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Abstract

We present a dataset for building detection and classifi-
cation from very high-resolution satellite imagery with the
focus on object-level interpretation of individual buildings.
It is meant to provide not only a flexible test platform for ob-
ject detection algorithms but also a solid basis for the com-
parison of city morphologies and the investigation of ur-
ban planning. In most current open datasets, buildings are
treated either as a class of landcover in the form of masks or
as simple objects defined by separate contours (footprints).
Our dataset, instead, represents individual buildings using
in-depth object-level descriptions concerning geometry as
well as functionality. Buildings are treated as objects with
individual ID and boundary. Adjacent building blocks are
also separated according to house numbers making a subse-
quent high-level classification of individual buildings possi-
ble. The buildings are classified into predefined roof types,
such as flat, gable and hipped roof as well as functional pur-
poses, i.e., residential, commercial, industrial, public, and
their sub-classes, e.g., single-family house, office building
and school. In the first version of the dataset we provide
selected urban areas from two cities: Beijing in China and
Munich in Germany. It, therefore, (1) allows to verify algo-
rithms that are not only valid for specific regions but also
work robustly in spite of the diversity of cities on different
continents with various land forms and styles of architecture
and at the same time (2) provides the possibility to quanti-
tatively compare the statistics and morphology of different
cities. It is planned to extend the dataset by a continuous
integration of various urban areas worldwide.

*Equal contribution.
†Corresponding author.

1. Introduction

Buildings are one of the most important components of
urban areas. The investigation of buildings plays an essen-
tial role in urban planning, city administration, emergency
management, tourism, etc. With the advent of deep learn-
ing techniques, the performance of building detection and
classification in remote sensing data has been significantly
improved. One key driver are the ever increasing remote
sensing datasets [14], of which the building-related datasets
are summarized in Section 2.

We propose a novel dataset with a specific focus on the
object-level interpretation of individual buildings, which are
represented with in-depth descriptions concerning both ge-
ometry as well as functionality. Based on this, the dataset
provides the possibility to quantitatively compare different
cities with regard to statistics and morphology. As shown in
Figure 1, Beijing’s buildings (rows 1 and 2) typically show
a neat arrangement and a modern steel/concrete style, while
buildings in Munich (rows 3 and 4) are mostly distributed
along the historical streets and are of lower height.

Although we can readily identify geometrical informa-
tion of buildings, e.g., contour and roof shape, in satellite
imagery, it is usually substantially difficult to accurately
identify the function of buildings. So we label the function
using additional map information.

Data sources for cities such as OSM (OpenStreetMap)
and Google Maps provide the basis for a large number
of statistics on buildings worldwide. But different data
sources have different definitions for building attributes,
so it is difficult to combine multiple data sources to
automate the labeling of buildings for remote sensing
images. Moreover, many building attributes are missing
in these data sources and they do not provide up-to-date,
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Image Image + GT GT

Figure 1. Example UBC data of Beijing (rows 1 and 2) and Mu-
nich (rows 3 and 4) with input images (left), ground truth (GT,
right), and overlaid views (center). Colors of ground truth indicate
various classes of roof type.

complete and accurate statistics of building locations and
attributes. Further information on urban buildings can be
provided by high resolution and low-cost remote sensing
images. To learn large-scale statistics of urban buildings
in remote sensing images with deep learning techniques,
a building dataset with consistent attribute standards and
global diversity is urgently needed.

Particularly, the main contributions of our work are:

• In-depth annotation: Instead of visual annotations,
in this dataset boundaries as well as functions of in-
dividual buildings are labeled according to OSM and
Google Maps. This means that adjacent buildings in a
building block as for instance shown in Figure 4 can
be correctly separated into different objects. The func-
tions of buildings can often be more accurately derived
from their attributes in the maps than from images.

• Fine-grained categories: We provide novel fine-

grained categories concerning (1) building geometry
with 25 roof types as well as (2) two levels of func-
tional purposes with the five main classes: residential,
commercial, industrial, public and other, and 36 sub-
classes, e.g., single-family house, office building and
school.

• Flexible Structure: This dataset consists of explic-
itly separated subsets corresponding to different cities.
The subsets can be combined to train general detectors
and to test their robustness or employed separately to
investigate and compare characteristics of different ur-
ban areas. The categories are given on various levels of
both roof type and function. They can be used to define
different setups for competition with varying amounts
of data. Please note that it is planned to extend this
dataset. We expect that along with the increasing size
of the urban areas and the extended coverage of differ-
ent classes, the advantage of our multi-level category
definition will become even more apparent.

2. Related Work
Suitable datasets are critical for the development and

evaluation of object detection and classification algorithms,
especially deep neural network models. An increasing num-
ber of remote sensing datasets has been introduced in recent
years with various data sources as well as target objects.
The DOTA dataset [8] contains over 1.7 million instances of
18 classes with oriented bounding box annotations collected
from 11,268 aerial images. It has, thus, greatly contributed
to the development of detection algorithms for rotated ob-
jects in remote sensing data. The FAIR1M dataset [17] also
consists of over one million instances of fine-grained ob-
jects in high-resolution remote sensing imagery, providing
the community data with 5 categories and 37 sub-categories
of ground targets. In the ISPRS Urban Modelling and Se-
mantic Labeling Benchmark [13] multispectral imagery and
airborne laserscanner data of Vaihingen and Potsdam, Ger-
many, as well as Toronto, Canada, are meant for the de-
tection of urban objects, such as buildings, roads, trees,
as well as for 3D building reconstruction. The TorontoC-
ity dataset [21] provides aerial imagery with about 10 cm
ground resolution depicting around 400 thousands build-
ings. SpaceNet consists of a series of remote sensing
datasets with various basic data including multispectral im-
agery and synthetic aperture radar (SAR) data and purposes
such as building and road network extraction as well as clas-
sification. The SpaceNet 2 Challenge [20] contains 302,701
building footprints in 24,586 scenes, while SpaceNet 6 [16]
is a multi-sensor all-weather mapping dataset, consisting
of both optical and SAR imagery, aiming to map build-
ing footprints using multi-modal data. SpaceNet 7 Multi-
Temporal Urban Development Challenge [19] is based on
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Dataset Classes Instance Quantity Modality Resolution
SpaceNet 2 [20] 1 500k RGB MSI 0.3 m
SpaceNet 6 [16] 1 4.8k RGB SAR 0.5 m
Toronto City [21] 1 400k RGB 0.05-0.1 m
GaoFen-3 Building [24] 1 (semantic segmentation) RGB SAR 1 m
INRIA [11] 2 (semantic segmentation) RGB 0.1-0.3 m
DSTL [15] 5 2k RGB MSI 0.3 m
SemCity Toulouse [12] 6 9k PAN 0.5 m
UBC 61 41k RGB 0.5-0.8 m

Table 1. Comparison of building datasets

imagery collected by Planet Labs’ Dove Satellites and con-
tains around 500,000 buildings tracked over time.

The INRIA aerial image labeling benchmark [11] con-
sists of precisely registered cadastral records as well as
15 cm or 30 cm orthorectified imagery. It considers the
two classes building and non-building, i.e., trees and roads.
The DSTL Satellite Imagery Feature Detection dataset [15]
provides multispectral satellite imagery in RGB as well as
16-bands with a resolution of 0.3 m. It employs a coarse
classification of buildings, including residential and non-
residential building, fuel storage facility, and fortified build-
ing. It comprises about two thousand building instances.
The SemCity Toulouse benchmark [12] focuses on build-
ing instance segmentation. It provides multi-class seman-
tic segmentation annotation including residential and office
building, shop, department store, discount store, shopping
center, as well as industrial building.

Related datasets include also the GaoFen-3 SAR
dataset [24] for semantic segmentation of buildings. It is
acquired in spotlight (SL) mode with high-resolution (1 m)
and a wide swath (10 km) and covers urban as well as rural
areas in, e.g., Hongkong, Berlin, and Shanghai. A com-
prehensive comparison of our dataset with selected remote
sensing datasets containing buildings is given in Table 1.

3. Dataset
3.1. Satellite Imagery

The SuperView (or “GaoJing” in Chinese) satellites are
commercial very high-resolution earth observation space-
crafts operated by Beijing Space View Tech Co Ltd. They
are equipped with sensors collecting both panchromatic
(0.5 m, Ground Sampling Distance – GSD) and multispec-
tral (2 m) GSD imagery with a maximum scene size of 60
km × 70 km [5]. The Gaofen-2 high-resolution imaging
satellites from the China National Space Administration
(CNSA) are capable of collecting images with a GSD of
0.81 m in the panchromatic and 3.24 m in the multispectral
bands with a swath width of 45 km [4]. Here, we chose
panchromatic and multispectral data from SuperView and
Gaofen-2 for urban areas of Beijing and Munich and ob-

tained 4-band images (red, green, blue and near-infrared)
at 0.5 m and 0.8 m by pan-sharpening. In the current ver-
sion of the dataset only the three visible bands, i.e., RGB,
are used. Possible multispectral as well as SAR data are
scheduled for the further extension of the dataset (cf. Sec-
tion 5). The whole dataset consists of 800 tiles with 600
× 600 pixels and 200 pixels overlap for adjacent tiles. The
information about data coverage and instances is shown in
Figure 2 as well as Table 2.

(a) Beijing (b) Munich

Figure 2. Data coverage in Beijing and Munich: Tiles from Super-
view (blue) and Gaofen-2 (red)

City Source Coverage (km2) Building Instances

Beijing SuperView 20 10,105
Gaofen-2 12.8 4,824

Munich SuperView 20 19,352
Gaofen-2 12.8 7305

Table 2. Data coverage and building instances for Beijing and
Munich

3.2. Definition of Classes

Current datasets focus on the location, footprint extrac-
tion and segmentation of buildings. Classification, espe-
cially fine-grained classification of buildings is rare yet. The
latter is of great interest for applications in city planning and
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urban development analysis. We are aware that the defini-
tion of classes has a huge influence on the performance of
the classification. To derive plausible classes which con-
form to common understanding as well as to what can be
seen from remote sensing data, we first summarize the cat-
egories of the main popular data sources and standards:
OpenStreetMap [23], CityGML (partially open) as well as
Google Maps and derive our own classes taking the char-
acteristics and limits of satellite imagery into account. One
obvious advantage is that the existing geometrical and func-
tional attributes of buildings in the above mentioned data
sources can be easily mapped to our classes. This makes
the current manual annotation easier and will allow for a
(semi-) automatic annotation (cf. Section 5) in the future.

The definition the roof classes is given in Table 3. For the
roof type, we use 25 fine-grained classes (including “other”)
based on the geometry of the roof. The fine classes are
grouped into nine coarse classes based on geometrical sim-
ilarities. The coarse classes are especially useful when the
instances of the fine-grained classes are not enough for a
stable training.

Coarse Fine-grained

flat
flat roof
flat roof HVAC*
flat roof complex

shed shed roof

gable

gable roof
gable roof asymm*
gambrel roof
butterfly roof*

row
row roof shed*
row roof gable*
row roof arched*

hipped

multiple eave roof*
hipped roof v1
hipped roof v2
half hipped roof*
mansard roof
pinnacle roof

arched arched roof
half arched roof*

revolved
dome*
cone*
cupola*

freeshape freeshape surface*
freeshape poly*

other other

Table 3. Roof type classes. * indicates the fine-grained classes
with few instances, which are merged into the class “other” in the
following experiments

For the building functions, as shown in Table 4, we de-
fine five coarse classes, i.e., “residential”, “commercial”,
“industrial”, “public” and “other” which can be split into 36
fine-grained classes. Also inside each coarse class there is
a fine-grained class named “other”, e.g., “public other”. In
contrast to the “other” in the coarse classes, it is employed
to label the instances which are not listed in the fine-grained
classes, but still can be determined as belonging to one of
the coarse classes. This happens quite often as the function
classes hardly cover all possibilities.

Coarse Fine-grained

residential

single-family house,
multi-family house,

row house, apartment high,
apartment block, villa, garage,

residential other

commercial
office building, retail and mall,

hotel, parking house,
restaurant, commercial other

industrial
power plant, warehouse,

manufacturing, water treatment,
industrial other

public

administration, gas station,
education, stadium, sports hall,

transportation, theatre,
fire station, police station,
military, church, mosque,
temple, airport building,

hangar, public other
other other

Table 4. Building functionality classes

3.3. Annotation

The footprint of buildings are annotated with polygons.
The footprints from OSM are used as basis and are man-
ually refined/corrected according to the input images. If
available, the roof type and function information is taken
from OSM as well as Google Maps and is mapped to the
predefined classes. Figure 4 shows one example.

We are aware of the heterogeneous quality of OSM [6]
and noticed that the availability and quality of OSM data
for Munich is substantially better than for Beijing. For the
selected areas in relation to the corresponding final ground
truth, the footprints of 89.7% of the buildings have been
provided in the OSM dataset. 39.9% of the buildings in Mu-
nich have the function attribute and 22.2% roof type infor-
mation. Yet, in Beijing, only for 27.6% of the building foot-
prints have been included and not all of them are correctly
located. Only 4.2% of the buildings have function informa-
tion and there is no roof type information in the OSM data
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for Beijing. A summary is given in Figure 3. Therefore,
we have referred to information from Google Maps to man-
ually improve the annotation of roof types and functions.
I.e., the annotators visually check the roof shape as well as
(heterogeneous) labels of buildings and manually interpret
their roof types and functions according to the predefined
categories in UBC. For difficult instances, particularly the
buildings with multiple labels (cf. Section 3.4), additional
Google Street View data (for Munich only) are optionally
employed to assistant the (visual) interpretation. To ensure
the quality of annotation, the results from annotators are
examined by more experienced inspectors in two rounds:
One complete check and one random check. Controversial
labels are determined by consensus of multiple annotators
and inspectors. The consistency of annotations are also en-
sured for the buildings in overlapping areas. As shown in
Table 2, the UBC dataset provides altogether 41,586 build-
ing instances, including 14,929 for Beijing and 26,657 for
Munich, with complete footprints and annotations for both
the roof type as well as the function. Additionally, 4,790 for
Munich and 210 for Beijing building instances have multi-
label annotations.

3.4. Multi-label Annotation

In a realistic urban scenario, individual buildings often
do not have a single function. For example, for many tall
buildings and large structures in the city centers, the lower
floors are typically shopping areas, while the upper floors
serve as office space or for habitation. It is, therefore, not
reasonable to label these buildings with just one function
class. To make the annotation of the dataset more accurate,
we, thus, introduce multi-label annotation. Yet, in order not
to add too much extra complexity to the annotation process,
we restrict the multi-label annotation to only two reasonable
situations: (1) “Apartment block” as well as “commercial
other” and (2) “apartment high”, “office building” as well
as “retail and mall”. For the latter, multiple choice selection
of up to three labels at the same time is allowed.

Figure 3. Comparison of the availability of OSM building
footprints and attributes for Munich and Beijing. The missing
(“empty”) data are supplemented by manual annotation.

3.5. Dataset Splits

Our dataset is designed to be used as a whole set as well
as two separate subsets: Beijing and Munich. Each sub-
set contains the same amount of data: 400 tiles of satellite
images with a size of 600×600 pixels selected from their
urban areas. Please note that we also ensured that the data
partitions of SuperView (80%) and Gaofen-2 (20%) on each
subset is constant, so that this ratio is also kept in the whole
set. In the experiments, the dataset is divided (on a random
sampling basis) into training, validation as well as test sets
with partitions of 7:2:1.

(a) (b)

(c) (d)

Figure 4. An annotation example: Input image (a), building foot-
prints (b, green polygons), roof types (c) and functions (d, coarse
classes)

4. Experiments

High building densities in urban areas, various sizes,
fine-grained classes as well as multi-label annotations pose
great challenges to instance segmentation methods on the
UBC dataset. To quantitatively measure the state-of-the-art
under these circumstances, we propose two instance seg-
mentation tasks as well as corresponding evaluation metrics
and we evaluate general methods on the dataset. In the first
task, we predict roof types for all buildings and use pixel-
level masks to localize them. Fine- and coarse-grained roof
labels are set as two sub-tasks . The class of each instance
in the second task is defined by the building function. Due
to the difficulty of reasoning about the function from visual
features alone, we only conducted baseline experiments on
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coarse function classes.

4.1. Baseline Models

We selected Mask-RCNN [9], Cascade Mask RCNN [1],
SOLOv2 [22] and QueryInst [7] as our baseline mod-
els. The backbone network for all models is ResNet-50-
FPN. The implementation of these methods is based on
the MMDetection library [2] [18]. Specifically, Mask-
RCNN and Cascade Mask RCNN are classic two-stage
models. SOLOv2 is a novel effective single-stage approach.
QueryInst is an end-to-end query-based framework that
achieves state-of-the-art performance on the COCO dataset.

4.2. Evaluation Metrics

For evaluation, we use the standard COCO metrics [10]:
APmask (averaged over IoU threshold), AP50, AP75, APS ,
APM and APL. Due to the presence of buildings in high-
density areas but also rather small buildings, we adjusted
parts of the metrics. The area of objects referred to by S, M,
and L is redefined for small as area less than 400 pixels, for
medium as area 400-1600 pixels, and for large as area 1600
pixels and above.

To train the CNN-based models, we employ the dataset
splits given in Section 3.5 and initialize the network with
ResNet50 pre-trained on ImageNet [3]. All models are
trained on 4 GPUs for 100 epochs with 4 tiles per GPU.
The learning rate is initialized with 0.02 and then reduced
by a factor of 0.1 at epochs 60 and 90. Multi-scale training
and random flipping are used as data augmentation during
training. Instances with multiple function labels are corre-
spondingly employed multiple times for training and testing
of the different classes. The rest of the hyper-parameters
of the model are set to the same values as in the original
MMDetection [2] setup.

4.3. Experimental Setups

4.3.1 Baselines with Fine-grained Roof Type

Method AP AP50 AP75 APS APM APL

Mask R-CNN [9] 13.4 23.1 14.7 3.8 17.2 17.2
C Mask R-CNN [1] 15.3 25.2 17.5 3.4 19.7 19.3

SOLOv2 [22] 13.5 23.1 15.3 3.0 20.4 15.8
QueryInst [7] 13.1 21.9 14.9 3.7 18.4 16.4

Table 5. Instance segmentation results using maskAP on UBC
test set with fine-grained roof categories. “C Mask R-CNN” de-
notes Cascade Mask R-CNN [1].

As the geometry type of the roof is reasonably deter-
minable from visual features, we employed the fine-grained
classes of roof types to compare the current state-of-the-art
models. Table 5 shows the average precision (AP) results
also with different intersection over union (IoU) thresholds

for the instance segmentation algorithms presented in Sec-
tion 4.1. The results in Table 5 show that the Cascade Mask
R-CNN model outperforms the other models concerning av-
erage precision with an IoU of at least 0.5 (AP50) and the
mean average precision (mAP ) calculated from all differ-
ent IoUs. The cascade architecture has shown its advan-
tage in the detection of densely distributed buildings with
varying size by means of the multi-stage refinement of the
IoU threshold. Following the basic concept of “segmenting
objects by location” fitting the distribution of building in-
stances, SOLOv2 demonstrated a competitive performance.
It, however, also showed its limit for irregularly distributed
and objects with varying scale because of the fixed size
grid cells. QueryInst performs better for COCO than on
the UBC dataset, probably because our dataset mainly cov-
ers urban areas with building instances, for which Queryinst
doesn’t seem to be suitable. The average precision for small
buildings (smaller than 10m×10m) APs is quite low for all
models, showing that the detection of small buildings is a
challenge for recent models.

Class-wise results for different roof types are shown in
Table 6. Some classes, e.g., flat and hipped roof, contain
a large number of building instances and have obvious fea-
tures for classification. Thus, they could be better detected
and classified by the models. Other classes such as arched,
flat complex and shed roofs consist of small numbers of in-
stances and also do not have distinctive features, adding to
the difficulty and challenge of detection and classification.
This implies the necessity to use few-shot learning or fea-
ture augmentation to improve the instance segmentation re-
sults. Figure 5 shows segmentation results using different
models. The Cascade Mask R-CNN model has the best per-
formance for building detection. Precise segmentation of
individual buildings and roof type classification are chal-
lenging in complex scenes.

4.3.2 Baselines with Coarse-grained Function

Compared with roof type classification, it is difficult to de-
termine the function of buildings from the visual features in
just a single image tile, especially in urban areas. In this pa-
per, therefore, only the results with coarse-grained classes
of building functions are demonstrated (Table 7). Different
from the experimental results for roof type, the Mask R-
CNN model achieves the best performance with respect to
mAP , while the SOLOv2 model performs best concerning
AP50. However, one has to admit that the overall perfor-
mance of all models is relatively poor. On one hand, it is
hard to classify the function based only on the visual ge-
ometry features. On the other hand, since the size of each
image tile is small, it is often not possible to determine the
relationships between nearby buildings with different func-
tions and, thus, discover the complex information necessary
to discriminate the various functional areas of a city.
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Method AP AP50 FL FC SH GA GM H1 H2 MA PI AR OT
Mask R-CNN [9] 13.4 23.1 26.0 2.4 3.9 21.1 13.5 14.8 40.1 7.8 3.0 7.3 7.1

Cascade Mask R-CNN [1] 15.3 25.2 27.3 2.3 2.8 21.5 13.4 16.3 40.2 10.9 20.8 6.6 6.7
SOLOv2 [22] 13.5 23.1 26.1 3.3 2.9 20.5 14.1 15.2 33.9 10.4 10.4 6.5 5.9
QueryInst [7] 13.1 21.9 21.5 5.8 2.1 18.4 14.6 15.6 30.4 17.8 8.6 5.5 4.7

Table 6. Class-wise instance segmentation results on UBC test set with fine-grained roof classes: FL-flat, FC-flat complex, SH-shed,
GA-gable, GM-gambrel, H1-hipped V1, H2-hipped V2, MA-mansard, PI-pinnacle, AR-arched, OT-other

(c) Cascade Mask R-CNN(b) Mask R-CNN (e) QueryInst(d) SOLOv2(a) Ground Truth

Figure 5. Example results of the selected models in Beijing (rows 1 and 2) and Munich (rows 3 and 4). RGB images converted to gray-scale
for better visualization.

4.3.3 Comparisons between Beijing and Munich

Individual cities have unique characteristics influenced by
their different culture and history. Particularly, Beijing and
Munich have different architectural styles and distributions

of buildings’ functions in urban areas. To compare the dif-
ferences between the two cities and the influence on classi-
fications, we produced separate datasets for each city.

We compared these two datasets using the Mask R-CNN
model. The results of the experiments are shown in Tables 8
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Method AP AP50 AP75 APS APM APL

Mask R-CNN [9] 14.4 24.9 15.4 5.6 16.3 22.0
C Mask R-CNN [1] 13.6 24.0 14.4 5.1 14.7 21.4

SOLOv2 [22] 14.1 25.4 14.4 4.9 18.0 21.1
QueryInst [7] 10.4 20.4 10.8 4.3 12.8 16.9

Table 7. Instance segmentation results with coarse-grained func-
tion classes using mask AP on the UBC test set. “C Mask R-CNN”
denotes Cascade Mask R-CNN.

and 9. The segmentation accuracy in Munich is lower than
in Beijing. This is mainly because Munich, on one hand,
has a large number of connected closed loops of buildings
(apartment building blocks) and, on the other hand, many
tiny independent buildings. For the former it is difficult
to distinguish the individual building instances inside the
building blocks, while the latter are hard to detect. The APs
for both roof type and function for Beijing are, therefore,
higher than for Munich.

Furthermore, the amount of available data and different
characteristics of buildings lead to varying results in differ-
ent cities. E.g., there are more flat roofs but fewer gable
roofs in Beijing than in Munich. Therefore, the flat roof
accuracy in Beijing is much higher than in Munich while
the gable roof accuracy in Munich is higher than in Bei-
jing. The different characteristics and styles of buildings
in different cities also are decisive for the final results of
classification for both, roof type and function. There are
many high-rise buildings in Beijing but few in Munich. On
the other hand, there are many more churches in the city
center of Munich than in Beijing. Commercial buildings
in Beijing are most likely large shopping malls and look
different from residential buildings. Opposed to this, most
commercial buildings in Munich look similar to residential
ones, therefore, they are difficult to distinguish. Overall, for
all the results for Beijing and Munich, the AP of residen-
tial buildings is the highest. Industrial buildings have the
worst classification results concerning their function, prob-
ably because the amount of data is small and some indus-
trial buildings are easily wrongly classified as residential or
commercial buildings.

Method AP AP50
Roof Type

FL GA HI AR OT
Beijing 22.8 36.6 33.6 18.2 49.0 5.9 7.3
Munich 15.9 28.1 16.3 26.3 30.9 0.0 6.0

Table 8. Results of separate experiments for dividing roof type
data in Beijing and Munich, respectively. FL-flat, GA-gable, HI-
hipped, AR-arched, OT-other

Method AP AP50
Function

RE CO IN PU OT
Beijing 14.0 23.5 40.5 13.2 0.0 9.4 7.0
Munich 13.5 25.3 28.1 10.9 8.2 8.6 11.6

Table 9. Results of separate experiments for dividing function
data in Beijing and Munich, respectively. RE-residential, CO-
commercial, IN-industrial, PU-public, OT-other

5. Conclusion
We have presented a novel remote sensing dataset with

a specific focus on individual buildings and fine-grained
classification concerning both, building geometry, i.e., roof
type, as well as functionality, i.e., occupation/usage. For
classification, predefined classes are given on both a coarse-
and a fine-grained level. They can be employed according
to different purposes or available numbers of instances. Se-
lected typical urban areas of Beijing and Munich are pro-
vided for combined as well as separate investigation. Exper-
iments with multiple state-of-the-art object detection mod-
els have been conducted as baseline for further research and
possible competition. The experiments demonstrate that the
detection and classification of individual buildings in dense
urban areas are challenging. The instances show a large
diversity concerning size, shape, texture and relationship
with neighboring objects, along with influences from his-
tory, culture, climate, as well as density of habitation. The
function of buildings is a latent feature which can only par-
tially (sometimes not at all) be derived from the appearance.
Even for the manual annotation often geo-information from
different sources is needed for a reliable decision. We ex-
pect it to be a great challenge for classification to find more
high-level evidence by integrating, e.g., geometrical fea-
tures like roof types and the structure of the neighborhood.

In this first version of the dataset selected urban areas of
Beijing, China and Munich, Germany, are provided and the
input data are solely RGB satellite imagery. In the future, it
is planned to extend the dataset in multiple dimensions: (1)
Coverage of additional urban areas of interest worldwide,
(2) Use of multispectral as well as SAR imagery, and (3)
Extension with multi-temporal data. Please note that with
an increasing amount of instances, those classes “merged”
in the current experiments can be “split” again as individual
classes. Additionally, new classes can be added if neces-
sary.
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