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1German Aerospace Center (DLR) 2Technical University of Munich
{codrut-andrei.diaconu, xiaoxiang.zhu}@dlr.de, sudipan.saha@tum.de, guennemann@in.tum.de

Abstract

Climate change is perhaps the biggest single threat to
humankind and the environment, as it severely impacts our
terrestrial surface, home to most of the living species. In-
spired by video prediction and exploiting the availabil-
ity of Copernicus Sentinel-2 images, recent studies have
attempted to forecast the land surface evolution as a func-
tion of past land surface evolution, elevation, and weather.
Further extending this paradigm, we propose a model based
on convolutional long short-term memory (ConvLSTM) that
is computationally efficient (lightweight), however obtains
superior results to the previous baselines. By introducing
a ConvLSTM-based architecture to this problem, we can
not only ingest the heterogeneous data sources (Sentinel-
2 time-series, weather data, and a Digital Elevation Model
(DEM)) but also explicitly condition the future predictions
on the weather. Our experiments confirm the importance
of weather parameters in understanding the land cover dy-
namics and show that weather maps are significantly more
important than the DEM in this task. Furthermore, we per-
form generative simulations to investigate how varying a
single weather parameter can alter the evolution of the land
surface. All studies are performed using the EarthNet2021
dataset. The code, additional materials and results can be
found at https://github.com/dcodrut/weather2land.

1. Introduction

Climate change has recently emerged as an important
area of research as the Earth’s climate is in a significant
transition. This poses a serious threat to our existence since
it has a pronounced and complex impact on our terrestrial
surface that hosts the majority of our living world [2]. Con-
sequences are already prominent, starting from sea ice melt-
ing [14] to increased fire events [39,41]. Remarkably, some
impacts are different in different areas of the world and
both global and regional impacts are yet to be fully under-
stood [1].

A better understanding of the regional impacts of the
different weather scenarios can be useful for many down-
stream tasks, e.g. estimating the crop yield [25,29], and this
becomes even more critical when droughts are expected [4].
The reason is that the weather has a heterogeneous impact,
depending on many local factors (e.g. vegetation, soil, or
topography) [18, 28]. Moreover, due to the computational
limits of the numerical models, seasonal forecasts are pro-
vided at a relatively low spatial resolution, up to 0.25◦ (i.e.
≈27 km on the Equator) [12, 23]. This motivates the use of
additional inputs to be able to downscale these predictions
to a resolution that can allow for downstream analyses.

The last decade has seen a significant increase in the
number of satellite sensors, thus making Earth observation
data available at an unprecedented scale. The Coperni-
cus program of the European Space Agency provides up to
10m/pixel (Sentinel-2) data at a high temporal resolution of
5 days. Such increased temporal availability has made pos-
sible dense predictions/analyses at a reasonable spatial res-
olution [19, 36] that were not previously feasible. As such,
satellite images are a good candidate for being additional in-
put to the models analyzing the regional impact of climate
change. Towards predicting the evolution of terrestrial land
surface, a promising approach is to combine the cues pro-
vided by dense satellite time-series images and the weather
data.

Following this direction, Requena-Mesa et al. [28] for-
mulated the Earth surface forecasting task as a video predic-
tion of the satellite imagery guided by mesoscale weather
projections and released a dataset (called EarthNet2021)
for supporting this task. The aim is to build a model that
uses a context of 10 satellite images and infers the fol-
lowing 20, given weather information available for both
the context frames and the future ones. Additionally, a
static high-resolution Digital Elevation Model (DEM) is
also used. These additional inputs should guide the predic-
tions of the model, thus the similarity to a guided video-
prediction problem. Three different baseline models are
proposed in [28], including a naive model which simply
makes a constant prediction computed as the average of
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the context frames. The best-performing model among the
three baselines uses U-Net [30] and it achieves the highest
evaluation scores even though it does not explicitly model
the temporal dependence. Moreover, the performance gap
between U-Net and the naive model is small, which sug-
gests that improvements could be potentially achieved by
exploiting architectures that suitably incorporate the tem-
poral context. This motivates us to use the Convolutional
LSTM architecture which is known for its capability to
learn effective spatio-temporal features [35].

Requena-Mesa et al. [28] do not provide any detailed in-
sights regarding the relevance of the additionally provided
inputs, i.e. the meteorological projections and the DEM,
w.r.t. to the target variable, i.e. the land surface. We ana-
lyze the performance improvement as an indicator that these
additional parameters are indeed valuable for land surface
forecasting. Additionally, a generative approach can be par-
ticularly useful here, to visualize and track the changes in
the predicted land surface w.r.t. varying weather parame-
ters. Towards this, we make a detailed investigation under
different rainfall scenarios.

Our contributions can be summarized as follows:

• We propose a new model which, despite using a much
smaller number of parameters, achieves a significantly
better performance than the baseline models.

• We study the importance of the DEM and the weather
variables through an ablation study.

• To further validate our model, we evaluate it under var-
ious simulated rainfall scenarios which can also serve
as an example of an interesting practical use-case of
such a land surface prediction model.

2. Related Work
In this section, we first discuss existing works that jointly

use weather and remote sensing time-series data. Then,
considering that ConvLSTM is the primary component of
the proposed method, we briefly discuss some of its exist-
ing applications in remote sensing time series analysis.

2.1. Weather Data and Remote Sensing Time-Series

The problem of weather prediction remains an impor-
tant challenge for both classical modeling approaches and
pure data-driven models built using ML [3, 32]. A re-
cent data-driven approach has proven to be very success-
ful in precipitation nowcasting (i.e. predicting the precip-
itation probabilities up to 90 min lead time), achieving
state-of-the-art results in comparison to both physics-based
methods and other ML approaches [26].

Analyzing time-series optical data from the satellites can
be useful in many fields, a prominent one being agriculture
where ML/DL can play an important role given the large

amount of available data and its complexity [13]. Classical
examples are crop yield prediction [7] and crop type classi-
fication [31]. For this type of problems, the models can also
benefit from including weather-related information as input
given that crop fields are affected by it. In previous works,
the weather is used as input to directly infer the desired out-
come, e.g. the crop yield [15, 33]. An alternative to directly
predicting the desired outcome is to first forecast the evolu-
tion of the Earth surface (discussed in detail in Section 3.1)
and then use the resulting predictions in downstream tasks.

2.2. ConvLSTM in Remote Sensing Time-Series

ConvLSTM was first used in [35] for precipitation now-
casting. Since then, it has been used in many works re-
lated to remote sensing time-series analysis. Shen et al. [34]
use ConvLSTM for semi-supervised time-series land cover
classification. Moskolai et al. [24] compare different vari-
ants of LSTM for next-frame forecasting in the Sentinel-1
time series, although ConvLSTM did not perform well
when the length of the sequence became higher. CNN and
ConvLSTM are combined in [6] for spatio-temporal feature
extraction. In [31] a bi-directional ConvLSTM model is em-
ployed for land cover classification.

3. EarthNet2021 - Dataset and Challenge
Next, we will provide some details regarding

EarthNet2021, which forms the base of our work.
We start by elaborating the idea of directly forecasting the
Earth surface and its advantages. Then we describe the
components of the dataset, followed by the evaluation sets
and scores and in the end, we provide a summary of the
three proposed baseline models.

3.1. Earth Surface Forecasting

Predicting the Earth surface was recently framed as a
guided-video prediction task as follows: infer the future
satellite imagery conditioned on the past and also on the
weather for the entire period [28]. In other words, for pre-
dicting the next h frames, a model uses the context of c
frames and the corresponding weather conditions and also
guides its future predictions based on a given weather sce-
nario, as depicted in Eq. (1).

Xc+1, ..., c+h = F (X1, ..., c,W1, ... ,c+h) (1)

where Xt and Wt are the satellite imagery and the meteo-
rological conditions at time t, respectively; c and h are the
context and the horizon lengths, respectively, and F denotes
a model mapping.

Framing the problem in this manner offers some advan-
tages. First, the resulting predicted imagery can be later
used for various downstream tasks (e.g. predicting vegeta-
tion indices, crop yield etc.) instead of developing a model
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independently for each target. Second, the training in this
scenario is self-supervised, therefore a large quantity of
satellite data is available since no labels are required. How-
ever, dealing with such large-scale datasets can also be very
challenging as in general it requires more computational re-
sources and automatic quality control. A challenge platform
associated with this task was also released1.

3.2. Dataset Description

The EarthNet2021 dataset contains approximately 32000
samples, each of them consisting of a sequence of 30
Sentinel-2 images, with a temporal resolution of 5 days.
Each image has four bands (red, green, blue, and near-
infrared) with a pixel resolution of 128x128px and a 20m
ground resolution. Additionally, weather-related variables
are provided: precipitation, sea level pressure, and temper-
ature (min, max and mean). These variables are obtained
from the observational dataset E-OBS [5] as an alternative
to actual seasonal meteorological predictions for the follow-
ing reasons: first, it is computationally expensive to obtain
these forecasts for multiple starting points and, second, us-
ing observation-based data provides an ideal testbed for the
land surface prediction task [28].

To facilitate the evaluation (and potentially the training),
binary quality masks were also created with the same reso-
lution as the imagery. These masks indicate whether a pixel
is covered by clouds, shadows or the value is missing. They
are used in the evaluation procedure in order to ignore these
areas when computing the scores since it is desired that the
models produce clean, cloud-free, images. According to
these quality masks, approximately 40% of the pixels from
this dataset are masked out, which illustrates the difficulty
of the task.

3.3. Evaluation Sets

There are four evaluation tracks, denoted by Main (IID),
Robustness (OOD), Extreme summer, and Seasonal cy-
cle. The IID set contains ≈4000 samples from the same
regions as the training set, where one region corresponds to
a Sentinel-2 tile, i.e. ≈100x100km. However, if two sam-
ples capture exactly the same area, then it was ensured that
there is no temporal overlapping between them. The OOD
set contains a similar amount of samples but the regions
are completely different, therefore it additionally evaluates
the spatial generalization capability of the model. For these
two tracks, the context and prediction lengths are 10 and 20,
respectively. The Extreme set contains only samples from
summer 2018 in northern Germany, a region that faced an
extreme heat in that period. In this case, 20 frames (from
February to the end of May) are provided as input and the
task is to predict the following six months. Last, the sea-
sonal track includes samples with much longer time peri-

1www.earthnet.tech/

ods, i.e. one year as context and two as target, with the aim
of capturing the entire vegetation cycle.

3.4. Evaluation Scores

The final evaluation metric, called EarthNetScore (ENS),
is the harmonic mean of four different evaluation metrics,
calculated only on the non-masked pixels.

• Median Absolute Deviation (MAD) score. It com-
putes the median absolution deviation between target
pixels and the predicted ones to simply quantify how
close are they in a robust manner.

• Ordinary Least Square (OLS) score. It measures if
the trend in the vegetation is correctly captured in the
predictions. First, NDVI maps are computed for both
the target and predicted series, then OLS models are
fitted over time for each pixel and finally, the slopes
are measured and compared to get the OLS score.

• Earth Mover Distance (EMD) score. Similar to the
previous score but focused on the distribution of the
pixels. It computes the Wasserstein-1 pixelwise dis-
tance between the target and the predicted NDVIs.

• Structural Similarity Index (SSIM) score. It cap-
tures the perceptual similarity by computing the aver-
age SSIM [38] over channel and timestep.

Each of these intermediate scores is non-linearly scaled
in [0, 1], where 1 corresponds to a perfect prediction, in
order to make them comparable and to be able to compute
an average score based on them.

3.5. Baselines

Three baseline models proposed in [28] are briefly de-
scribed below, omitting some of the training details.

• Persistence. It is a naive model that computes the
pixel-wise average of the context frames and uses it
as a constant prediction for any lead time.

• Arcon. This model is based on the Stochastic Ad-
versarial Video Prediction (SAVP) [22]. Originally,
the model combines latent variables and an adversar-
ial loss for predicting high-quality images. However,
to avoid predicting cloud-covered images, the authors
disabled the adversarial loss and used a masked L1 loss
instead.

• Channel-U-Net. This baseline used the U-Net [30] ar-
chitecture. It stacks over channel all the input informa-
tion, i.e. the RGBNIR bands, the meteorological data
and the DEM, from all available timesteps, resulting in
a 191-dimensional input. The model is then trained to
predict a map with 80 channels which is reshaped to
produce four-dimensional images, one for each of the
20 horizon steps.
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4. Proposed Method
Convolutional LSTMs. The Long Short-Term Mem-

ory networks have already a longstanding success in mod-
eling sequential data. Using the memory cells lead to a bet-
ter gradient flow thus addressing the problem of vanishing
gradients encountered in the standard RNNs and also al-
lowing to learn long-range temporal dependencies [11, 37].
By stacking multiple LSTM units, many powerful archi-
tectures were built for addressing real-world problems like
machine translation [37], handwriting recognition [8] and
speech recognition [9] among many others [10].

Similarly, Convolutional Neural Networks also became
a standard component for building architectures suitable
for image feature extraction due to their trainable filters,
with real-world applications ranging from handwritten dig-
its classification [21] to biomedical segmentation [30]. A
survey of many well-established architectures and their ap-
plications is provided in [16].

The Convolutional LSTM combines both the advantages
of the CNNs as powerful image feature extractors and those
of the LSTMs that have the capability to learn temporal
correlations. The architecture was proposed as a method
for learning spatiotemporal features in image time-series
data and applied for the problem of precipitation nowcast-
ing [35]. It has been shown that ConvLSTMs perform better
than the standard fully-connected version when training on
spatiotemporal data and it also leads to fewer parameters
when using deep models.

The information flow through a single ConvLSTM unit
at time t is controlled by three internal gates, the input gate
it, the forget gate ft and the output gate ot, each with its
own weight matrices. They combine the new input Xt with
the information stored in the previous hidden state Ht−1, as
described in Eq. (2).

it = σ(Wix ∗Xt +Wih ∗Ht−1)

ft = σ(Wfx ∗Xt +Wfh ∗Ht−1)

ot = σ(Wox ∗Xt +Woh ∗Ht−1)

(2)

where ∗ denotes the convolution operator and σ the sigmoid
function. Using these gates, the new long-term cell state Ct

and the hidden state Ht are updated according to Eq. (3).

Ct = ft · Ct−1 + it · tanh(Wcx ∗Xt +Wch ∗Ht−1)

Ht = ot · tanh(Ct)

(3)

where · denotes the Hadamard product. Hence Ct is com-
puted based on parts of the new input Xt and the output
from the previous step Ht−1, controlled by the input gate,
in combination with its previous values Ct−1 which are not
cleared by the forget gate. Finally, the hidden state Ht is
updated based on the new cell state filtered by the output
gate.

In the context of EarthNet2021, we employ a
ConvLSTM-based model for multiple reasons. First, being
a RNN, it naturally fits temporal data, with a strong induc-
tive bias. Second, the imagery captured from the satellite
can be partially or completely affected by clouds (or their
shadows) and as a result, many frames do not contain any
useful information. Therefore the model should learn to ig-
nore these areas when iterating over the context frames and
the ConvLSTMs are a suitable candidate due to their gating
mechanism. In this direction, in [31] it has been shown that
such a model can automatically learn to internally filter the
clouds without any supervision thus avoiding the need of
pre-processing the data. Third, when lopping over the input
frames we can directly provide as input the current weather
information which should guide the next predictions. In this
manner we explicitly constraint the model to learn the tem-
poral evolution of the surface conditioned on the weather
by exploiting the recurrent inductive bias. Last, the model
allows making inferences on a horizon of variable lengths
without additional changes.

Training procedure. In order to train the model us-
ing the RGBNIR frames, the weather conditions, and the
DEM as input, we use the following strategy: the weather
variables are averaged over periods of five days and then
upscaled to 128x128 to match both the temporal and spa-
tial resolution of the satellite imagery. Then the DEM
is attached to each frame. All these inputs are stacked
over channel resulting in a large frame with a size of
128x128x10. At time t (1 ≤ t ≤ c + h), the model
takes one such combined frame as input and outputs the
next RGBNIR frame. Since we have only a context of c
RGBNIR frames available, for t > c we use the previous
predicted RGBNIR frame when stacking the inputs. The
procedure is illustrated in Fig. 1.

Architecture. We use four stacked ConvLSTM layers.
The first layer has 10 input channels and 32 output channels.
The next two hidden layers have both input and output sizes
of 32. The last layer has an input of 32 and an output of
4 which to match the dimensionality of the target imagery.
For all layers the kernel size is fixed to 3x3 with padding of
one pixel, to preserve the dimensionality of the intermediate
states. The resulting total number of parameters is around
200k which makes the model relatively small.

5. Experiments
In the following, we will present our experiments and

discuss the results. We begin with comparing our model
to the baselines from [28], followed by an ablation study
to evaluate the importance of the input variables. Finally,
through a simulation setup, we investigate if the model
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IID OOD

ENS MAD OLS EMD SSIM ENS MAD OLS EMD SSIM

Persistance (baseline-1) 0.2625 0.2315 0.3239 0.2099 0.3265 0.2587 0.2248 0.3236 0.2123 0.3112
Channel-U-Net (baseline-2) 0.2902 0.2482 0.3381 0.2336 0.3973 0.2854 0.2402 0.3390 0.2371 0.3721

Arcon (baseline-3) 0.2803 0.2414 0.3216 0.2258 0.3863 0.2655 0.2314 0.3088 0.2177 0.3432
ConvLSTM 0.3266 0.2638 0.3513 0.2623 0.5565 0.3204 0.2541 0.3522 0.2660 0.5125

Table 1. Comparison of our model with the baseline models reported in [28] on the IID and OOD test sets. For our model we report the
average scores over five runs with different random initializations.
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Figure 1. ConvLSTM training procedure: the 10 four-bands con-
text images are encoded together with the additional inputs (i.e.
the five meteorological inputs, which are cropped and then up-
scaled, and the DEM, which is repeatedly added as input). Based
on the encoded context, the next 20 images are predicted one by
one, also conditioned on the two provided inputs.

learned the weather → land surface relationship which can
also serve as an important practical use-case of such a
model.

5.1. Comparison Against the Baselines

In the first experiment, we compare our model to the
baseline models proposed in [28]. For this, we use as in-
put the RGBNIR frames, all the weather variables, and the
DEM. We retrain the model five times with different random
initializations and evaluate them on both the IID and OOD

test sets. We report the average scores using all proposed
metrics in Tab. 1.

The results show improved performance on all the eval-
uation metrics when compared to all three baselines, with
a gap of approximately 0.35 units between our model and
the best baseline (Channel-U-Net). The ENS score differ-
ence between the IID and OOD is ≈ 0.06, similar to the
U-Net-based model (≈ 0.05). We can also notice that the
SSIM score has the largest improvement although it is hard
to compare the differences due to the non-linear scaling of
each individual score. Similar to [28] we show three pre-
dictions, together with the corresponding NDVIs, in Fig. 2.

5.2. Variable Importance Analysis

The core idea behind the EarthNet2021 task is that a
model should guide its predictions based on a given weather
scenario. To validate if our model learns to extract informa-
tion from the weather conditions, we perform an ablation
study by training three types of models in an increasing data
complexity order: first using only the optical imagery, then
adding the DEM, and lastly including the weather variables.
For each of these scenarios, we evaluate the models on the
same datasets as in the previous experiment. The results are
shown in Tab. 2.

The first conclusion of this experiment is that the model
benefits more from using the weather information and less
from the DEM. This supports the idea behind the proposed
task that weather information should be taken into account
when predicting the evolution of the Earth landscapes. An-
other important aspect is that the standard deviation is rela-
tively low showing that the model is stable w.r.t. its initial-
ization. Analyzing the standard deviations also shows that
the model remains stable when including additional data
modalities. Last, one can also note that our model already
achieves better results only with the optical imagery as in-
put (see the baselines in Tab. 1) suggesting that it is better
suited for this particular task.

5.3. Simulations

While the quantitative results already show that the land
surface evolution is dependent on the weather, in this Sec-
tion we further investigate this aspect using a generative ap-
proach. For this, we chose one of the weather variables (i.e.
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Figure 2. RGB and NDVI predictions for three samples (worst, median and best according to EarthNetScore over the IID test set, as in [28])

Test set Input data ENS MAD OLS EMD SSIM

IID
RGBNIR 0.3151 ± 0.0004 0.2576 ± 0.0002 0.3424 ± 0.0004 0.2530 ± 0.0005 0.5162 ± 0.0015

RGBNIR + DEM 0.3156 ± 0.0003 0.2579 ± 0.0001 0.3424 ± 0.0005 0.2533 ± 0.0006 0.5183 ± 0.0009
RGBNIR + WEATHER + DEM 0.3266 ± 0.0004 0.2638 ± 0.0002 0.3513 ± 0.0001 0.2623 ± 0.0004 0.5565 ± 0.0017

OOD
RGBNIR 0.3078 ± 0.0005 0.2484 ± 0.0001 0.3426 ± 0.0008 0.2547 ± 0.0007 0.4709 ± 0.0016

RGBNIR + DEM 0.3084 ± 0.0004 0.2482 ± 0.0003 0.3433 ± 0.0008 0.2564 ± 0.0009 0.4703 ± 0.0019
RGBNIR + WEATHER + DEM 0.3204 ± 0.0002 0.2541 ± 0.0002 0.3522 ± 0.0006 0.2660 ± 0.0004 0.5125 ± 0.0010

Table 2. Ablation study for investigating the importance of the additional inputs (DEM and the weather variables). For each evaluation
score we report the average score and the standard deviation over five runs with different random initializations, on both the IID and OOD
test sets. Note that the last line from each test set corresponds to the previously reported averaged results from Tab. 1.

rainfall) and artificially increased/decreased the actual val-
ues randomly such that on average a certain difference is
imposed, if possible (the lower limit for rainfall is zero).
All the other variables are kept the same. The idea is illus-
trated in Fig. 3 where for one sample we show two artifi-
cially generated rainfall scenarios (one with less amount of
rainfall and one with an increased amount) together with the
original one. We can observe that some of the crops become
more healthy (as measured by the NDVIs) for an increased
rainfall. Second, the model has an integrative effect rela-
tive to the vegetation greenness: the differences between
the last frames (i.e. for t=30) under the three scenarios are
much larger than those on earlier steps. This can be ex-
plained by the fact that a vegetation area needs a certain
period of time until it uses the precipitation accumulated in
the soil and, assuming that the amount of rainfall remains
high and within a healthy regime, we would expect that the

vegetation greenness increases over time.
To validate this quantitatively, we follow the same strat-

egy for the entire IID and OOD test sets and then evaluate
the predictions under all scenarios using the same evalua-
tion scores as in the previous experiments. The results are
included in Tab. 3. As expected, the best performance is
achieved when the actual rainfall scenario is used and de-
creases with the increasing absolute change. This suggests
again that knowing the weather can help the model to guide
its prediction.

Simulation use-cases. We would like to further em-
phasize the idea of using such a model to perform simu-
lations. As mentioned in Sec. 3.2, EarthNet2021 relies on
weather measurements obtained from E-OBS [5] which is
an observational dataset. However, in practice, we would
have to make use of actual forecasts for the meteorologi-
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rainfall
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RGB predictions NDVI predictions
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Figure 3. RGB and NDVI predictions under three different rainfall scenarios for a subset of future steps. The row in the middle corresponds
to the actual scenario. The average rainfall (in mm) is shown on top of the dash line. All other weather conditions (i.e. sea level temperatures
and temperature) are kept the same.

average daily
rainfall change (mm)

IID OOD

ENS MAD OLS EMD SSIM ENS MAD OLS EMD SSIM

-0.8 0.3187 0.2591 0.3449 0.2564 0.5286 0.3130 0.2493 0.3479 0.2610 0.4848
-0.4 0.3244 0.2624 0.3498 0.2606 0.5482 0.3181 0.2523 0.3519 0.2646 0.5025
+0.0 0.3262 0.2637 0.3512 0.2617 0.5547 0.3203 0.2539 0.3530 0.2659 0.5110
+1.0 0.3163 0.2596 0.3404 0.2522 0.5294 0.3054 0.2476 0.3364 0.2517 0.4727
+2.0 0.3062 0.2558 0.3307 0.2422 0.5001 0.2896 0.2433 0.3183 0.2344 0.4363
+3.0 0.2988 0.2528 0.3247 0.2353 0.4764 0.2807 0.2408 0.3087 0.2252 0.4133

Table 3. Influence of five artificially generated rainfall scenarios on the evaluation scores, using a single model. The first column shows the
average difference (over the entire dataset) between the original values and the perturbed ones. The row in bold corresponds to the actual
scenario.

cal conditions. Given that at the moment long-term weather
predictions are almost impossible to obtain [27], one could
use such a model for performing multiple simulations as
previously shown in our experiments. For instance, we can
build the worst and best-case scenarios, based on the ob-
servations from the previous decades or by transferring a
certain scenario from another region with similar character-
istics to the one of interest. Furthermore, this can also re-
veal which segments of the surface react more to a specific
change. Last, using this kind of counterfactual experiments
we can also study the influence of each of the weather vari-
ables onto the land surface. As an example, this can help in
estimating the vegetation time-lag effects on meteorological
conditions which can provide a better understanding of the
vegetation dynamics [40].

Weather and seasonal forecasts. Although we cannot
obtain weather predictions for a long horizon, we could in-
stead rely on seasonal forecasts in the context of the land
surface prediction task. However, these have a much lower
temporal resolution, usually monthly, but they still have
many sources of uncertainty, e.g. measurement errors in the
initial conditions or poorly modeled processes [12]. The

predictions are usually provided by an ensemble of models
with different initializations. Following the idea from [4]
we can propagate these forecasts through a land surface pre-
diction model and then analyze the spread in the projections
which can provide additional insights.

Training Details

Throughout all our experiments, we trained our models
for 60 epochs with a masked L1 loss, using Adam [17], a
batch size of 32 and an initial learning rate of 0.001 halved
at epochs 10, 20, and 50. The best model is saved based
on the performance on a small validation set, i.e. 1% of the
training samples.

Additional Results

The model development and all the experiments previ-
ously described are based on the case when the model re-
ceives a context of 10 frames and predicts the following 20,
under normal weather conditions, i.e. similar to those en-
countered in the training set.

We additionally evaluated our model on the two special
use-cases, i.e. one with extreme weather conditions and an-
other one for seasonal evaluation, for which also the context
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Extreme Seasonal

ENS MAD OLS EMD SSIM ENS MAD OLS EMD SSIM

Persistance (baseline-1) 0.1939 0.2158 0.2806 0.1614 0.1605 0.2676 0.2329 0.3848 0.2034 0.3184
Channel-U-Net (baseline-2) 0.2364 0.2286 0.2973 0.2065 0.2306 0.1955 0.2169 0.3811 0.1903 0.1255

Arcon (baseline-3) 0.2215 0.2243 0.2753 0.1975 0.2084 0.1587 0.2014 0.3788 0.1787 0.0834
ConvLSTM 0.2140 0.2137 0.2906 0.1879 0.1904 0.2193 0.2146 0.3778 0.2003 0.1685

Table 4. Comparison of our model with the baseline models reported in [28] on the Seasonal and Extreme test sets. For our model we
report the average scores over five runs with different random initializations.

and prediction lengths are different (see Sec. 3.3). We report
the results in Tab. 4. The Channel-U-Net still performs the
best on the extreme set, whereas, for the seasonal set, our
model outperforms the Channel-U-Net and Arcon models.
However, for the latter evaluation set, the performance of
all ML models is still lower than the naive model. Overall,
the results show that these testing scenarios would require
to design special architectures to address their particulari-
ties. As an example, we observed that predictions towards
the end of the horizon tend to be more blurred, especially
for regions with high spatial variations (e.g. crop fields),
therefore this can impact the performance when extending
the horizon to much larger values. Coupling the model with
an attention mechanism may alleviate the problem [20].

6. Conclusions

In this paper, we propose a ConvLSTM-based architec-
ture for the task of land surface prediction conditioned on
elevation and observational meteorological data. Taking
advantage of the recurrent inductive bias of the LSTMs,
we can explicitly condition future predictions on the given
weather information. With a relatively small number of
parameters, our model achieves significantly better perfor-
mance compared to the previous methods on both data
drawn from the same spatial distribution as the training data
(IID) and data sampled from different regions (OOD), under
normal weather conditions. However, a more adapted archi-
tecture would be needed to model special situations like ex-
treme weather conditions or long-term seasonal variations.

Other than finding a better model for the task, a ma-
jor focus of our work was on investigating if the model
learned the relationship between the weather conditions and
the evolution of the Earth surface. First, we perform an ab-
lation study and show that the model benefits from condi-
tioning its prediction on the meteorological data whereas
adding the elevation information did not bring any perfor-
mance improvement. Furthermore, we build a simulation
setup to visually and quantitatively analyze how the pre-
dictions change under various perturbations of the rainfall,
showing that the model performs best when the actual con-
ditions are provided. This experiment also provides an ex-
ample of how such a model could be used in practice for

generating multiple scenarios or for a better understanding
of the interaction between the weather and the land surface.
In the end, we also discuss how to make use of seasonal
forecasts in this context.

Future work Our model provides a single prediction
irrespective of the quality of the context frames or the uncer-
tainty of the weather inputs. An important extension would
be to further modify the model to deal with uncertainty in
the input data. Towards this, a first step would be to provide
multiple predictions which should capture these sources of
uncertainty. First, we should expect a high predictive un-
certainty when most of the context frames are either miss-
ing or completely covered by clouds. Second, the uncer-
tainty should also grow with the horizon length. And last,
the model should integrate the uncertainty coming from the
seasonal forecasts as discussed in Sec. 5.3.

Another question that deserves further investigation is
how to deal with the unexpected changes in the evolution of
the Earth surface due to external interventions. An exam-
ple of such a sudden change is crop harvesting. Such dis-
ruptions can hinder the learning process and may also lead
to erroneous evaluation scores, for instance those that mea-
sure the quality of the learned vegetation trends since the
underlying assumptions are not satisfied anymore. This is-
sue can potentially be addressed by introducing a specially-
designed component in the model that can detect and treat
these discontinuities accordingly.

Finally, we would like to further investigate possible ex-
tension of the model to achieve better performance when
applied to special cases like those with extreme weather
conditions for which also the context and horizon lengths
can differ significantly.
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