network ”walks” through the entire regressed graph, it
is inherently made of a single connected component. How-
ever, the result of RoadTracer is missing entire portions of
the city (e.g. top left) because they are separated from the
starting position by a highway that the network was not able
to cross during its exploration. Our method does not suffer
from such limitations. More qualitative results are available
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Figure 5. Average ground truth points per positive output cell
at a range of image resizing ratios for 3 popular road extraction
datasets. The ideal average is one, to prevent the collapse of neigh-
boring nodes as much as possible.

in Figure 1 and in supplementary material.

4.4. Quantitative evaluation

We follow the literature and use the three metrics defined
in [36] to evaluate the accuracy of our network. P-F1 is a
pixel-based F1 score obtained by comparing the rasterized
output graph and ground truth. J-F1 is a junction-based F1
score based on local connectivity. APLS is the Average Path
Length Similarity defined in the SpaceNet challenge [38]
and is based on the comparison of shortest paths in the pre-
dicted graph and the ground truth.
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The results of our testing are shown in Table 1. Our
method achieves results which are competitive with Deep-
RoadMapper [26] and RoadTracer [3]. It is however out-
performed by VecRoad [36]. Our intuition is that VecRoad
”brute-forces” these metrics by regressing a lot more points
and edges than our method, as shown in Section 4.6 and Ta-
ble 3. Iterative methods inherently yield a better connectiv-
ity as their output is always a single connected component.
This is reflected in the scores.

Method P-F1 J-F1 APLS
DeepRoadMapper [26] 56.85 29.05 21.27
RoadTracer [3] 55.81 49.57 45.09
RoadCNN [3] 71.76 32.22 53.18
VecRoad [36] 72.56 63.13 64.59
Ours 57.2 39.23 46.93

Table 1. Accuracy metrics on the RoadTracer Dataset, evaluated
using open source code from [36] and [3].

4.5. Performance benchmarks

Run-time is seldom mentioned in the road extraction lit-
erature, but it is a very important metric, especially as we
move towards inference on edges devices. Thus, we bench-
mark the performance of our method against other recent
approaches with open source code. We remove data load-
ing and output times from all methods because different li-
braries and formats were used and thus only account for
pre-processing, inference and post-processing steps of each
algorithm. We provide average performance numbers for
a single 8192x8192 test image from the RoadTracer [3]
dataset, as well as numbers for the whole dataset (15 im-
ages), since some methods such as VecRoad [36] have op-
timizations for multiple-image inference. Our method can
run on the whole dataset at once by performing the sliding
window in batches, which is a bit faster.

Method Type Single image Whole dataset
VecRoad [36] Iterative 1902.5 8873.4
RoadTracer [3] Iterative 579.4 8690.5*
DeepRoadMapper [26] Seg. 1361.6 20423.4
RoadCNN [3] Seg. 278.2 4172.4
Ours Graph 20.9 295.0

Table 2. Run-time in seconds on the RoadTracer Dataset. The sin-
gle image score is averaged over the whole test set. Our method is
the fastest by a large margin. *RoadTracer failed on some images,
thus this number is extrapolated from the average.

The results of this experiment are shown in Table 2
and Figure 6. We observe that iterative methods are much
slower because of the repeated forward passes required for
next move estimation. Segmentation methods are not par-
ticularly fast as well, as the upscaling computation per-
formed by a learned decoder is very compute intensive, and
the extra post-processing steps required for graph conver-

sion are slow. Our method is the fastest one by a large
margin and offers a very good compromise between accu-
racy and speed. Indeed, it achieves similar APLS scores as
RoadTracer [3] while running 27 times faster. Our approach
also beats the APLS scores of DeepRoadMapper [26] by a
large margin while running 65 times faster. It has lower ac-
curacy scores than VecRoad [36], however it is 91 times
faster. Our method could be made even faster by using
a smaller and more efficient backbone, such as ResNet-
18 [12] or DarkNet-53 [30].
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Figure 6. APLS metric with respect to inference time for our
method, compared to state-of-the art approaches. Our method is
the fastest and offers a very good compromise between accuracy
and speed.

4.6. Graph complexity

Another interesting metric which is seldom mentioned
in the road extraction literature is the notion of graph com-
plexity. Graphs are a sparse representation and are meant
to use a lot less storage space than masks. Most algorithms
commonly used on graphs (e.g. shortest path algorithms)
have a complexity which depends on the number of nodes
and edges of the graph. Thus, offering accurate graphs
with a low number of unnecessary nodes and edges is also
beneficial in terms of run-time of subsequent applications.
To evaluate the complexity of the graphs regressed by our
method and compare it to other approaches, we propose a
complexity score (lower is better) which is simply the total
number of graph elements (nodes and edges) divided by the
APLS score. We use the APLS because it seems to be the
most popular metric. This score represents the compromise
between the accuracy and compactness of graphs.

The results of this experiment are shown in Table 3. We
observe that our method obtains the lower complexity com-
pared to VecRoad [36] and DeepRoadMapper [26]. This is
mainly due to our sparse approach to the regression of junc-
tions, as shown by the average number of nodes. In Figure
7, we show the way our method finds an optimal represen-
tation of a neighborhood compared to the very high number
of nodes and edges found by VecRoad [36].
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Method Nodes Edges Total APLS Complexity
VecRoad [36] 29620 61042 90662 64.59 1404
DRM [26] 6071 11963 18034 21.27 848
RoadTracer [3] 8263 17044 25306 45.09 561
Ours 4343 17273 21615 46.93 461

Table 3. Comparison of average graph complexity scores (Total
elements divided by APLS. Lower is better). Nodes (resp. Edges)
is the average number of nodes (resp. edges) in the output graphs
over the whole RoadTracer test set. DRM = DeepRoadMapper.
Our method achieves the lowest complexity compared to other ap-
proaches, which make it a good compromise between accuracy
and compactness of graphs.

Figure 7. Exemple of the low complexity of the graphs inferred by
our method (left) compared to VecRoad [36] (right). Our method
finds an optimal 4-node representation of this simple neighbor-
hood, whereas iterative methods tend to find overly complex repre-
sentations. Having graphs with a low number of elements will save
storage and speed up the computation of algorithms performed on
these graphs, such as shortest path algorithms.

5. Limitations
Our method comes with some limitations. The first one,

as said in previous sections, is the difficulty to work in very
dense areas with lots of intersections. Since multiple inter-
sections might fall into the same detection cell, our network
will only be able to detect one of them, which can lead to
shifted junctions. Nevertheless, our method still works well
on dense areas of Tokyo shown in Figure 4. The second lim-
itation is the inability to be trained on mask-based datasets
such as DeepGlobe [7] without converting the masks to
graphs first. Finally, some long sections of road such as
highways or bridges might lack points of interest since they
do not have any junctions. Our network can miss these sec-
tions of road in the final graph as shown in Figure 8 and
in some parts of Figure 1. This issue could be addressed
by working at different scales using multiple heads or by
adding virtual points-of-interest on long stretches of road.

6. Conclusion
We proposed a novel architecture for single-shot extrac-

tion of road graphs from satellite images. Our method first
predicts sparse interest points using an image CNN feature

Figure 8. Examples of long sections of road without points of
interest, which are occasionally missed by our method.

extractor as well as a junction detection head, and an offset
regression head, trained jointly to identify candidate road
intersections in a lower-resolution image and predict their
position in the high-resolution image. We then combine
the extracted image features and regressed point coordinates
with a graph neural network to combine local and global
information and infer the unknown graph structure. Our
method combines aspects of graph learning and link predic-
tion to score candidate connections between road junctions
and infer the road graph. We demonstrate competitive per-
formance with state of the art methods on three reference
metrics while achieving significantly lower graph complex-
ity and inference times (up to 91x faster than iterative mod-
els) compared to iterative and segmentation-based methods.

Even though the experimental validation of our approach
was focused on road networks, our single-shot graph ex-
traction framework can be applied to other types of prob-
lems. An example would be the extraction of blood vessels
in medical images [8]. An interesting follow-up to road ex-
traction could be to not only decide if edges exist or not in
the final graph, but also infer edge attributes like road types,
amount of traffic, or speed limits, as done in [9]. We also
believe that our method could be adapted to tackle map up-
date problems that have been presented in newly released
datasets [4]. In addition, our method can further be com-
bined with existing model compression techniques, both
from the Euclidean [6] and Geometric [2] deep learning lit-
erature, to pave the way for on board single-shot extraction
of road graphs on edge devices.
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ical map extraction from overhead images. In ICCV, 2019.
1, 2

[22] Renbao Lian and Liqin Huang. Deepwindow: Sliding win-
dow based on deep learning for road extraction from remote
sensing images. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, 2020. 1, 2

[23] Renbao Lian, Weixing Wang, Nadir Mustafa, and Liqin
Huang. Road extraction methods in high-resolution remote
sensing images: A comprehensive review. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing, 13, 2020. 1

[24] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 2

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2

[26] Gellert Mattyus, Wenjie Luo, and Raquel Urtasun. Deep-
roadmapper: Extracting road topology from aerial images.
ICCV, 2017. 1, 2, 6, 7, 8

[27] Volodymyr Mnih. Machine learning for aerial image label-
ing. University of Toronto (Canada), 2013. 6

[28] Volodymyr Mnih and Geoffrey E. Hinton. Learning to de-
tect roads in high-resolution aerial images. Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
6316 LNCS, 2010. 2

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
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