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Abstract

Remote sensing visual question answering (RSVQA) was
recently proposed with the aim of interfacing natural lan-
guage and vision to ease the access of information con-
tained in Earth Observation data for a wide audience,
which is granted by simple questions in natural language.
The traditional vision/language interface is an embedding
obtained by fusing features from two deep models, one pro-
cessing the image and another the question. Despite the
success of early VQA models, it remains difficult to control
the adequacy of the visual information extracted by its deep
model, which should act as a context regularizing the work
of the language model. We propose to extract this context in-
Sformation with a visual model, convert it to text and inject it,
i.e. prompt it, into a language model. The language model
is therefore responsible to process the question with the vi-
sual context, and extract features, which are useful to find
the answer. We study the effect of prompting with respect to
a black-box visual extractor and discuss the importance of
training a visual model producing accurate context.

1. Introduction

Despite its potential, Earth observation (EO)-based in-
formation still remains difficult to access, mostly because
of the technical requirements needed to convert the raw im-
age data into actionable information (including the limited
availability of vast labeled sets and the need for advanced
machine learning skills). New ways to extract relevant in-
formation from images bypassing those requirements are
needed to unleash the full potential of EO [10, 32] for the
benefit of various application fields, such as environmental
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Land cover classes present in the image

discontinuous urban fabric. inland waters.
forests. water courses. urban fabric.
agricultural areas. water bodies. pastures.
forest and seminatural areas. broad-leaved
forest. artificial areas

Land cover question

Which L2 land cover classes are in the scene?

Forests, inland waters,
pastures and urban fabric

Land cover classes present in the image
discontinuous urban fabric. open spaces with
little or no vegetation. urban fabric. transitional
woodland/shrub. agricultural areas. heteroge-
neous agricultural areas. scrub and/or herba-
ceous vegetation associations. burnt areas.
land principally occupied by agriculture, with
significant areas of natural vegetation. forest
and seminatural areas. artificial areas

Yes/No question

Are some urban fabric present?

Figure 1. RSVQAXBEN triplets samples with visual ground truth.

monitoring, agriculture, urban planning, tourism, etc.
Visual Question Answering (VQA) [2] was introduced
as a generic and user-friendly way to interact with image-
based products, fostering the transition from arbitrary and
controlled tasks (e.g., image classification) to diverse appli-
cations accessible to a wide audience. In a nutshell: given
an image and a question about it in natural language, the
VQA task consists in predicting a text answer. Remote sens-
ing visual question answering (RSVQA) [20] followed this
principle to enable a wider use of remote sensing images. A
couple of examples from [19] are displayed in Figure 1.
Current RSVQA methodologies rely on a joint latent
representation of visual and textual information, obtained
with fusion and/or attention mechanisms, to derive the an-
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swer. When considered in isolation, the visual and language
tasks can benefit from the specific advances from computer
vision and natural language processing (NLP). Foundation
models [3] such as the BERT [&] and GPT-3 [4] fami-
lies or G-Shard [17] accelerated NLP significantly. How-
ever, constructing a meaningful bi-modal latent space from
scratch requires considerable efforts. Huge computational
resources are needed for the re-training of these pre-trained
models on specific, application-oriented tasks.

Prompt-based inference [4] was introduced as a new
paradigm for leveraging these huge models. Instead of re-
training from end to end a large language model, prompting
adds a few keywords to the input text. These keywords act
as a contextual guidance and make predictions with no or
light fine-tuning only. In VQA, instead of relying on a la-
tent, thus abstract, joint representation of visual and textual
information, the additional keywords can be cast as the con-
text given by the image to the language model. The abstract
visual features extractor is replaced with a keywords gen-
erator, which produces a textual description of the image,
then used in the language model. In other words, the remote
sensing image, translated into a textual representation, can
be used as prompt (also referred to as context in this paper)
for the question in a language-only model.

Relying only on a language model, prompted with con-
text extracted by visual analysis of the image, bears two
important advantages: first, it creates an interpretable bot-
tleneck (the keywords generator) that can be used to under-
stand which elements of the image are used to answer the
question; second, it places language as the fundamental ref-
erence modality to translate other modalities to. While our
interest in this paper is a visual modality (the remote sens-
ing image), other sources of information and/or knowledge
could be added to the prompt by simply converting them
into a set of insightful keywords for the language model.
Translating modalities to a reference could be computation-
ally more interesting than defining a new appropriate latent
multi-modal space for every new situation encountered.

In this study, we investigate an alternative method to the
bi-modal representation for remote sensing VQA [9,20,41]
based on image-based keywords generation, or prompting.
We refer to it as Prompt—RSVQA, which stands for Prompt
Remote Sensing Visual Question Answering. The novel ar-
chitecture places language in the center as the reference
modality, and translates the visual information into words to
guide the language model. An attention-based Transformer
language model attends both the question and description of
the image to produce an answer. Through wide experimen-
tation on the RSVQAXBEN dataset [ | 9] (of which samples
are showed in Figure 1), we aim at assessing each modal-
ity individually and at understanding the influence of vi-
sual predictions on the subsequent language model. Using
prompting, we obtain answers that are i) more accurate, ii)

more interpretable, since derived from humanly readable
visual elements and, iii) even when incorrect, still seman-
tically closer to the right answer than a model based on an
abstract bi-modal latent representation.

After reviewing recent advances on VQA and prompt-
based methods in Section 2, we present our method in Sec-
tion 3. The experimental procedure is detailed in Section 4
and we present and discuss our results in Section 5.

2. Related work

While the initial methodology [2] of Visual Question
Answering relies on extracting features from both modal-
ities, combining them in a fusion whose product is clas-
sified into an answer, methods aiming at expliciting the
interaction between vision and language have been more
and more researched: attention mechanisms have rapidly
been introduced to guide the search of meaningful content
across modalities [1, 38]. Graph representations are sug-
gested to enhance the joint reasoning across modalities [30].
Recently, the VQA task along with multiple other vision-
and-language problems are tackled using large-scale pre-
training of networks on text-image datasets [0,42].

The last years have witnessed a radical switch toward the
usage of large text-image models, also referred to as foun-
dation models, such as CLIP [23], UNITER [6], MER-
LOT [42], Florence [39] or UFO [35]. These models
have demonstrated their strength on multiple vision-and-
language tasks, leveraging colossal quantities of data in
unsupervised pre-training. Modern foundation language
models involve hundreds of billions of learnable param-
eters (GTP-3 [4], 175B; LaMDA [31], 137B; Megatron-
Turing [27], 530B). While their performances are unde-
niable, these models come with huge computations cost,
even for re-training. Following the publication of GPT-
3, the concept of language prompting raised an increas-
ing interest [18]. Its core principle is to manipulate in-
put data instead of the model parameters. While the ini-
tial idea is inference-based, it was transferred to smaller
language models such as the BERT family with light fine-
tuning [11,25]. Language prompts have been applied to the
task of question answering [45] and VQA [14,37].

Remote sensing visual question answering was ini-
tially proposed by [20] with a baseline methodology and
a dataset in which questions and answers are derived from
OpenStreetMap using the CLEVR protocol [ | 5]. Contribut-
ing to the research field, other datasets have been pub-
lished [40,44] while methodologies implementing different
fusion mechanisms [5], attention mechanisms [44], curricu-
lum learning [4 1] or object detectors [9] have been experi-
mented with. A new dataset “RSVQA meets BigEarthNet”
(RSVQAXBEN [19]) focuses on questions/answers relative
to land cover and is used in this work. The ground truth an-
swers are generated solely from an easily accessible visual
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ground-truth, BigEarthNet labels [29].

In this paper, we propose to use discrete tokens from the
land-cover vocabulary to prompt a language model from the
BERT family. By doing so, we consider the visual infor-
mation extracted from the remote sensing image as a con-
text information guiding the language model in the RSVQA
task. To the best of our knowledge, this is the first utilisation
of the concept of prompting in remote sensing.

3. Proposed method Prompt—-RSVQA

Figure 2 summarizes our proposed methodology. We
first use a visual model (Section 3.1) to predict land cover
classes present in the image and convert them into text in
a context (Section 3.2). These classes and the question are
then passed to the language model, and the vector produced
is classified into an answer using a MLP (Section 3.3).

3.1. Visual model

The objective of the visual model is to predict the land
cover classes that are present in the RGB images. In this
work, we use a ResNet-50 [12] model pre-trained on Ima-
geNet [7]. ResNet-50 [12] is a CNN image classifier that
uses skip connections to reduce the impact of the vanishing
gradients problem. The original ResNet-50 architecture is
adapted to the multi-label task by replacing the final soft-
max layer by a sigmoid layer as the activation function. As
a result, the model provides a presence score ranging from
0 to 1 for each land cover class.

3.2. Context construction

The output of the ResNet-50 visual model is transformed
into a context that serves as an input to the language model.
First, the predictions from the visual output are thresholded
(with a threshold #), giving a one-hot vector indicating the
presence of each considered land cover class. The labels
of the selected predictions are then retrieved and concate-
nated together to form a sequence of words. Each label is
separated by a full stop character, as shown in the example
below, where ‘class2’ and ‘class4’ would be textual names
of the classes (e.g. ‘marine waters’, ‘forest’, etc).

0.3 0
0.7 o |1 . , . ,
o2l 7 1ol [class2 class4]
0.9 1

3.3. Language model

The language model takes the question and the textual
representation of the image as inputs to produce a feature
vector jointly representing both visual and textual informa-
tion. DistilBERT [24] is used as the language model in
our framework. DistilBERT is an attention-based Trans-
former [33] architecture. It is a light, distilled version of

the Bidirectional Encoder Representations from Transform-
ers (BERT) [8] pre-trained on the BookCorpus [46] dataset
and the English Wikipedia. Compared to BERT, it is shal-
lower by a factor of 2 (6 self-attention layers in distilBERT
against 12 for BERT). DistilBERT is trained using knowl-
edge distillation [!3], retaining up to 97% of BERT base
performance on GLUE benchmark [34].

The two input sequences, question and visual context,
are tokenized. Each word is transformed into a number,
or token. The input vector contains first the list of tokens
for the question, then a special separation token, followed
by the list of tokens corresponding to the context. The
tokenization process is followed by distilBERT language
model. In the model, tokens along with their position and
type are embedded in its space before being passed to the
encoder, i.e. the six attention layers. The output of the lan-
guage model is a vector of dimension 768.

Finally, the answer prediction is framed as a classifica-
tion task, where 1’000 classes represent a set of pre-defined
answers. The output of the language model is projected to
the answer space with a MLP (one hidden layer of size 256).

4. Data and setup
4.1. Data

Experiments are conducted on the large-scale dataset
RSVQAXBEN [19] that focuses on land cover ques-
tions/answers. This allows us to fully supervise both models
for an initial exploration of Prompt-RSVQA. This dataset is
derived from the BigEarthNet dataset [29].

BigEarthNet (BEN) [29] is a large-scale benchmark
dataset for multi-label land cover classification. It con-
tains 590’326 Sentinel-2 image patches collected in 2017
and 2018 over ten countries in Europe. The images have
a spatial extent of 1.2kmx1.2km and a spatial resolution
ranging from 10 to 60m for the 13 spectral bands. Images
with significant cloud cover, cloud shadows or covered by
seasonal snow were discarded in the dataset construction.

The original labels are derived from the CORINE Land
Cover (CLC) inventory. The CLC established a hierarchy
of land cover classes with 3 levels of labels that are split
into 5 coarse (L1), 15 intermediate (L2) and 43 fine-grained
(L3) land cover categories. A few classes with similar des-
ignations at different hierarchy levels (e.g. water bodies,
pastures) are counted as a single label leading to a total of
61 classes. The accuracy of this reference data is estimated
to be over 92% overall, and of 87% when considering only
L3 classes [22]. BigEarthNet associates each image with
the L3 CLC labels present in the spatial extent of the patch.
The data split used in [29] between training, validation and
testing sets is done randomly.

RSVQAXBEN dataset [19] is derived from the 10m res-

1374



2048

CNN
ResNet-50

61

class 1
|:|class 2
class 61

Visual model

Language model

Context: discontinuous urban fabric. industrial,
commercial, and transport units. industrial or
commercial units. urban fabric. artificial areas

v 768

#answers
256

Are there forests and
arable land in the scene?

3 C_anguage transformer

> No

distilBERT

Figure 2. Our proposed method Prompt—RSVQA, translating the image into a context and then using it in a language-only model.

olution RGB images and the labels from BEN. Ques-
tion/answer pairs are constructed from the CLC labels (L1
and L2 are derived from the L3 labels provided by BEN)
using a stochastic procedure (Figure 1). Because there is
no ambiguity in the construction procedure, it is to be noted
that questions can be answered perfectly given the correct
list of CLC classes present in the image. There are two
types of questions: either Yes/No (e.g. ”Is there a for-
est or a water area in this image?”) or Land cover (e.g.
”Besides natural vegetation, which land cover classes are
present?”) questions. Retrieving an extra information, i.e.
the CLC labels, in addition to the image/question/answer
VQA triplets, offers the opportunity to monitor the visual
part of the pipeline, and to obtain an interpretable seman-
tic bottleneck [21]. Moreover, it allows to study the upper
bound on accuracy, i.e. the situation where perfect CLC
labels are used as context information.

This dataset splits in training, validation and testing sets
differs from the ones in BigEarthNet. It separates the sam-
ples by the latitude coordinate of the images, rather than
randomly. This splitting methodology induces a shift in cat-
egories distribution between training/validation/testing sets
since they come from geographically distant areas. While
avoiding spatial correlation between training and evalua-
tion, this domain shift also makes the land cover classifica-
tion task more challenging. In this work, we use this split.

Finally, in RSVQAXBEN, there are a total of 28’049 pos-
sible answers. However, a procedure, following the work
in [19], is used to select the 1’000 most frequent answers (of
the training set). These answers cover respectively 98.1%,
99.2% and 98.9% of the answer spaces for the training, val-
idation and testing sets.

4.2. Model training procedure

The visual model and the language model (including the
answer prediction) are fine-tuned separately in this study.

The first considers the image alone and predicts the CLC la-
bels (at the L1, L2 and L3 levels). The second is fine-tuned
by using a perfect visual prediction, i.e. using directly the
L3 labels from BigEarthNet and the corresponding L1 and
L2 labels as the (perfect) context for answering the ques-
tion. Learning the model in an end-to-end fashion is not
straightforward, since it requires to back-propagate through
the prompting operation, and is left for future research.

As stated above, fine-tuning the language model with
an exact context allows to assess an upper bound on per-
formances for the complete framework. This model is re-
ferred to as visual oracle model in the present study. On the
contrary, a visual blind model, considering only the ques-
tion as input, without any form of information from the
image, is trained to assess a lower bound of performances
to be expected on the RSVQAXBEN dataset. The method
Prompt—RSVQA is displayed in Figure 2, while the visual
oracle and visual blind models are illustrated in Figure 3.

The visual model is fine-tuned with the Adam opti-
mizer [16] for 100 epochs, with an initial learning rate of
104, reduced by a factor 0.1 every 30 epochs. We use a
batch size of 64. Random vertical and horizontal flips, as
well as random 90 degrees rotations, are performed during
training as data augmentation strategies. We use the binary
cross entropy loss that combines a sigmoid function with
the cross entropy loss to have a multi-label output where
each class receives a scores between 0 and 1. The number
of output classes is fixed to 61, which corresponds to the
ensemble of L1, L2 and L3 classes in the CLC hierarchy.
We observe that training the model with all three hierarchi-
cal levels of land cover slightly improves the model perfor-
mances in comparison to training it with the L3 labels only.

The language model includes the language Transformer
and the classification layers to predict the answers. The
Adam optimizer [16] is used here as well. The model is
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Figure 3. The visual oracle and visual blind models; While the first benefits from a perfect visual context that is the ground-truth of

BigEarthNet image data, the second never sees the image.

trained for 10 epochs with a batch size of 100. The loss is
computed with cross entropy. The “transformers” package
from the open library Huggingface provides an implementa-
tion of both the specific tokenizer and language model. As
tokeniker, we use DistilBertTokenizer (30’000 tokens vo-
cabulary). This is identical to BertTokenizer, which is based
on the subword tokenization algorithm WordPiece [26, 36].
The pre-trained weights of the distilBERT language model
are retrieved from the common checkpoint ’distilbert-base-
uncased’. DistilBERT (excluding the embedding part) is
fine-tuned with a learning rate of 10=6. The classification
layers are trained with a learning rate of 10~°.

4.3. Performance evaluation

In our results, evaluations are divided in two parts: those
referring to our final task VQA and those referring to the
bottleneck task, the prediction of CLC classes.

4.3.1 Multilabel CLC classification

Performance evaluation for multi-label classification is
more complex than for traditional classification since they
require specific metrics that also consider partially correct
answer, instead of a binary correct/incorrect evaluation.

The partial correctness of classification is evaluated with
the F1-score that computes a harmonic mean of the pre-
cision and recall. We use the micro Fl-score to compare
predictions and ground truth globally on every categories.

The exact match ratio (MR) computes the fraction of
correctly classified samples, i.e. the samples whose pre-
dicted labels exactly correspond to the ground truth labels.
This metric is similar to accuracy for traditional classifica-
tion. For N samples, it is expressed as follow [43]:

1 N

where y; is a vector containing the ground truth labels, y;
the predicted labels expressed as a one-hot encoded vector
of land cover classes, and I the indicator function (returning
1 if the condition is true, O otherwise).

To cope with this issue and provide a sense of how wrong
a prediction is, we report the Hamming distance (HD) be-
tween the prediction vector and the ground truth. It corre-
sponds to the number of times, on average or per sample,
an occurrence of class label is incorrectly predicted [28].
In other words, it represents the number of binary labels to
modify in the prediction to obtain the ground truth, equally
considering missed and wrongly predicted labels. It can be
formulated as follow:

A
HD:NZZI(ZJM:QM)» 2

i=1 j=1
where y;; and §;; are the binary class target and prediction,
for C land cover categories. The smaller the HD, the better
the performance of the model, thus a HD of 0 indicates a
perfect prediction. This example shows the difference be-
tween the per sample MR and HD scores when comparing

two incorrect prediction vectors y1, ¥2 with target y:

y:[O 1 1 1 O};
yi=[0 0 1 1 0];
y2=[1 0 0 1 0];

= [ o[l

4.3.2 VQA downstream task

VQA is mostly studied in terms of accuracy of the an-
swers provided. In the experiments, we report accuracy
figures globally (over all samples) and per type of ques-
tion (“Yes/No” or “Land cover” subsets). With the accu-
racy metric, all mistakes count the same, regardless of their
similarity to the ground truth. Thus, we additionally anal-
yse the HD (Eq. (2)) between the answers provided; HD
allows to understand if the predicted answers are critical
mistakes (several classes are wrong or missing) or more
nuanced ones (only one CLC class is incorrect in the an-
swer). To compute the HD on the VQA answers, we con-
vert each potential answer into a 64-dimensional one-hot
vector, yyga € {0, 1}%4, with the binary entries ordered as
follows: ‘Yes’,‘No’,‘None’, CLC classes.
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Method Classes | FI  HD MR Method | Global  Yes/No Land cover
Our method L1,L2,L3]0.746 3.4 15.6% Visual oracle | 98.81% 99.90%  93.79%
Our method 13 0.682 1.9 18.5% Visual blind 65.36% 75.85%  17.30%
S-CNN-RGB [29] 0.676 - - RSVQA [19] 69.83% 79.92%  20.57%

Prompt-RSVQA (ours) | 75.40% 86.07% 26.56 %

Table 1. Multi-label classification results with the F1-score, Ham-
ming distance (HD) and exact match ratio (MR). The results are
displayed for our method on all the categories (61), and on the
L3 categories (43) only, to allow for a comparison with S-CNN-
RGB [29] that predicts only L3 classes.

5. Results and discussion

In this section, we present results, first on the visual
model only (predicting CLC classes, Section 5.1), then for
the VQA task (Section 5.2). Finally, we discuss the robust-
ness of the model to perturbations in the CLC results (Sec-
tion 5.3) and how critical mistakes are with respect to the
target (Section 5.4).

5.1. Visual model

First, we discuss the results of our visual classifier pre-
dicting CLC classes displayed in Table 1. Our resulting F1-
score on the L3 categories is similar to the published one
in [29], even though our dataset split is more challenging
due to the distribution shift between the train, test and vali-
dation sets (see Section 4.1). On average, the visual model
makes 3.4 mistakes on the 61 classes, among which 1.9 are
erroneous predictions on L3 categories, as indicated by the
Hamming distance.

5.2. Language model and the VQA task

In this section, VQA results on the test set for the visual
oracle model, visual blind model, and proposed method are
compared against the baseline method established in [19].
Performances in accuracy are displayed in Table 2.

Upper and lower bounds. First, we analyse the results
of our upper and lower bounds, the visual oracle and the
visual blind models, respectively. As a reminder, the former
has perfect knowledge of the CLC classes for prompting,
while the latter does not use any form of visual information
in any way and relies on biases in the questions / answers
distributions to predict the answer.

e Visual oracle. Fine-tuning the distilBERT language
model with a perfect input from the visual part (using
BigEarthNet labels) allows to define the upper bound
of performances. As displayed in Table 2, the per-
fect CLC input used as prompt leads the language
model and subsequent classification layers to near-
perfect VQA predictions. In fact, considering the way

Table 2. Results in accuracy, comparing performances from [19]
with visual oracle, visual blind, and our method Prompt—RSVQA.
“Blind” and “oracle” results give, respectively, a lower and upper
bounds of potential results on the RSVQAXBEN dataset.

the answer space is restricted, as described in Sec-
tion 4.1, the best attainable global accuracy on the
testing set is 98.9%. The visual oracle model is thus
only at about 0.1% point from what is truly achievable
in this situation. With this result, we can see that a
light Transformer like distiIBERT manages to solve the
language problem of the RSVQAXBEN dataset. This
is relatively unsurprising, especially considering the
templates-based procedure followed to build the ques-
tions. While the use of large language models may be
argued at this point, we believe it will become neces-
sary with the diversification of topics and the increas-
ing complexity of language syntax used.

 Visual blind model. In the closed setting of a dataset,
each question has a limited number of possible an-
swers. For “Yes/No” questions, the answer has in fact
only two options (“yes” or “no”) and if the distribution
is balanced, randomly picking either of the two options
will lead to a 50% accuracy. However, the distribution
is often imbalanced and thus blindly selecting the most
common answer will lead to a reasonably good accu-
racy without even checking in the image. As shown
in Table 2, the accuracy of the visual blind model meets
this expectations, achieving impressive performances,
only 3-4 points below the performances of [19]. We
strongly feel the importance of raising awareness about
biases in remote sensing VQA datasets and defining a
lower bound performance to illustrate it.

Our Prompt-RSVQA method outperforms by about 6%
the global accuracy and question type specific accuracy of
RSVQA [19]. It outperforms by about 10% the visual blind
model, but considerable progress is still needed to reach the
performances of the visual oracle model, in particular re-
garding questions related to land cover classes (26.56% ac-
curacy). This is unsurprising, since they are typically more
complex than Yes/No questions (86.07% accuracy).
Performances of the downstream VQA task are depen-
dent on the threshold applied to the CLC predictions. The
search for the best # is conducted on the validation set of
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Figure 4. The threshold selection of the visual output is performed
on the validation set of RSVQAXBEN, using the global accuracy
of the RSVQA task, and represented with a black vertical line.

RSVQAXBEN and is illustred in Figure 4. The best thresh-
old, # = 0.5, is chosen for the highest global accuracy.
Interestingly, it appears the more appropriate threshold for
each question type differs. While the value best suited for
the “Yes/No” questions is slightly lower, between 0.3 and
0.4, the best value for the “Land cover” questions lies be-
tween 0.6 and 0.7. In other words, the threshold needs to
be more restrictive, i.e. select fewer labels, for the “Land
cover” questions than for “Yes/No”.

Comparing the vertical axis in Figure 4 with the results
in Table 2, there is a gap in performances between validation
and testing results. As described in Section 4.1, the strategy
to split the dataset into training, validation and testing sets in
RSVQAXBEN imposes different distributions between the
sets. This challenge likely explains the gap in performances
between validation and testing sets.

5.3. Sensitivity to the visual predictions

While the light fine-tuning of the language model is per-
formed with a synthetic perfect input from the visual part,
the real performances of the visual model are not flawless
(Table 1). To better understand the quality of results re-
quired from the visual part to perform well, a perturbation
analysis is conducted during inference on the language part
(Figure 5). The perfect input used for prompting is cor-
rupted randomly by adding/removing CLC classes. Con-
sidering each possible label in a binary manner, activated
or not, class entries are swapped (i.e. in the prediction vec-
tor, zeroes are changed to ones and vice versa). From O to
61 disruptions in each prediction vector are performed to
assess the influence on the final task of answer prediction.

As expected, disruptions of the visual input affect more
strongly the “Land cover” question type. Predicting erro-

——Global YesNo ——Land cover
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Figure 5. Disruption of the fine-tuned language model at infer-
ence, on the validation set. The black vertical line is the actual
average error rate of our visual model (HD 3.4, Table 1).

neously more than 4 labels from the image makes the accu-
racy for this question type drop below 20%, i.e. below the
performance reported by [19]. Worsening to 10 mistakes
or more pushes this accuracy to nearly 0%. On the other
hand, the loss in performance on the “Yes/No” questions
is less dramatic. Its accuracy decreases from almost 100%
to about 40% when most classes responses have been per-
turbed. The number of samples of this question type repre-
sent about 80% of the dataset, influencing more heavily the
global results, as it clearly appears in Figure 5.

5.4. Does our method lead to better mistakes?

Our final analysis relates to the way the answer are
constructed in RSVQAXBEN. As its name suggests, the
“Yes/No” questions are answered by “Yes” or “No”, while
the “Land cover” questions can be answered by ‘“None” or
a sequence of one or more classes of land cover. Given 61
different land cover classes, the number of possible combi-
nation of varying length is extremely large. This explains
the motivation for limiting the answer space to the 1’000
most common answers, instead of the 28’049 full labels set
variety in the dataset, a lot of which occur only once.

However, some mistakes are more severe than others:
missing a single CLC class is definitely less critical than
incorrectly predicting five, or answering ‘Yes’ when asked
which CLC classes are present in the image. To study
whether our strategy leads to less critical mistakes, we con-
sider the Hamming Distance (HD). Average results are dis-
played in Table 3. The distribution of HD for each studied
case is drawn in Figure 6. A distance of 0 indicates the
prediction matches exactly the target.

As expected, the average global distance in Table 3 is
best for the visual oracle model and worst for the visual
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Method Global Yes/No Land cover
Visual oracle 0.07 0.00 0.40
Visual blind 0.89 0.48 2.73
RSVQA [19] 0.81 0.40 2.80
Prompt—-RSVQA (ours) 0.59 0.28 2.02

Table 3. Hamming distances in answer post-processing, compar-
ing our method Prompt—RSVQA with [19] and visual blind. Visual
oracle gives ideal performances with a perfect context classifier.

2.5E+6

m Visual oracle
Our method
Lobry et al., 2021
Visual blind

» 2.0E+6

g 1.5E+6

samples

1.0E+6

Number of
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Hamming distance

(b) "Land cover" questions

Figure 6. Distribution of per sample Hamming distances, sepa-
rated by question type, for each method.

blind model. Our method outperforms [19] by achieving
lower distances. While the average distance of the “Yes/No”
questions fits the global tendency, the situation diverges
slightly for the “Land cover” questions. Indeed, the HD
for RSVQA [19] is higher (i.e. worse) than the visual blind
model. Although not reflected in the global results, as the
proportion of “Land cover” questions is much lower than
the one of “Yes/No” questions (about 20% vs. 80% respec-
tively), this result is troubling. It motivates the proposition
of developing additional metrics to evaluate and challenge
the performances of a model.

Figure 6 provides more details to the Hamming distance
results by displaying their distributions per question type.
The top (a) and bottom (b) fractions of the figure illustrate
these distributions for the “Yes/No” and “Land cover” ques-

tions respectively. Again, the visual oracle model shows
the best distribution with the large majority of samples at
HD = 0. The visual blind model has the least num-
ber of samples with a perfect match compared to the other
three cases. Our proposed method shows distributions more
skewed towards O than [19] for both question types. Only
two distances exist for the top (a) figure, indicating that the
models most probably recognizes the question type and has
a HD of 0 when predicting correctly, and 2 otherwise (bi-
nary swap for both “yes” and “no”). In the bottom (b) fig-
ure, a wider range of distances are seen and distributions
are generally decreasing with higher distance value, to the
exception of HD = 1. Higher distances do exist but in very
small numbers and thus have been excluded from the figure
for more clarity. Compared to [19], our method shifts its
prediction towards smaller distances, especially HD = 1.

6. Conclusion

In this study, we proposed a prompted language model to
address the remote sensing visual question answering task.
The proposed method, Prompt—RSVQA, reframes the bal-
ance between the two modalities, vision and language, giv-
ing a leading role to the latter. The image is processed by a
visual model, whose results are converted to text and used as
visual context by the language model answering the ques-
tion. Our results showed a 6% increase in accuracy com-
pared to the baseline model RSVQA [19].

The vision and language models are fine-tuned sepa-
rately before being assembled and run during inference.
End-to-end training of the method is not trivial and is left
to future research, as well as the exploration of architec-
tures for the visual part (e.g. ResNet-152), or the usage of
text generating modules enabling a wider set of answers.

In addition to improving the results on the RSVQA task,
we demonstrated that this method allows to better eval-
uate the performances of each modality separately and
to understand the influence of the visual performances
on the RSVQA task. In particular, we have shown that
a Transformer-based language model is sufficient for the
RSVQA task. This is made possible by the semantic bot-
tleneck, which is learned thanks to the BigEarthNet labels.
In the development of future datasets, we thus encourage
the storage of any additional information not directly con-
tained in the image/question/answer triplets but that could
still be extremely useful in later research.

Finally, we hope this first study will raise interest in the
potential of using language as the reference modality in re-
mote sensing VQA, instead of learning deep bi-modal em-
beddings. Context information originating from any type of
data modality, given that it can be converted into a textual
form, can be exploited in a prompting fashion, therefore al-
lowing to leverage the latest pre-trained language models
with no or light fine-tuning.
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