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Abstract

Remote sensing data is plentiful, but downloading, or-
ganizing, and transforming large amounts of data into a
format readily usable by modern machine learning meth-
ods is a challenging and labor-intensive task. We present
the OpenSentinelMap dataset, which consists of 137,045
unique 3.7 km2 spatial cells, each containing multiple mul-
tispectral Sentinel-2 images captured over a 4 year time
period and a set of corresponding per-pixel semantic la-
bels derived from OpenStreetMap data. The labels are
not necessarily mutually exclusive, and contain informa-
tion about roads, buildings, water, and 12 land-use cat-
egories. The spatial cells are selected randomly on a
global scale over areas of human activity, without regard
to OpenStreetMap data availability or quality, making the
dataset ideal for both supervised, semi-supervised, and un-
supervised experimentation. To demonstrate the effective-
ness of the dataset, we a) train an off-the-shelf convolu-
tional neural network with minimal modification to pre-
dict land-use and building and road location from multi-
spectral Sentinel-2 imagery and b) show that the learned
embeddings are useful for downstream fine-grained clas-
sification tasks without any fine-tuning. The dataset is
publicly available at https://visionsystemsinc.
github.io/open-sentinel-map/.

1. Introduction

Automated methods for analysing the contents of re-
mote sensing imagery are of critical importance given the
abundant and constantly growing volume of available data.
Modern machine learning approaches for detecting and seg-
menting regions of interest in remotely sensed images are
powerful but typically require large training sets tailored to
the specific task at hand, including the geographic region
of interest. The goal of the proposed dataset is to support
a variety of machine learning approaches and applications
using a single large-scale global dataset with annotations

Figure 1. The OpenSentinelMap dataset contains multiple
Sentinel-2 3.7 km2 image crops and corresponding per-pixel la-
beling derived from OpenStreetMap tags for 137,045 unique loca-
tions across the globe.

that support common detection and segmentation tasks. We
provide a ready-for-use dataset consisting of satellite im-
ages of constant size from the Sentinel-2 platform [3], and
per-pixel label images using new land use classes derived
from OpenStreetMap (OSM) [9]. OSM tags are collapsed
into broad categories useful for land use classification, and
polygons are rasterized to match the 10 meter resolution
bands of the satellite imagery. Images have been filtered
to remove large clouds, while retaining small cloud puffs to
support increased model robustness. The dataset as a whole
has been biased towards areas of human activity. We envi-
sion this data supporting fully supervised, semi-supervised,
and unsupervised models.

In this work, we present the proposed Sentinel-2 and
OSM dataset, explain in detail the process for acquiring and
preprocessing the imagery and OSM labels, train a baseline
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neural network for producing embeddings using this data,
and provide experimental results showing the usefulness of
those embeddings on various down-stream tasks.

2. Related Works
The proposed dataset consists of 1,035,544 publicly

available satellite image crops covering 505,202 km2 dis-
tributed across six continents and associated per-pixel class
labels for 15 categories derived from OpenStreetMap anno-
tations. Existing public datasets are either smaller in scale,
provide annotations narrower in scope, or both.

There exist many remote sensing land-use datasets con-
sisting of high-resolution RGB imagery collected from
Google Earth paired with manual annotations crafted by hu-
man experts [7, 24]. These datasets are prepared for whole
image classification as opposed to dense per-pixel segmen-
tation, and tend to be lacking in either size or global cover-
age.

Whereas we are providing dense per-pixel label maps
to support semantic segmentation, most remote sensing
datasets are still focused on single labels to describe an
entire image chip. At the coarser resolution of Sentinel-2
imagery this appears insufficient, as image chips are large
enough to cover multiple land cover classes. While other
datasets offering dense land cover labels do exist [4, 6, 16,
22], they are limited in scope and availability, and rely on
high resolution aerial imagery.

Li et al. [18] study the influence of seasonal bias in deep
learning models trained to detect high-rise buildings from
Sentinel-2 imagery across four different seasons. They con-
clude that fully convolutional networks trained on samples
across all seasons can achieve better accuracy than models
trained on data from a specific season. Our work makes an
effort to evenly distribute images across all seasons.

Due to the size of the proposed dataset, manual per-pixel
annotation of all images is not practical; instead, we lever-
age crowd-sourced OpenStreetMap (OSM) [9] annotations
to automatically generate dense labelings for 15 land use
classes.

OSM annotations have been used by others to gener-
ate land use land cover (LULC) maps [20] and provide
ground truth labels for deep neural networks [20,25]. Other
work [15, 19] has mapped OSM tags to classes used by ref-
erence datasets such as CORINE Land Cover (CLC) [12],
Urban Atlas [13], and GlobeLand30 [1]. The LULC classes
used in the proposed dataset were chosen based on a manual
grouping of common OSM tags found in the dataset. Many
classes can be mapped directly to CLC classes, but some
are either more or less specific depending on availability of
appropriate OSM tags.

The proposed dataset expands the idea of mapping spe-
cific OSM tags to broader land use categories and applies it
on a large scale to corresponding Sentinel-2 imagery.

3. Dataset
The proposed dataset consists of publicly available mul-

tispectral Sentinel-2 satellite imagery and per-pixel anno-
tations derived from publicly available OpenStreetMap [9]
annotations. The source data is processed and filtered into
a form convenient for training and testing modern ma-
chine learning methods. The Earth is gridded into non-
overlapping cells of equal size, and sampled over areas of
human activity. Due to the uneven availability of OSM an-
notations, the labeling in many images is either sparse or
nonexistent; unsupervised or semi-supervised methods will
therefore be required to make full use of all the available
data. Instructions for downloading the dataset are avail-
able at https://visionsystemsinc.github.
io/open-sentinel-map/.

3.1. Spatial Cells

Each image in the dataset belongs to a single non-
overlapping spatial cell of dimension 1920 m × 1920 m;
each Sentinel-2 crop therefore has dimension 192 pixels on
a side in the 10m bands, and 96 pixels on a side in the 20m
bands. The WGS84 reference ellipsoid is divided into bands
of latitude, and those bands are then independently seg-
mented into cells of equal longitudinal width. The bounds
of these cells are used when downloading imagery, result-
ing in multiple image crops covering the same geographic
region.

We use VIIRS Nighttime Light (VNL) [11] data to bias
our dataset towards areas of human activity. This gives
a more general signal than raster data such as the Global
Human Settlement Layer [10], which measures settlements
specifically by the presence of buildings. The Earth Obser-
vation Group (EOG) makes available filtered annual com-
posites of nighttime light data from 2012 to 2020. This data
is collected using the Day Night Band (DNB) of the Visible
Infrared Imaging Radiometer Suite (VIIRS) on-board satel-
lites within the Joint Polar-orbiting Satellite System. We
threshold this data to produce binary human-activity masks
for each year. Any pixel with a positive intensity is consid-
ered interesting enough for our purposes, and is included in
the mask. Each pixel covers 15 arc seconds, which is about
500 meters near the equator.

Spatial cells that do not intersect the binary human-
activity mask are removed. Spatial cells completely cov-
ered by water according to the Climate Change Initiative
Land Cover (CCI-LC) [14] 2020 product are also removed.
137,045 cells are then randomly sampled from those re-
maining. Their geographic distribution is shown in Fig-
ure 2.

The data is split following an 80/10/10 train/val/test for-
mat by Military Grid Reference System (MGRS) tile, not by
individual spatial cell. This increases the independence of
the training, validation, and testing sets by separating them
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Figure 2. The dataset contains 137,045 spatial cells randomly se-
lected over areas of human activity across the entire Earth.

at a larger spatial scale.

3.2. Imagery

The European Space Agency (ESA) launched the first
satellite of the Copernicus Sentinel-2 satellite in 2015,
and the second in 2017 [3]. These two satellites in sun-
synchronous orbit are able to completely image the earth
every 5 days. The Multi-spectral Instrument (MSI) onboard
each satellite captures 13 spectral bands at various reso-
lutions: 10, 20, and 60 meters. The medium resolution,
global coverage, and high revisit rate of this data source
makes it very promising for tracking land cover and land
use changes.

The ESA makes this data freely available, and it is re-
hosted on the Amazon Web Services (AWS) Registry of
Open Data. The images used in our dataset are Level-
2A products downloaded from the AWS Sentinel-2 Cloud-
Optimized GeoTIFFs (COGs) Simple Storage Service (S3)
bucket [2]. Element84 hosts this bucket which replicates
the public dataset of Sentinel-2 imagery and converts the
file format into COGs, which allows efficient downloading
of just a small image chip from the relatively large Sentinel-
2 images. The bucket also has a corresponding Spatio-
Temporal Asset Catalog (STAC), which was used to search
for images covering a specific spatial cell and year, and sort
by metadata including total cloud cover.

For each spatial cell, imagery is split over four years
spanning the range 2017 - 2020. The earliest Level-2A data
available is from 2017. Within each of these combinations
of spatial cell and year, a pair of images from two random
dates within the year are chosen and downloaded from S3 to
local storage. The temporal duration of a year was chosen
to allow the full range of seasonal variation, while reducing
the probability of true semantic change within the pair as
much as possible.

One artifact that may be noticed in a careful inspection
of the geographic distribution of spatial cells is that spa-
tial cells tend to cluster into large square tiles. This is due
to a detail of our data collection: we process all of the

Figure 3. The dataset contains images with minimal cloud cover
(a). Images with significant cloud cover are removed from the
dataset either by the Sentinel-2 SCL layer (b) or through minimum
intensity filtering (c).

cells within an MGRS tile at once. This is done to mini-
mize STAC searches for efficiency reasons, as the full-sized
Sentinel-2 images are fit to MGRS tiles.

To reduce the presence of temporal bias towards times of
year with higher probability of cloud-free skies, the images
returned by the STAC search are binned by month before
being randomly shuffled and processed.

Each Sentinel-2 MSI image downloaded is thus the map-
ping of a spatial cell into a larger Sentinel-2 image. The
downloaded square image chips have a size of 192 pixels
at the 10 meter resolution, 96 pixels at 20 meters, and 32
pixels at 60 meters. The intensity values for each band are
32-bit floating point numbers between 0 and 1. These val-
ues represent bottom-of-atmosphere surface reflectance.

The Level-2A product includes a Scene Classification
Layer (SCL) which contains pre-computed classification
maps for ten classes including cloud, cloud shadow, water,
and snow. We use this layer to filter image chips as we pro-
cess the results returned by the STAC search. The SCL clas-
sifies individual pixels as cloud or not cloud with different
levels of certainty. We err on the side of caution, consider-
ing a pixel unusable even when reported to be cloudy with
only medium probability. The SCL also attempts to identify
cloud shadows, and saturated or defective pixels, which we
also consider to be unusable. If enough pixels in an image
chip are unusable, we ignore it and move on to the next im-
age returned by the STAC search. Rather than requiring our
image chips to be strictly cloud free, we allow up to 25% of
the pixels in the image to be cloudy. We acknowledge that
no cloud filtering algorithm will ever be completely suc-
cessful, and we wish to allow networks trained on this data
to learn to be robust to the presence of thin and/or sparse
clouds in an otherwise useful image.

To further reduce the probability of including heavily
clouded images, we add a simple minimum intensity filter
to remove brightly saturated scenes caused by false nega-
tives in the scene classification algorithm as demonstrated
in Figure 3.
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3.3. Annotations

OpenStreetMap (OSM) [9] offers globally available in-
formation regarding geospatial entities such as roads, park-
ing lots, and building footprints. Geospatial entities are typ-
ically labeled with a variety of tags, for example “building,”
“parking,” “baseball field”, and even coarse land use labels.
Over 7 million users have contributed to OSM, able to freely
create, edit, query and process geodata of various forms.

OSM vector data is rasterized at 10 meter resolution into
label images with 15 categories defined by an ontology re-
lating OSM tags to land use classes. The label categories are
not necessarily mutually exclusive; for example, the “build-
ing”, “road”, and “water” labels can exist within broader
land use regions such as “residential” or “industrial”. For
this reason, the generated label images are multi-channel;
only categories within a channel are assumed to be mutually
exclusive. The label images have three channels, as shown
in Figure 1: “land use”, “water and roads”, and “buildings”.
The individual “land use” categories were chosen manually
based on the availability of supporting OSM tags and the
ability to visually distinguish the categories in the Sentinel-
2 imagery (maximum resolution 10 meters).

The label images are generated using the following pro-
cess. First, all relevant OSM annotations within the bounds
of each spatial cell are downloaded using the OSMNX soft-
ware package [5]. Next, the ontology mapping individual
OSM tags to one or more of the label categories are man-
ually generated. The ontology also contains a precedence
value for each category within a channel; in cases where
multiple categories map to a single pixel (e.g. a bridge over
water), the category with the higher precedence value is
used. In addition to the positive examples of each category,
each channel in the label images contains two additional
values: “unlabeled” and “none”. The category of pixels
with the “unlabeled” value is unknown based on the avail-
able OSM tags for that location. A value of “none” indicates
that the true category of the pixel is assumed known but
does not belong to any of the other categories in the chan-
nel. Using the category ontology, a single multi-channel
label image for each spatial cell in the dataset is rendered
by rasterizing the appropriate OSM annotations. In some
cases, individual tags are dilated after rasterization; for ex-
ample, any pixel within 30 meters of the “building: house”
OSM tag is labeled as “residential”. For additional details
concerning the mapping of OSM tags to categories, please
see the osm_categories.json file distributed with the
dataset.

3.3.1 Label Statistics

While OSM data is available globally, it is not of uniform
quality and completeness. Statistics regarding the density
of annotations in general and of individual categories are

shown in Figure 4. The density of labels across each spatial
cell follows a bi-modal distribution with peaks at either ex-
treme of the scale; 11% of spatial cells contain less than 1%
of pixels labeled, while 12% of spatial cells contain over
90% of pixels labeled with at least one of the 15 categories.

The geospatial distribution of sparsely and densely la-
beled spatial cells is also non-uniform; Densely labeled spa-
tial cells are most common in Western Europe and in large
cities, as shown in Figure 5. Sparsely labeled (or empty)
spatial cells are common everywhere except for Western
Europe.

Finally, the prevalence of the individual categories is also
distributed non-uniformly. Approximately 88% of spatial
cells contain at least one labeled road, while the “quarry”
label is present in just under 3% of spatial cells. After
“road”, the “water” and “building” labels are the next most
common labels (found in 57% and 37% of images, respec-
tively). When measured on a per-pixel (as opposed to per-
image) basis, the most common labels are those typically
associated with large tracts of land such as “wooded” and
“agricultural” (approximately 8.7% and 7.3% of all pixels
in the dataset, respectively.)

3.3.2 Label Inaccuracies

The scale and diversity of the OSM-derived label images
provide significant value to the remote sensing and machine
learning community, including the ability to train high-
quality landuse, building, and road detection in globally
available imagery using simple methods as demonstrated
in Section 5. However, the nature of the source data leads
to potential inaccuracies that practitioners using the dataset
should be aware of. In addition to the uneven distribution
of labels (Section 3.3.1), georegistration, rasterization, and
temporal errors also exist in the data. Georegistration and
rasterization errors are caused by annotations that are incor-
rectly placed or made as linear paths (“ways”) as opposed
to polygons. In the latter case, the annotations are raster-
ized by “turning on” each pixel that the path passes through
optionally followed by a dilation, depending on the associ-
ated tag. For example, based on the assumed width of the
road, the OSM tag “highway: trunk” is dilated after raster-
ization, but “highway: residential” is not. Rivers of signif-
icant width are typically annotated with polygons provid-
ing the full boundary, but are occasionally annotated using
linear paths only. In these cases, no assumption about the
width of the river is made; the annotation is left as a one-
pixel wide path in the label image. In addition to geospatial
inaccuracies, OSM data may also be misaligned temporally
with the included Sentinel-2 images, particularly in regions
with large amounts of active construction. The OSM data
was downloaded in early 2022, while the Sentinel-2 images
span the range 2017 through 2020. While it is possible to
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Figure 4. Per-image label coverage exhibits a bi-modal distribution (left); many images contain little or no labels, and many images are
nearly fully labeled. Prevalence of individual labels varies significantly in both image count (middle) and total pixel count (right).

Figure 5. OSM-derived labels are available globally but are not
distributed uniformly. Images with dense label coverage are com-
mon mainly in Western Europe and in large cities.

retrieve historical snapshots of OSM data, it is generally
not clear if new annotations are added to fill in missing data
over a static region or to indicate real changes. For this rea-
son, a single label image is generated for each spatial cell
using the most recently available OSM annotations, with no
attempt to model historical changes on the ground.

4. Embedding Network Architecture

To demonstrate the utility of OpenSentinelMap and es-
tablish baseline performance, we present an encoder net-
work that learns rich, semantic embeddings for Sentinel-2
imagery by using per-pixel OSM classification as a proxy

learning task.
The encoder backbone is a modified 3-stage HRNet [21]

that produces dense, per-pixel embeddings which can be
utilized in downstream tasks (Fig. 6). HRNet was chosen
for its performance and sharpness on high-resolution se-
mantic segmentation tasks, because pixel-wise location ac-
curacy is important for remote sensing imagery. The desire
for faster inference on large-scale satellite imagery drove
the decision to generate dense embeddings for every pixel
in a fully convolutional manner. The network is trained us-
ing temporally differing image pairs of the same Sentinel-2
spatial cell (Section 3.1) (i.e. the same location at two dif-
ferent dates). The pairwise training strategy is adopted to
encourage imagery that may contain seasonal and weather
variance to produce similar embeddings.

4.1. Training Data

The training data consists of the four Sentinel-2 10m
bands (near infrared, red, green, and blue bands), the six
20m bands (vegetation red edge bands, and SWIR bands),
and the corresponding OSM class labels from OpenSen-
tinelMap. Each spatial cell (Section 3.1) is 192 pixels on
each side for the 10m bands (1920 m.) and 96 pixels on
each side for the 20m band (1920 m.), for resulting input
sizes of 192x192x4 and 96x96x6 respectively. We elect to
exclude the 60m Sentinel-2 bands from training as they are
mainly utilized in the pre-processing procedure for produc-
ing the Level-2A imagery and are too coarse for several cat-
egories such as buildings. The dataset is split into approx-
imately 110k spatial cells for training, 15k spatial cells for
validation, and 11k spatial cells for testing (for experimen-
tal results on the testing set, see Section 5.1).

4.2. Modification for Sentinel-2 Imagery

Instead of only utilizing the 10m bands or upsampling
the 20m bands to match the input size of the 10m bands,
we choose to learn individual features at each of the origi-
nal input resolutions and feed those feature maps into their
respective scales in the HRNet architecture. Therefore, the
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Figure 6. Illustrations of the encoder network architecture and the pair-wise training procedure. Yellow, orange, and red blocks indicate
HRNet convolutional blocks and features at specific resolutions and purple blocks represent the produced dense embeddings. In the training
procedure, each blue encoder block represents an entire encoder backbone and green blocks are the same 1x1 convolutional classifier.

10m bands are input into the typical HRNet input convo-
lution block, and the network is modified by appending an
additional input convolution block for the 20m bands that
feeds forward into the 1/2 resolution feature branch of the
network (Fig. 6).

The standard HRNet network has a larger receptive field
at maximum resolution than the image size of the 10m
bands for an entire spatial cell. To prevent the network
from seeing heavily padded images during training, the re-
ceptive field was reduced by removing a stage of pooling
and strided convolution operations at the smallest feature
resolution. Batchnorm layers are replaced with Group Nor-
malization [23] to facilitate training with small batch size.

4.3. Network Training

The encoder network and OSM classification head were
trained end-to-end for 225 epochs using an SGD optimizer
(LR = 0.01; momentum = 0.9) and a linear warm-up co-
sine annealing learning rate scheduler (10 warm-up epochs;
LRstart = 0.00; LRend = 0.0001). Training imagery was
standardized with mean-variance normalization and aug-
mented using random rotations and mirroring. Due to the
sparse nature of the OSM ground truth class labels, we only
calculate and average a binary cross-entropy loss where ei-
ther a true positive or true negative (“none” labeled) pixel
exists in the OSM label image (i.e. “unlabeled” pixels do
not contribute to the loss).

5. Experiments
We quantitatively analyse the performance of the trained

network described above in Section 4 by evaluating on
the testing set of OpenSentinelMap as well as leveraging
embeddings learned using OpenSentinelMap to perform

downstream classification on two existing datasets: Eu-
roSAT [17] and Functional Map of the World [8]. The goal
of the EuroSAT experiment is to determine if embeddings
learned from the OpenSentinelMap labels can be used to
train a coarse land cover classifier using a small training
set. The goal of the FMoW experiment is to determine if
our embeddings contain enough detailed semantic informa-
tion to support fine-grained classifications.

Figure 7. ROC Curves and Area under those curves (AuC) for the
road, water, and building classes in the OSM test dataset.

5.1. Test Set Results

For evaluation on the test set of OpenSentinelMap, we
simply use the encoder network and the pre-trained OSM
per-pixel classification head. Semantic segmentation maps
are predicted for each of the spatial cells in the test set and
compared to the ground truth OSM label images.

Figure 7 shows ROC curves as well as area under those
curves (AuC) for the road, water, and building classes which
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Figure 8. ROC Curves and Area under those curves (AuC) for the
12 land use classes in the OSM test dataset.

Figure 9. CMC curves showing the top-k accuracy for the 10m
FMoW classifier for multiple values of Ntrain.

are not mutually exclusive with the 12 land use classes. Fig-
ure 8 shows ROC curves and AuCs for the remaining 12
land use classes. Figure 10 shows network predictions for
an example image along with OSM ground truth label im-
ages.

5.2. EuroSAT

The EuroSAT [17] dataset consists of 64x64 pixel
patches of Level-1A (L1A) Sentinel-2 MSI imagery and in-
cludes 10 different land use classes. In total, there are 27k
labeled and geo-referenced L1A images across all classes.
Because the network is trained with Level-2A Sentinel-2
imagery (L2A), the geographic boundaries for each Eu-
roSAT image were used to resample imagery from L2A
data. This L2A EuroSAT dataset will be published along-

side OpenSentinelMap.
In order to evaluate the number of training samples

needed for training, the EuroSAT data is split into train-
ing sets of multiple sizes. These splits are either fixed
sizes (where Ntrain is the number of samples per class) or
percentage-based splits of training/testing data (i.e. 80/20
is 80% training and 20% testing). For fixed training splits,
a fixed testing split of 1000 samples per class is used.

First, the training data is fed into the encoder (Sec. 4) to
generate a set of embeddings for each image. The result-
ing embeddings are cropped down to the original EuroSAT
image extents (64x64) and detached from the encoder net-
work (i.e. the backward pass will not update the encoder).
A small 3-layer Convolutional Neural Network (CNN) clas-
sification head is then trained on top of the cropped and de-
tached embeddings using the EuroSAT land use labels.

Results for each of the values of Ntrain (as well as
percentage-based splits to compare to [17]) are shown in
Table 1. Our semantically rich embeddings allow a small
classification head with a small number of the two base-
lines’ trainable parameters (approximately 1% of ResNet-
50 and 3% of GoogleNet) to achieve strong results with a
small number of labelled images. Above 600 samples per
classes (30/70 split) we start to see diminishing returns in
performance compared to the baselines.

5.3. FMoW

The Functional Map of the World (FMoW) [8] dataset
consists of annotations for a variety of unique building and
land use classes. In total, there are 130k annotations with at
least one labeled bounding box and one of 62 categories.

Sentinel-2 imagery is of a much lower resolution (10m
per pixel) than the original imagery included in the FMoW
dataset (≈0.5m per pixel). Because the dataset is comprised
of classes that have varying spatial extents, classifying rel-
atively small objects in the FMoW dataset is a challenging
evaluation task for the network.

We construct a dataset and use it to train a simple classi-
fier in a similar way to the EuroSAT protocol described in
Section 5.2. Initially, the FMoW ground truth annotations
are used to resample L2A imagery. Our resampling ignores
the construction site, flooded road, and impoverished settle-
ment classes leaving a total of 59 categories in the dataset.
We postulate that these named categories are not suitable for
single-view classification due to their temporal nature. The
resampled Sentinel-2 FMoW dataset will also be published
alongside OpenSentinelMap.

Multiple training splits of size Ntrain samples per class
are selected along with the FMoW validation and testing
sets. The resampled FMoW images are fed through the
encoder network to produce embeddings. Because [8] use
244x244 pixel imagery in their classification procedure (ap-
proximately 122m per side), the embeddings are center
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Figure 10. OSM-based ground truth images (top) are used to evaluation per-pixel probabilities for each of the categories predicted by the
trained network (bottom). Note that only the 8 prediction classes out of 15 with non-negligible probabilities are shown here.

Method 1 5 10 100 10/90 20/80 30/70 40/60 50/50 60/40 70/30 80/20 90/10

ResNet-50 [17] × × × × 75.06 88.53 93.75 94.01 94.45 95.26 95.32 96.43 96.37
GoogleNet [17] × × × × 77.37 90.97 90.57 91.62 94.96 95.54 95.70 96.02 96.17

Ours 57.56 74.58 81.66 91.48 92.45 93.10 93.62 93.80 93.95 93.71 93.80 94.90 94.70

Table 1. Top-1 Accuracy for the EuroSAT classifier trained on top of the learned embeddings. Accuracy is reported for single-shot, few-
shot, and percentage-based train / test splits comparable with baseline methods.

cropped to 16x16 pixels (160m per side) to approximate the
same footprint used in the classification experiments. Fi-
nally, these cropped embeddings are detached and used to
train a 3-layer CNN classification head on the 59 FMoW
categories.

The Cumulative Match Characteristic (CMC) curve for
multiple values of Ntrain is shown in Figure 9. While per-
formance is significantly below methods that use high res-
olution imagery, we demonstrate that reasonable baseline
performance is possible using 10 meter resolution imagery.

6. Conclusion

We have presented a new dataset consisting of globally
sampled multi-spectral Sentinel-2 imagery and correspond-
ing per-pixel labels for 15 non-mutually exclusive semantic
categories based on OpenStreetMap annotations.

The samples were selected without regard to availabil-
ity or quality of annotation data, making the dataset an
ideal candidate for unsupervised and semi-supervised ap-
proaches. We leave the development and testing of these
approaches for future work, and instead demonstrate that
the quality and quantity of annotations is sufficient for train-
ing a high-quality baseline method using a standard fully-
supervised approach.

In addition, we demonstrate that the internal representa-
tion learned by the supervised method is sufficient for train-
ing downstream classifiers of fine-grained categories not ex-
plicitly labeled in the training set. Despite its significant
size, the proposed dataset is built using only a small fraction
of the total available Sentinel-2 and OpenStreetMap data;
future work will investigate the question of how much data
is required before reaching the point of diminishing returns
on downstream segmentation, detection, and classification
tasks.
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