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Abstract

Synthetic Aperture Radar (SAR) data and Interferomet-

ric SAR (InSAR) products in particular, are one of the

largest sources of Earth Observation data. InSAR provides

unique information on diverse geophysical processes and

geology, and on the geotechnical properties of man-made

structures. However, there are only a limited number of

applications that exploit the abundance of InSAR data and

deep learning methods to extract such knowledge. The main

barrier has been the lack of a large curated and annotated

InSAR dataset, which would be costly to create and would

require an interdisciplinary team of experts experienced on

InSAR data interpretation. In this work, we put the effort to

create and make available the first of its kind, manually an-

notated dataset that consists of 19,919 individual Sentinel-1

interferograms acquired over 44 different volcanoes glob-

ally, which are split into 216,106 InSAR patches. The an-

notated dataset is designed to address different computer

vision problems, including volcano state classification, se-

mantic segmentation of ground deformation, detection and

classification of atmospheric signals in InSAR imagery, in-

terferogram captioning, text to InSAR generation, and In-

SAR image quality assessment.

1. Introduction

The Copernicus program is believed to be a game

changer for earth system sciences. Sentinel-1 Interferomet-

ric Synthetic Aperture Radar (InSAR) data, typically gen-

erated by subtracting the phase of two SAR scenes, the pri-

mary and the secondary, acquired at two different points

in time, has evolved from use-case specific applications to

routine global monitoring over yearly time spans [4].

Among other applications, differential InSAR (DInSAR

- used interchangeably with terms InSAR and interferogram

in this paper) encapsulates rich and diverse information that

has been widely used for modeling earthquakes and study-

ing tectonics [5], understanding magmatism and mitigating

volcanic hazards [27], monitoring surface motion due to an-

thropogenic or physical driving mechanisms at local [13] or

wide area scales [26], and glacier change detection [31].

The availability of a huge archive of Sentinel-1 data,

to which new SAR images are systematically added at a

rate of 3.5 TB per day, makes InSAR an excellent fit for

computer vision tasks, addressing the thematic applications

above. However, despite the extensive use of deep learn-

ing (DL) in remote sensing [39], research has focused more

on multi-spectral modalities and lately on SAR backscat-

ter [38]. There are far fewer applications that use DL to

exploit the geodetic nature of InSAR, i.e. the phase com-

ponent of SAR imagery. Previous works rely on Con-

volutional Neural Networks (CNN) and supervised learn-

ing with few training samples, for single, wrapped or un-

wrapped, interferogram classification. These approaches

rely on heavy data augmentation and/or synthetic data gen-

eration [1, 2, 6–8, 15, 34] to cope with class imbalance and

the scarcity of training data. Similar DL approaches have

also been tested on time-series of InSAR data [1, 32]. To

circumvent the lack of training data, Bountos et al. [7] pro-

posed a self-supervised learning approach to create qual-

ity InSAR feature extractors, making use of a much larger

archive of real, unlabeled, InSAR data.

The InSAR community is currently lacking a large, cu-

rated and annotated InSAR dataset, which would spur and

scale the development of new applications for geophysi-

cal research and geohazards mitigation. However, creating

a carefully annotated InSAR dataset is a non-trivial task,

that is hard to automate. SAR interferograms are unique in

their nature and consist of a superposition of several signals,

ranging from ground deformations due to different geo-

physical and/or man-made mechanisms, atmospheric dis-

turbances, digital elevation model corrections, orbital er-

1453



rors, temporal, land cover and other signal decorrelation

factors appearing as noise, etc. Therefore InSAR data an-

notation requires InSAR experts that are able to identify the

subtle differences in each InSAR, interpret and annotate in-

terferograms considering the geological, tectonic, meteoro-

logical and InSAR imaging context.

In this work, we design and generate Hephaestus, a fine-

grained, manually annotated InSAR dataset focused around

global volcano monitoring. To the best of our knowledge

this is the first annotated InSAR dataset of such scale, de-

signed to address multiple computer vision tasks. With

a team of InSAR experts consisting of Earth Observation

scientists, geologists, geophysicists, and computer scien-

tists, we annotate 19,919 individual interferograms and pro-

vide a diverse set of labels about atmospheric contributions,

ground deformation fringes, various details for the event

under study e.g. its intensity and the state of the volcano,

the quality of the interferogram as well as a textual descrip-

tion of the interferogram itself. Hephaestus is therefore la-

beled with a strategy to tackle different machine learning

problems, including multi-label multi-class InSAR classifi-

cation, semantic segmentation, image quality assessment,

image captioning, and synthetic InSAR data generation.

Along with the annotated InSAR set, we provide a large,

unlabeled dataset with 110,573 interferograms to research

methods for the creation of general InSAR foundation mod-

els applicable to multiple downstream tasks not covered in

this work. The dataset and the code used in this work is

published and maintained on: https://github.com/

Orion-AI-Lab/Hephaestus.

2. Dataset Description

Our dataset revolves around the 44 most active volcanoes

globally. For these volcanoes we collected wrapped DIn-

SAR data, i.e. phase values are modulo 2π, from the Comet-

LiCS portal [20, 21, 24, 35], which corresponds to 38 dif-

ferent descending and ascending Sentinel-1 A&B frames,

covering the period 2014-2021. One frame may cover more

than one volcano. All InSAR products are accompanied

with the corresponding coherence maps.

2.1. Volcanoes under study

Figure 1 shows the volcanoes included in Hephaestus

and the temporal distribution of InSAR frames used for each

volcano. We collected all available Sentinel-1 InSAR from

2014 to 2021 summing up to 19,919 samples from which

1,833 contain ground deformation due to volcanic activity

or earthquake. Almost all of the major volcanic events in

that period were covered, including volcanoes with recent

activity, such as Etna, Taal, La Palma and Fagradalsfjall.

Figure 1. Spatio-temporal distribution of the InSAR frames in

Hephaestus. The names of the volcanoes appearing in the dataset

are shown at the y-axis.

2.2. Annotation strategy

The manual annotation of the dataset is challenging,

since it involves the correct interpretation of interferomet-

ric fringes and their separation into atmospheric effects and

actual deformation, the classification of observed deforma-

tion into volcanic activity or earthquake event, and the cate-

gorization of the volcanic deformation according to geode-

tic models. The assessment and interpretation of the impact

of atmospheric disturbances is a particularly difficult task,

since their InSAR signature may give rise to false alarms

of volcanic deformation, due to the look-alike patterns that

are mainly caused by vertical stratification effects on high

altitude areas like mountains or volcanoes [28]. In order to

avoid such false alarms, our experts exploited extensive lit-

erature sources about the historic activity of each volcano

and their InSAR interpretation skills.

For the manual annotation of the dataset, twenty differ-

ent label categories were selected to characterize every in-

terferogram. An example of such annotation can be seen

in Listing 1. The first four labels are metadata like the

uniqueID, which is a unique code to identify every image,

the frame ID to determine the satellite orbit and frame, and

the primary date and secondary date for each SAR image

1454



acquisition. The next family of labels corresponds to tech-

nical errors that may take place during the automatic InSAR

generation by Comet-LiCS. First, is the the binary cate-

gory corrupted, that separates interferograms that are to-

tally problematic. Second, is the category processing error

that refers to two different InSAR processing error types:

type 1 refers to debursting error during the synchronization

of the burst of one or more sub-swaths of the images, type

2 refers to Sentinel-1 sub-swath merging errors that appear

as a visual discontinuity. Type 0 is used when there are no

processing errors appearing on the interferogram.

The next family of labels specify characteristics and pat-

terns with a value of 0 when these are not present in the

InSAR and 1 when they are. In the case of multiple sub-

classes, each number greater than 0 will denote one sub-

class. These labels are a) glacier fringes when observed

fringes are caused by glacier melting, b) orbital fringes

when the wrapped interferograms present a phase ramp due

to orbital errors, c) atmospheric fringes for which we have

four types of InSAR atmospheric effect classes; type 0 when

there is no atmospheric impact, type 1 when there is ver-

tical stratification that is correlated with topography and

is caused by changes of the refractive index of the tropo-

sphere, type 2 when there is turbulent mixing and vapors

caused by liquid and solid particles of the atmosphere [17],

and type 3 when both effects (type 1,2) are interleaved, d)

low coherence when the images are characterized from in-

terferometric signal decorrelation, e) no info indicating low

coherence throughout the entire interferogram, making it

hard to extract information, and f) image artifacts which

point to an artificial colorbar legend on the image.

The final label family describes the observed deforma-

tion, associated with volcanic activity. The field label refers

to the existence of deformation and can be Non Defor-

mation, Deformation, and Earthquake. Activity type pro-

vides a classification of the volcanic deformation according

to magma sources in Mogi [23], Dyke [25, 30], Sill [14],

Spheroid [37] and Unidentified. The intensity level cat-

egory discriminates the intensity of displacement caused

by volcanic activity and can be None, Low (one observed

fringe), Medium (two or three fringes), and High (more than

three fringes). The phase category classifies periods of vol-

canic activity based on the pattern of the fringes to Rest,

Unrest (uplift is observed) and Rebound (subsidence is ob-

served). An important label is confidence, which determines

the level of uncertainty during the annotation for the de-

formation categories (values in the range from 0 to 1). Is

crowd has a value of 0 when there is maximum one local

fringe pattern in the interferogram, and 1 when two or more

such patterns exist in the same InSAR image. Furthermore,

we provide a manually drawn segmentation mask, which

specifies the displacement area. Finally a description of the

interferogram is provided in the caption field.

{

"uniqueID": 1957,

"frameID": "124D_05291_081406",

"primary_date": "20200110",

"secondary_date": "20200122",

"corrupted": 0,

"processing_error": 0,

"glacier_fringes": 0,

"orbital_fringes": 0,

"atmospheric_fringes": 1,

"low_coherence": 0,

"no_info": 0,

"image_artifacts": 0,

"label": [ "Deformation" ],

"activity_type": [ "Mogi" ],

"intensity_level": "Medium",

"phase": "Unrest",

"confidence": 0.6,

"segmentation_mask": [

[

616.1845703125,

121.2841796875,

...,

618.5218671292696,

116.14156159975028

]

],

"is_crowd": 0,

"caption": "Vertical stratification caused

by atmospheric delays can be detected in high

altitude areas. Medium deformation activity

can be detected."

}

Listing 1. Annotation file example for one Hephaestus sample.

2.3. Data Distribution

Hephaestus is highly diverse as we have included

wrapped InSAR 1) from both descending and ascend-

ing viewing geometries, 2) produced with different range-

azimuth looks combinations, 3) with pure phase-only infor-

mation and with the phase overlaid with SAR amplitude,

and 4) produced with different color scale palettes [21].

In Fig. 1 we show the spatiotemporal distribution of the

records based on the date of the primary SAR image. In

Fig. 2, we show the distribution of the samples based on the

38 frame ids; Figure 2a contains the samples without de-

formation and Fig. 2b the samples with deformation with

different volcanic mechanisms. There is a major class im-

balance between ground deformation and no deformation

classes. This is anticipated since volcanic activity and earth-

quakes are not the norm in nature. In general, natural disas-

ter related problems such as fire risk prediction [29] and vol-

canic activity detection [7] are closely tied with long tailed

distributions. Taking a deeper look at the deformation sam-

ples, Tables 1 and 2 present a breakdown in regards to de-

formation type, intensity of the event and phase of the vol-

cano. Again, some of the classes are imbalanced. Most of

the recorded volcanic episodes are in the unrest phase and
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(a) (b)

Figure 2. Distribution of classes among frames. a) contains the frames with no deformation while b) the frames with deformation. The

frameIDs are omitted for this plot.

Figure 3. Distribution of labels related to InSAR information

degradation.

Deformation Type Intensity

Low Medium High

Mogi 196 111 72

Dyke 64 79 322

Sill 492 332 320

Spheroid 19 6 3

Earthquake 0 0 40

Unidentified 14 4 30

Table 1. Deformation type vis-à-vis intensity breakdown.

classified as Mogi, Dyke or Sill. Expanding the dataset to

contain a greater amount of frames will not solve the class

imbalance problem since the number of unrest events is fi-

nite in the period 2014-2021. Finally, the distribution of

samples containing atmospheric signals, background noise

and other processing errors that degrade InSAR quality are

shown in Figure 3.

Deformation Type Phase

Unrest Rebound

Mogi 283 96

Dyke 462 3

Sill 1102 42

Spheroid 28 0

Earthquake 40 15

Unidentified 41 7

Table 2. Deformation type vis-à-vis volcano phase breakdown.

2.4. Timeseries nature of the dataset

Each annotation file ( Listing 1) contains information re-

garding the spatial context of the InSAR frame (frameID),

as well as temporal information regarding the acquisition

date of the primary and the secondary SAR images. En-

coding the temporal component of the InSAR samples is a

strong characteristic of Hephaestus, which allows system-

atic volcano monitoring. Indicatively, in Fig. 4 we present

the InSAR evolution of the recent eruption in Fagradalsf-

jall volcano, Iceland. In the time series, the primary date

is fixed and the secondary date increments over time, while

the eruption occurred at 19-03-2021 [7]. The InSAR time

series of Fig. 4 show the expansion and magnification of the

deformation fringes, as magma fills the volcanic chamber at

depth with a certain rate.

Naturally, the temporal information makes it easier to de-

tect changes and therefore the onset of ground deformation.

In fact the temporal information was exploited by the ex-

perts during the dataset labelling. However, the temporal

ordering of the data to form a time-series is not straightfor-

ward, since the gap between the acquisition of the primary
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Figure 4. Fagradalsfjall volcano InSAR evolution with primary SAR date: 01-03-2021 and varying secondary date. The volcano erupted

on 19-03-2021. The volcano and the respective deformation fringes can be found in the blue circle at the bottom left of the InSAR.

and the secondary SAR image is not fixed.

P1 S1 P2 S2P3 S3

T1
T?

T?

T2

Figure 5. Illustration of the InSAR temporal ordering problem.

P[1-3] stand for the primary images while S[1-3] for the sec-

ondary. The P1-S1 (T1) pair is clearly first in this sequence. The

pair P1-S3 (T2) is second, as the the ordering is dictated by their

secondary image. Finally, the pair P3-S3 pair is included in the

P2-S2 pair, and there is no direct way to order them in this case.

In this context we can identify three distinct cases for the

creation of the time-series. Assuming two InSAR pairs A

and B: first, if both the primary and the secondary dates of

InSAR A are earlier than the respective dates of the InSAR

B, then A goes before B and vice versa. Second, if both

have the same primary date, the order is dictated by the sec-

ondary date of the two pairs. Third, if pair’s B time-span

is included in pair’s A time-span, there is no intuitive way

to order the pairs (see Fig. 5). Randomly including one of

the two in the time-series can result in loss of information

due to varying InSAR quality. Therefore discovering an op-

timal, information-preserving, time series of interferograms

is a machine learning task on its own.

2.5. Preparation of a deep learning ready dataset

To create a deep learning ready dataset, we preprocess

the frames and create patches with resolution of 224x224

pixels alongside the respective labels and segmentation

masks. Each InSAR that contains ground deformation is

randomly cropped to an area containing the deformation

fringes. In the case of multiple deformation fringes in an

interferogram, we create one patch for every instance with-

out excluding their coexistence. The rest of the frames

are broken down to a sequence of patches of the prede-

fined resolution. The resulting dataset consists of 216,106

samples. 213,859 of them do not contain any deformation

while 2,247 do. From the deformation samples there are

535 Mogi, 690 Dyke, 1,360 Sill, 28 Spheroid, 150 Earth-

quake and 50 Unidentified containing samples. Examples

of these patches along with the respective masks can be seen

in Fig. 6. Interestingly, some of the patches contain more

than one type of volcanic deformation (Fig. 7). Therefore,

this task can be expressed as a multi-class, multi-label DL

problem.

2.6. Dataset split

To setup a standard evaluation context, regarding ground

deformation, we carefully split our dataset to train, valida-

tion and testing set. From a total of 38 frames we select 35

for training and three for validation and testing. Given the

inherent class imbalance we split them in a way that pre-
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No Deformation Mogi Dyke Sill Spheroid Earthquake Unidentified Total Deformation Samples

Train 198,253 211 294 522 20 35 50 1062

Val 7803 163 204 409 6 60 0 592

Test 7803 161 192 429 2 55 0 593

Table 3. Distribution of the patches in the train, validation and test set.

Figure 6. Examples of samples with different ground deformation

types.

Figure 7. Examples of samples containing multiple deformation

fringes. The color code is the same as Fig. 6.

serves representatives of every deformation class in each

set. The validation and test sets contain 826 deformation

and 1648 non Deformation InSAR from the volcanoes of

Sierra Negra, Cerro Azul, La Cumbre, Kilauea, Maune Loa,

Puu Oo and Campi Flegrei. For tasks which operate on

patches instead of full images, we randomly assign patches

from these frames to the validation and test sets. The ground

deformation distribution of the final split can be seen in Ta-

ble 3. We intentionally do not include the Unidentified class

in the validation and test sets. This split should fit most

tasks. In problems that require the entire InSAR e.g. image

captioning, we can use all InSAR with primary date until

2017 for validation and the rest for the test set. In special-

ized cases like glacier detection or total corruption detec-

tion, a more careful, task-oriented approach is needed.

3. Computer vision tasks for InSAR under-

standing

The multifaceted information of Hephaestus dataset con-

tains the necessary ingredients to model InSAR data. In this

section we define a set of Hephaestus inspired computer vi-

sion problems towards InSAR understanding.

3.1. Volcanic deformation and activity classification

A fundamental task related to InSAR interpretation, un-

der the umbrella of volcanic activity detection, is the clas-

sification of ground deformation and its specific patterns.

Hephaestus contains very rich information on ground de-

formation and atmospheric signals, with several categories

that can co-exist. Examples of the variations of event in-

tensity, phase of the volcano and atmospheric fringes can

be seen in Figs. 8 to 10. The problem can either be treated

as binary, attempting to simply detect ground deformation

or as a multi-class multi-label problem aiming to identify

all major classes. However, for some of the classes in our

study, e.g., the event intensity, the phase of the volcano and

the type of the deformation, our problem transcends into a

fine-grained image classification problem where we have to

recognise subtle differences between similar classes. DL

models can be assisted in this task, by using the segmen-

tation mask that provides information on the location and

extent of the deformation. Information regarding object lo-

cation has already been used in [36] and [10]. A second

option, not mutually exclusive, is to exploit the textual in-

formation [19] of the InSAR. In our case, however, the de-

scription refers to the entire InSAR and not to individual

patches, which, for example, may not contain the general

atmospheric contribution type that partially dominates the

InSAR frame. A potential solution is to use an upscaled

version of the entire InSAR as one sample or preprocess it

with care to match the patch with the caption.

3.2. Semantic segmentation of deforming area

The identification of the location and mask of the defor-

mation can be of major help in volcano observatories, given

the complexity of InSAR data, the small magnitude of the

deformation signal in the early stages of volcanic unrest, as

well as the difficulty to discriminate them in the presence
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Figure 8. Samples from different phases of the Etna volcano.

Figure 9. Samples with different intensity levels from the Taal

volcano.

Figure 10. Samples with different types of atmospheric fringes.

of atmospheric and orbital errors clutter. To this end, we

can utilize the provided segmentation masks for each of the

deformation patches. Again, the problem can be treated as

a binary or a multi-class problem attempting to classify the

deformation and the specific deformation type respectively.

3.3. Text and InSAR

Text information has not been thoroughly exploited for

remote sensing applications [33]. However, retrieving the

semantic information of remote sensing imagery in textual

form, especially for the complex InSAR data, can be of par-

ticular help for interpretation by non experts. The availabil-

ity of the text modality opens new directions towards re-

mote sensing imagery understanding. Tasks related to such

a crossmodal setting include image captioning, text to im-

age generation for synthetic InSAR data generation and text

based image retrieval. In our dataset we provide a detailed

description of each InSAR frame we annotate (Fig. 11).

3.4. Quality assessment of InSAR imagery

In massive production systems like Comet-LiCS, it may

happen that some faulty interferograms are generated. De-

Figure 11. InSAR frame containing deformation. Caption: ”Tur-

bulent mixing effect or wave-like patterns caused by liquid and

solid particles of the atmosphere can be detected around the area.

High deformation activity can be detected.”

Figure 12. Representatives of different corruption flags.

tecting such InSAR as early as possible and reprocessing

them is important. In Fig. 12 we selected some characteris-

tic examples of such frames, which are labeled in Hephaes-

tus with a corruption related flag e.g. no info, low coher-

ence, processing error and corrupted, pointing directly to

the existence of some sort of corruption. Similarly, the an-

notator’s confidence contains critical meta information on

the quality of the interferogram. Low confidence means the

InSAR image does not provide clear information about its

contents, making it difficult for an expert to interpret.

The quality related information contained in our anno-

tation file can be exploited in two ways. First, by address-

ing the problem of faulty InSAR detection, which can be

reduced to a classification scheme on the known flags i.e

corrupted, processing errors, etc. Second, by identifying

information-poor interferograms. This task is directly con-

nected to Section 2.4, where we need to find the optimal

(in regards to information) set of interferograms to describe

the temporal evolution of ground deformation. This trans-

lates to selecting the most information-rich InSAR samples

in order to construct the time series. We thus provide the

coherence maps for each InSAR sample as a helping hand.

We leave this as a task open to new solutions and metrics.
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4. General InSAR representation learning

Self-supervised learning has gained a lot of traction in

computer vision recently [9, 11, 18]. Given the abundance

of unlabeled remote sensing data, and the range of crucial

downstream tasks they can address, self-supervised learn-

ing is a particularly good fit. Ayush et al. [3] proposed a

modification to the creation of positive pairs for contrastive

learning exploiting the geographical context and the spatio-

temporal structure of remote sensing imagery. Bountos et

al. [7] used self-supervised learning in the InSAR domain as

a means to learn quality representations for volcanic unrest

detection from highly imbalanced datasets. Class imbal-

ance is a common encounter in nature and therefore in re-

mote sensing, making it difficult to learn quality representa-

tions via supervised methods. Figures 2 and 3 and Tables 1

and 2 highlight this for various categories in the Hephaes-

tus dataset. In a supervised learning context a deep learning

model will make use of all kinds of underlying biases to

correctly classify the patches refraining from learning gen-

eral, transferable representations, applicable to other down-

stream tasks. On the other hand, models trained in a self-

supervised manner are more robust to class imbalance com-

pared to supervised learning methods [22]. Evenmore, self-

supervised learning in the wild can provide models with

good few-shot capabilities [16]. To this end, we have en-

hanced our dataset with random frames from all over the

world, summing up to 384 unique frames and 110,573 In-

SAR in total, creating a large-scale InSAR dataset oriented

towards self-supervised learning. Cropping to 224x224 res-

olution patches, the number of non-overlapping unlabeled

training samples surpasses 1 million.

Large datasets on their own are not necessarily enough

to provide quality representations. Remote sensing data

come with their own peculiarities, while current state of the

art self-supervised learning methods tend to rely heavily on

hand-picked combinations of data augmentations tuned on

optical data like ImageNet [12]. It is yet unexplored, how-

ever, what kind of augmentations work best in the InSAR

domain. With this dataset we can work towards the creation

of general InSAR foundation models, while researching the

application of self-supervised learning methods for InSAR

data.

5. Baseline experiments

Motivated by the discussion in Section 4, we train a

ResNet18 using MoCo-v2 [18] for 300 epochs. We fol-

lowed the choices of Bountos et al. [7] for the augmentation

set (horizontal flip, vertical flip, cutout, elastic transforma-

tion, gaussian noise, gaussian blur and multiplicative noise)

and the initialization of the model with weights from Ima-

geNet. This is the first large scale, InSAR model, trained in

a self-supervised learning fashion, to be published, leaving

Model ACC P R F

SwinPL 97.3% 76.9% 88.5% 82.2%

ResNet-18 97.4% 79.9% 84.6% 82.2%

ResNet-18-MoCo 97.3% 89.1% 71.8% 79.5%

Table 4. Results for ground deformation classification. ACC

stands for Accuracy, P for Precision, R for Recall and F for F-

Score.

the exploration for the optimal set of data augmentations for

InSAR data as future work.

In addition, we address the binary version of the ground

deformation classification problem, for which we provide

three baseline models (Table 4). For the first baseline we

utilize a SwinPL model, pretrained on synthetic InSAR

data [6], as initialization and train it for 5 epochs. We

follow the original paper and use SGD with momentum.

We set the learning rate to 0.001, momentum to 0.9 and

weight decay to 0.0001. For the second baseline, we use a

ResNet-18 with the weights learned via MoCo-v2 for ini-

tialization. We denote this classifier as ResNet-18-MoCo.

Finally, we compare these results with a simple ResNet-

18 trained using the weights of ImageNet for initialization.

Both ResNet-18 methods were trained for 5 epochs using

the Adam optimizer with both learning rate and weight de-

cay set to 0.0001. We use oversampling in all our experi-

ments to create balanced batches.

6. Conclusion

In this work, we present Hephaestus, the first large scale

Sentinel-1 InSAR dataset that was manually annotated by

a team of experts. The dataset is inspired by global vol-

canic unrest detection, but was designed to address multi-

ple computer vision tasks related to InSAR interpretation,

including image classification, semantic segmentation, and

image captioning. Finally, we provide some baseline deep

learning models for ground deformation classification. We

believe that Hephaestus will pave the way to further exploit

the rich archive of InSAR imagery and spur new machine

learning applications for geohazards mitigation.
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Mätzler, and Lothar Schrott. Monitoring rock glacier kine-

matics with satellite synthetic aperture radar. Remote Sens-

ing, 12(3):559, 2020. 1

[32] Jian Sun, Christelle Wauthier, Kirsten Stephens, Melissa

Gervais, Guido Cervone, Peter La Femina, and Machel Hig-

gins. Automatic detection of volcanic surface deformation

using deep learning. Journal of Geophysical Research: Solid

Earth, 125(9):e2020JB019840, 2020. 1

[33] Devis Tuia, Ribana Roscher, Jan Dirk Wegner, Nathan Ja-

cobs, Xiaoxiang Zhu, and Gustau Camps-Valls. Toward

a collective agenda on ai for earth science data analysis.

IEEE Geoscience and Remote Sensing Magazine, 9(2):88–

104, 2021. 7
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