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Abstract

We introduce the Satellite Neural Radiance Field (Sat-
NeRF), a new end-to-end model for learning multi-view
satellite photogrammetry in the wild. Sat-NeRF combines
some of the latest trends in neural rendering with native
satellite camera models, represented by rational polyno-
mial coefficient (RPC) functions. The proposed method ren-
ders new views and infers surface models of similar qual-
ity to those obtained with traditional state-of-the-art stereo
pipelines. Multi-date images exhibit significant changes in
appearance, mainly due to varying shadows and transient
objects (cars, vegetation). Robustness to these challenges
is achieved by a shadow-aware irradiance model and un-
certainty weighting to deal with transient phenomena that
cannot be explained by the position of the sun. We evalu-
ate Sat-NeRF using WorldView-3 images from different lo-
cations and stress the advantages of applying a bundle ad-
justment to the satellite camera models prior to training.
This boosts the network performance and can optionally be
used to extract additional cues for depth supervision.

1. Introduction

High-resolution satellite imagery is a valuable resource
for countless economic activities, many of them based on
knowledge of the geometry of the Earth’s surface and its
changes. This has triggered the development of a number of
pipelines capable of highly accurate depth estimation from
disparity using multiple satellite views [4, 11, 12, 15, 19, 44,
45]. The output large-scale 3D models are usually repre-
sented using discrete point clouds or digital surface models
(DSMs) of a certain resolution.

The latest works in 3D modeling from multiple views
show that it is possible to achieve a superior representation
of a 3D object or scene by learning it as a continuous func-
tion or field F [49]. Neural rendering methods learn F by
integrating differentiable rendering techniques into a neu-
ral network. The tasks of novel view synthesis and 3D re-
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Figure 1. Images 1 and 2 exhibit color inconsistencies (e.g. shad-
ows, cars, vegetation), hindering the direct use of NeRF. Sat-NeRF
overcomes these problems and learns to render realistic views and
underlying geometry. The digital surface model (DSM) derived
from the network depth predictions is compared with a lidar equiv-
alent, obtaining a mean absolute altitude error (MAE) similar to
that of multi-view stereo (MVS) relying on handcrafted features.

construction are then solved implicitly, as the network is
trained to figure out which geometry and color radiances fit
the camera projection mappings of the different views.

Neural radiance fields (NeRFs) have gained great popu-
larity in the field of neural rendering [35, 49]. In this pa-
per, we introduce a NeRF variant architecture that achieves
state-of-the-art results in novel view synthesis and 3D re-
construction from high-resolution satellite imagery in the
wild. We refer to our variant as Satellite NeRF or Sat-
NeRF. The original NeRF approach is not adapted to satel-
lite images, e.g. because of the specificities of the cam-
era models, the large distance between the cameras and the
scene or the appearance inconsistencies of multi-date col-
lections [14, 33]. Sat-NeRF addresses these challenges us-
ing some of the latest advances in NeRFs [13, 14, 33] and
adapting well-known tools for satellite image processing.
As a result, the model learns highly accurate 3D geometry,
similar to that obtained with state-of-the-art stereo pipelines
relying on handcrafted features (Figure 1).
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Our contributions consist of:

- A NeRF variant that combines existing state-of-the-art
methods to adapt to the satellite context. It is robust to
the radiometric inconsistencies of multi-date satellite
imagery, comprising shadows caused by a single non-
static light source (the sun) and small transient objects
(mainly trees or cars in open-air parkings).

- A point sampling strategy adapted to satellite camera
models. The rational polynomial camera (RPC) model
[16,20] of each input image is directly used to cast rays
in the object space. This RPC-based strategy provides
independence to the satellite system and improves the
results obtained with approximate pinhole cameras.

- A study of the advantages of correcting RPC inconsis-
tencies before training, e.g. by means of a bundle ad-
justment [31]. We show that eluding this step leads to a
drop in the performance of the model. In addition, we
detail how to reuse the sparse point cloud employed in
the bundle adjustment to improve geometry learning.

We evaluate Sat-NeRF on different areas of interest cov-
ering 256× 256 m each, using ∼10-20 RGB crops from
multi-date WorldView-3 images for training [8, 27]. A li-
dar digital surface model (DSM) of resolution 0.5 m/pixel
is used as ground truth model to assess the geometry. Sat-
NeRF is compared to other NeRF variants [14, 35] as well
as a state-of-the-art traditional satellite stereo pipeline [12].
We also publish the code and data used for this article.

2. Related work
Current state-of-the-art 3D reconstruction pipelines for

satellite images typically follow multi-view stereo ap-
proaches, which can outperform sophisticated true multi-
view software [18, 37]. Due to the complexity of the task,
satellite stereo pipelines can still be improved in a number
of aspects. Some of the most important limitations are:

- The 3D reconstruction usually follows the estima-
tion of a dense disparity map using matching strate-
gies derived from the semi-global matching algorithm
[4, 11, 12, 19, 24]. Therefore, human-crafted features
and cost functions are at the core of the methodology.

- The selection of suitable stereo pairs to estimate dis-
parity is another major challenge. Criteria based on
image metadata (e.g. acquisition dates, incidence an-
gles, etc.) have proven to be useful, but do not guaran-
tee the best choice [15, 19, 22].

- The lack of consensus on how the geometry derived
from multiple stereo pairs should be refined or ag-
gregated. Local point-wise operations are common to
merge altitude values derived from different pairs, e.g.
median [11, 19, 32] or k-medians [15]. However, re-
cent work has shown that deep learning approaches can

greatly improve the result, e.g. by exploiting geomet-
ric priors related to urban areas [6, 7, 28, 48].

- Very often, it is necessary to make adjustments or pa-
rameter tuning to handle different sources or types of
satellite images [37, 55].

Neural rendering represents an opportunity to find a nat-
ural solution to the previous issues, as it automatically
learns the optimal features and operations adapted to each
individual 3D scene. The main advantage of traditional
pipelines is preserved as no explicit geometry supervision
is required: the learning is self-supervised and based solely
on the color of the input images. This is a key difference
with respect to other state-of-the-art deep learning methods
for DSM generation from satellite imagery [7, 17, 18, 48],
which depend on ground truth geometry models.

2.1. Neural Radiance Fields

NeRF [35] represents a static scene as a continuous vol-
umetric function F , encoded by a fully-connected neural
network. F predicts the emitted RGB color c = (r, g, b)
and a non-negative scalar volume density σ at a 3D point
x = (x, y, z) of the scene seen from a viewing direction
d = (dx, dy, dz), i.e.

F : (x,d) 7→ (c, σ). (1)

Multi-view consistency is encouraged by restricting the net-
work to predict the volume density σ based only on the spa-
tial coordinates x, while allowing the color c to be predicted
as a function of both x and the viewing direction d. The de-
pendency of c on the viewing direction allows to recreate
specular reflections caused by to static light sources.

Given a set of input views and their camera poses, the
training strategy is based on rendering the color of indi-
vidual rays traced across the scene and projected onto the
known pixels. Individual rays are chosen randomly, encour-
aging gradient flow at those ray intersections where the sur-
face of the scene is susceptible of being located. Each ray
r is defined by a point of origin o and a direction vector d.
The color c(r) of a ray r(t) = o+ td is computed as

c(r) =

N∑
i=1

Tiαici. (2)

The rendered color c(r) results from the weighted integra-
tion of the colors ci predicted at different points of the ray r,
which is discretized into N 3D points xi between the near
and far bounds of the scene, tn and tf . Each point xi in r is
obtained as xi = o+ tid, where ti ∈ [tn, tf ].

Following (2), the weight given to the color predicted
for each point xi of r is defined by a transmittance factor
Ti representing the probability that light reaches the point
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without hitting any other particle, and an alpha composit-
ing value αi encoding the opacity. Both Ti and αi are set
according to the volume density σi predicted for xi:

αi = 1− exp(−σiδi); Ti =

i−1∏
j=1

(1− αj) , (3)

where δi is the distance between two consecutive points
along the ray, i.e. δi = ti+1 − ti. Higher values of σi will
result in larger opacity αi, indicating that xi possibly be-
longs to a non-transparent surface. Occlusions are handled
by the transmittance Ti, equal to the cumulative product of
the inverse opacity. Even if xi is given a large σi, Ti only
allows it to contribute decisively to the rendered color if it
is not preceded by previous opaque points in the ray.

Given (3), the depth d(r) observed in the direction of a
ray r can be rendered in a similar manner to (2) [13, 43] as

d(r) =

N∑
i=1

Tiαiti. (4)

NeRF is optimized by minimizing the mean squared error
(MSE) between the rendered color and the real color of the
input images, at the positions where the rays project:∑

r∈R
∥c(r)− cGT(r)∥22, (5)

where cGT(r) is the observed color of the pixel intersected
by the ray r, and c(r) is the color predicted by the NeRF
using (2). R is the set of rays in each input batch.

2.2. NeRF variants

NeRF assumes that the density, radiance and illumina-
tion of the target 3D scene is constant. This is a strong lim-
itation, as these conditions are rarely encountered outside
laboratory settings. Many variants have been proposed to
address this problem. In this section we briefly review three
models that inspired our work.

NeRF-W [33] or NeRF in the Wild gains robustness to
radiometric variation and transient objects by learning to
separate transient phenomena from the static scene. An ex-
tra head of fully-connected layers is used to predict a tran-
sient color cτ and volume density στ for each input point,
in addition to the usual c and σ. The transient outputs are
linearly combined with the static ones to render the color of
each ray. NeRF-W also uses the transient head to emit an
uncertainty coefficient β, which measures the confidence of
the network that a point belongs to a transient object. The
value of β is used in the loss function to reduce the impact
of transient/unreliable pixels in the learning process.

S-NeRF [14] or Shadow NeRF is, to the best of our
knowledge, the first attempt to apply NeRF for multi-view
satellite photogrammetry. S-NeRF showed the benefits in

geometry estimation of simultaneously exploiting the di-
rection of solar rays to learn the amount of sunlight s that
reaches each point x of the scene. The direction of solar
rays is a common metadata of satellite images. Our work
can be seen as an extension of S-NeRF that incorporates a
modeling of transient objects similar to [33] and a represen-
tation of the camera models more adapted to satellite data.

DS-NeRF [13] or Depth Supervised NeRF incorporates
a depth supervision term to the loss function to accelerate
the learning and reduce the amount of input images. The
depth supervision term exploits a sparse set of 3D points
that belong to the surface of the scene, which can be eas-
ily retrieved using structure-from-motion (SfM) pipelines.
SfM is a common pre-processing step in NeRF frameworks,
as it can estimate the camera poses needed to cast the input
rays. A similar strategy to DS-NeRF is used in [43], which
converts the sparse point clouds into dense depth priors.

Other recent NeRF variants are yet to be investigated in
the context of satellite imagery. Some works are focused
on achieving smoother scene representations or reducing
the number of input views: e.g. DietNeRF [25] introduces
an auxiliary semantic loss to maximize similarity between
high-level features instead of RGB colors; Mip-NeRF [3]
prevents blurring and aliasing in collections of images with
different resolutions; PixelNeRF [54] describes a frame-
work that is trained across multiple scenes and learns pri-
ors that can generalize to unseen scenes with few available
images. Recent undergoing research is also progressing to
extend NeRFs to dynamic scenes [40–42, 51], to gain ef-
ficiency and reduce the training time [23, 36, 52, 53] or to
handle complex illumination settings, under arbitrary, mul-
tiple light sources [5, 47] or near-darkness conditions [34].

3. Method
Sat-NeRF represents the scene as a static surface with an

albedo color, i.e. the intrinsic color of static objects. The
model learns to predict the geometry and the albedo color
simultaneously with a set of additional outputs, which seek
to explain the transient phenomena observed in the input
images without inducing changes in the scene geometry.

We train the model following the ray casting strategy of
NeRF (Section 2.1). Unlike the original NeRF (1), we as-
sume a Lambertian surface and omit the color dependence
on viewing angles. The inputs are

- x: 3-valued vector with the spatial coordinates of
points located in the scene volume. x is part of a ray r.

- ω: 3-valued direction vector encoding the direction of
solar rays. For each input image, ω is extracted from
the azimuth and elevation angles (θ, ϕ) that indicate
the position of the sun in the satellite image metadata.

- tj : N (t)-valued embedding vector, learned as a func-
tion of the image index j. The objective of tj is to
featurize the transient elements in the j-th view that
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cannot be explained by the position of the sun given
by ω. We manually set N (t) =4.

The volumetric function of Sat-NeRF then writes
F : (x,ω, tj) 7→ (σ, ca, s,a, β), where the outputs are

- σ: scalar encoding the volume density at location x.
- ca: albedo RGB color, which depends exclusively on

the geometry, i.e. the spatial coordinates x.
- s: shadow-aware shading scalar, learned as a function

of x and the solar rays direction vector ω.
- a: ambient RGB color, independent of scene geometry,

that defines a global hue bias according to the position
of the sun given by ω.

- β: uncertainty coefficient related to the probability that
the color of x is explained by a transient object.

3.1. Shadow-aware irradiance model

This section describes how Sat-NeRF predicts the color
c(r) of a ray r projected onto a certain pixel. We keep the
rendering as in (2) and (4), with the transmittance and opac-
ity factors as defined in (3), but adopt the shadow-aware ir-
radiance model proposed in S-NeRF [14] to compute the
color c at each point x of a ray r:

c(x,ω, tj) = ca(x) ·
(
s(x,ω)+(1−s(x,ω)) ·a(ω)

)
, (6)

where c(x,ω, tj) substitutes ci in (2). The shading scalar
s(x,ω) takes values between 0 and 1 and is used to add
shadows by darkening the albedo (Figure 2). Ideally, s ≈ 1
in those 3D points directly illuminated by the sun, whose
color should be entirely explained by the albedo ca(x).

In addition, (6) attempts to capture the bluish hues of
shadows [2,30] by means of the ambient color a(ω), which
contributes to the points where s takes values closer to 0. In
practice, we find that the direction of the solar rays ω is nar-
rowly related to the acquisition date (especially if the satel-
lite passes at the same hours of the day), as shown in Fig-
ure 2. Thus, a(ω) ends up capturing ambient irradiance due
to a mixture of phenomena, which is related to ω but also
date-specific conditions like weather or seasonal changes.

As observed in S-NeRF [14], the shading scalar s(x,ω)
in (6) can produce unrealistic results for solar rays direc-
tions that are not seen in the training data. This can be min-
imized by adding a solar correction term to the loss:

LSC(RSC) =
∑

r∈RSC

(
NSC∑
i=1

(Ti − si)
2 + 1−

NSC∑
i=1

Tiαisi

)
,

(7)
where RSC is a secondary batch of solar correction rays.
Note that the rays in RSC follow the direction of solar rays
ω, while the rays in R, in the main term of the loss (5),
follow the viewing direction of the camera.

The solar correction term (7) uses the learned geome-
try, encoded by the transmittance Ti and opacity αi (3), to
further supervise the learning of the shadow-aware shading

s(x,ω). The first part of (7) enforces that, for each ray r in
RSC, the si predicted at the i-th point should resemble Ti,
i.e. high values before reaching the visible surface, low val-
ues afterwards (both si and Ti take values between 0 and 1).
The second part of (7) encourages that the integration of s
over r reaches 1, since non-occluded and non-shadow areas
have to be mostly explained by the albedo in (6).

3.2. Uncertainty weighting for transient objects

Similarly to NeRF-W [33], we use the task-uncertainty
learning approach introduced in [26] to gain robustness to
transient objects by means of β. In our context, transient
objects are punctual local changes across the input images
that cannot be explained by the static surface or the avail-
able metadata, like the position of the sun. The irradiance
model (6) does not handle transient objects explicitly. As
a result, we observe that s and σ usually try to account for
them, leading to wrong depth predictions, as shown in Fig-
ure 4. Thanks to β, Sat-NeRF is given some margin to ig-
nore the color inconsistencies caused by these objects.

The uncertainty prediction β weights the contribution of
each ray to the MSE between rendered and known colors:

LRGB(R)=
∑
r∈R

∥c(r)− cGT(r)∥22
2β′(r)2

+

(
log β′(r)+η

2

)
,

(8)
where β′(r) = β(r) + βmin. In (8), we use βmin = 0.05 and
η = 3 to avoid negative values in the logarithm. The role
of the logarithm in LRGB is to prevent β from converging to
infinity to solve the problem. In this way the model is forced
to find a compromise between the uncertainty coefficients β
and the differences of colors.

The β(r) associated with a ray r is obtained by integrat-
ing the uncertainty predictions across the N points of r:

β(r) =

N∑
i=1

Tiαiβ(xi, tj), (9)

where β(xi, tj), is the uncertainty coefficient predicted at
the i-th point of r. Sat-NeRF learns to predict the uncer-
tainty β at each point of the scene based on its spatial coor-
dinates x (some areas are more likely to exhibit transient ob-
jects, e.g. open-air parkings in Figure 2) and on the transient
embedding vector tj of each input training image. Depend-
ing on each view, the areas typically affected by transient
objects will arbitrarily differ to a greater or lesser extent
with respect to the albedo. Note that the embedding vector
tj is learned from the image index j during training.1

We find that it is better to start using β after the sec-
ond epoch, when the shadow-aware shading s is already
well initialized. Otherwise the model may use β to over-
look shadow areas instead of trying to explain them with s.
Thus, we replace (8) with (5) in the first two epochs.

1At test time, we use an arbitrary tj selected from the training set.
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Figure 2. The shading scalar s related to the solar rays direction ω learns shadows and material roughness. We observe that ω is narrowly
related to the acquisition date, causing the ambient color a associated with the low values of s (see (6)) to capture a mixture of phenomena,
including seasonal changes reflected in the vegetation. The uncertainty prediction β does not affect shadows and concentrates on small
color inconsistencies, mostly caused by cars in open-air parkings (green marks), large fans in rooftops (blue marks) or building edges.

3.3. Point sampling from satellite RPC models

Sat-NeRF casts rays directly using the RPC camera mod-
els of a set of satellite images. The RPC model is widely
used for optical satellite imagery, as it allows to describe
complex acquisition systems independently of satellite-
specific physical modeling [1, 20]. Each RPC is defined
by a projection function (to project 3D points onto image
pixels) and its inverse, the localization function.

The use of RPCs in a NeRF framework represents an
improvement with respect to previous work with satellite
data. In S-NeRF [14] the RPC model of each input view
is replaced with a custom simplified pinhole camera ma-
trix, which is the common representation used in NeRF for
close-range imagery [35]. The RPC-based sampling de-
scribed here corresponds to a more general approach, which
also leads to better results (see Section 4).

We denote the minimum and maximum altitudes of the
scene as hmin and hmax, respectively.2 The ray that crosses
the scene and intersects the pixel p of the j-th image is mod-
eled as a straight line between an initial and a final 3D point,
i.e. xstart and xend. These boundary points are obtained by
localizing the pixel p at hmin and hmax, using the RPC lo-
calization function Lj of the j-th image:

xstart = Lj(p, hmax)ECEF; xend = Lj(p, hmin)ECEF, (10)

where the subindex ECEF indicates that the 3D points re-
turned by the localization function Lj are converted to the
Earth-centered, Earth-fixed coordinate system (or geocen-
tric system), to work in a cartestian system of reference.

Given xstart and xend, the origin o and direction vector d
of the ray r(t) = o + td that intersects the pixel p of the

2The altitude bounds [hmin, hmax] can be selected in various ways, e.g.
from a large-scale elevation model extracted from low-resolution data.

j-th image are expressed as

o = xstart; d =
xend − xstart

∥xend − xstart∥2
. (11)

The point of maximum altitude, xstart, which is the closest to
the camera, is taken as the origin o of the ray. The bound-
aries of the ray r(t) = o + td, i.e. [tmin, tmax], are set as
tmin = 0 and tmax = ∥xend − xstart∥2. Since working with
ECEF coordinates is impractical, due to large values used in
the representation, we normalize all ray points in the inter-
val [−1, 1] using an offset subtraction and scaling procedure
similar to the one used in the RPC functions [20]. The set
of 3D points resulting from localizing all pixels in the input
images at hmin and hmax is used to compute the offset and
scale in each spatial dimension.

3.4. RPC refinement for improved performance

Bundle adjustment approaches are a common good prac-
tice in remote sensing to correct inconsistencies between
a collection of RPC models observing the same scene
[21, 31, 32, 38]. In particular, bundle adjustment methods
correct the RPCs by minimizing the reprojection error of a
set of corresponding points seen across the images [50].

In absence of a prior RPC refinement, a 3D point pro-
jected with different raw RPC functions often falls on non-
coincident image points, by a distance of up to tens of pix-
els [21]. This would cause a systematic loss of accuracy in
any NeRF methodology for satellite imagery, because rays
traced from corresponding pixels of different views would
not intersect at an exact point in the object space. To prevent
this situation, before training Sat-NeRF, we apply the bun-
dle adjustment method described in [31], which performs a
relative correction of the RPC models of all input images.
The set of points used by the bundle adjustment is derived
from correspondences of SIFT keypoints [29].
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While the refined RPC models directly increase the accu-
racy of the point sampling strategy described in Section 3.3,
a prior bundle adjustment can also improve the Sat-NeRF
performance in other ways. DS-NeRF [13] discussed how
the training of a NeRF can benefit from a sparse set of pre-
viously known 3D points, under the idea that such points
can be easily produced using SfM pipelines. In the case of
satellite imagery, the bundle adjustment produces an equiv-
alent set of sparse 3D points derived from image features
[10, 31, 39, 45]. Based on this idea, we explore the benefits
of adding the depth supervision term proposed in [13] to the
loss of our Sat-NeRF model:

LDS(RDS) =
∑

r∈RDS

w(r) (d(r)− ∥X(r)− o(r)∥2)2 ,

(12)
where d(r) is the depth (4) predicted for a ray r, whose ori-
gin point is o(r). If r intersects X(r), a known 3D point,
then ∥X(r)− o(r)∥2 is the target depth to be learned. RDS
denotes a batch of rays that intersects known 3D points.
Since the pixel coordinates associated with these 3D points
are already provided by the bundle adjustment, all rays in
RDS can be defined as explained in Section 3.3. Normalized
coordinates between [−1, 1] are used in (12) to represent
points in the object space, for consistency with Section 3.3.

Similarly to [13], we only use LDS in the initial 25%
of training iterations. In our experience, this proportion is
usually enough to gain accuracy in the learned geometry.
Observe that the contribution of each depth supervision ray
r in RDS is weighted by w(r) in (12), where w(r) is a scalar
set according to the reprojection error of each point X(r)
provided by the bundle adjustment.

3.5. Multi-task loss and network architecture

The main term of the Sat-NeRF loss function is the LRGB
defined in (8), which is complemented by the solar correc-
tion term LSC (7) and the depth supervision term LDS (12).
The complete loss function can be expressed as

L = LRGB(R) + λSCLSC(RSC) + λDSLDS(RDS), (13)

where λSC and λDS are an arbitrary weight given to each
secondary term. We empirically find λSC = 0.1/3 and
λDS = 1000/3 to provide good results, to keep the sec-
ondary terms sufficiently relevant but below the magnitude
of LRGB. For depth supervision, we used ∼2k-10k bundle
adjustment points depending on the output of [31] for each
area of interest. R, RSC and RDS have the same batch size.

The architecture of Sat-NeRF is shown in Figure 3. The
main block of fully-connected layers, with h channels per
layer, is dedicated to the prediction of the static properties
of the scene: the volume density σ and the albedo color
ca. A secondary head is added with fewer layers and half
as many channels per layer to estimate the shading scalar

h h ... h

8th layer

h

h
2

h
2

h
2

h
2

h
2

h
2

x

tj

ω

σ

ca

β

a

s

network layers

fully-connected

fully-connected
+ SIREN init.

activation functions
sin

sigmoid
softplus input

output

Figure 3. Sat-NeRF network architecture, where x are the input
spatial coordinates, ω is the direction of solar rays and tj is the
learned transient embedding of image j. The model predicts the
volume density σ, the components of the irradiance model (6),
i.e. albedo color ca, shading scalar s, ambient color a, and an
uncertainty coefficient β to weight the impact of transient objects.

Area index 004 068 214 260
# train/test 9/2 17/2 21/3 15/2

Alt. bounds [m] [-24, 1] [-27, 30] [-29, 73] [-30, 13]

Table 1. Number of training and test images used for each area,
and the altitude bounds of the scene considered in each case.

s based on the direction of solar rays ω and the vector
of h geometry-related features learned by the main block.
Lastly, two single-layer heads are used to predict the un-
certainty coefficient β and the ambient color a, from the
transient embedding vector tj and ω, respectively.

We employ SIREN layers with the initialization pro-
posed in [46], as suggested in [14]. The use of a softplus
function to predict σ was crucial to achieve satisfactory re-
sults. The uncertainty β is also produced by a softplus [33],
which yields a smoother optimization problem compared to
the usual ReLU [3]. The rest of the outputs result from sig-
moid functions, since they are related to normalized RGB
values and have to be in the interval [0, 1]. The value of h
should be adjusted according to the resolution and the size
of the observed area. In this work we set h = 512.

4. Evaluation

We evaluate Sat-NeRF on different areas of interest
(AOI) of the 2019 IEEE GRSS Data Fusion Contest [8,27],
which provides 26 Maxar WorldView-3 images collected
between 2014 and 2016 over the city of Jacksonville,
Florida, US. From this data, we take as input a set of RGB
crops of varying size, around 800×800 pixels, with a reso-
lution of 0.3 m/pixel at nadir, covering 256×256 m for each
AOI. The indices of the selected AOIs and the number of
training and test images that were used are listed in Table 1.
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In all conducted experiments we use a single NeRF
model, trained with an Adam optimizer starting with a
learning rate of 5e−4, which is decreased at every epoch by
a factor γ = 0.9 according to a step scheduler. The batch
size is 1024 rays, and each ray r is discretized into 64 uni-
formly distributed 3D points. Training takes 300k iterations
to converge, resulting in ∼10 h if a single batch of rays is
used at each training iteration, or ∼20 h if a secondary term
for solar correction or depth supervision is added to the loss
(trained on a GPU with 16 GB RAM). We used bundle ad-
justed RPCs (Section 3.4) unless otherwise noted.

4.1. Ablation study

We evaluated the Sat-NeRF model starting from a sim-
ple NeRF and gradually adding new components. To this
end, we propose three categories of experiments that are
discussed below. Table 2 shows the quantitative results.

Category 1. Rows 0-3 are an ablation study dedicated to
the irradiance model and the solar correction term described
in Section 3.1. We verify that the S-NeRF irradiance model
outperforms a basic NeRF and is strengthened by the so-
lar correction term. Comparing our results with the ones
reported in the original S-NeRF work [14] reveals the im-
pact of the proposed RPC-based point sampling and bundle
adjustment detailed in Section 3, to which we attribute the
difference between the metrics of row 0 and row 3.

Category 2. Rows 4-5 assess our Sat-NeRF model,
which incorporates the uncertainty prediction of β and
employs (8) as main term of the loss function. These
rows show that the uncertainty modeling improves both the
learned geometry and the novel view synthesis, as illus-
trated in Figure 4. Compared to the best S-NeRF results
(row 3), Sat-NeRF (row 4) provides higher PSNR/SSIM
and similar or even smaller altitude MAE without requiring
a solar correction term. This insight could be exploited in
settings that cannot afford additional training time to pro-
cess a secondary batch of rays for solar correction. If we
add the solar correction term (7) to the Sat-NeRF loss (8),
the altitude MAE decreases even more: row 5 outperforms
all the previous configurations across all AOIs.

Category 3. Rows 6-8 demonstrate the benefits of us-
ing a prior bundle adjustment to refine the RPC models of
the satellite images (Section 3.4). The comparison of rows
6 and 5 reveals that the use of unrefined RPCs induces a
performance drop: both PSNR/SSIM and altitude MAE are
worse. Lastly, rows 7-8 add the depth supervision term (12)
to the Sat-NeRF loss (8) with and without solar correction,
to leverage the sparse point cloud provided by the bundle
adjustment. This strategy proves to be beneficial to further
improve the altitude MAE in some areas (214 and 260). In
other areas (004 and 068), the sparse point cloud may con-
tain outliers, especially in multi-date collections, leading to
slightly worse MAE compared to a plain Sat-NeRF loss.
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Uncertainty

Figure 4. The uncertainty coefficient β learned by Sat-NeRF helps
to improve the geometry learning with respect to S-NeRF [14]. In
addition to shadows and textures, the shading scalar s of the irra-
diance model (6) usually attempts to account for transient objects
(e.g. cars, marked in green). Sat-NeRF uses β to minimize the con-
tribution of transient objects to the loss function (8), thus allowing
the geometry and s to learn to ignore their color. In practice, we
notice that s still retains some transient objects, but the learned
geometry is much better, as shown in the corresponding DSM.

4.2. Comparison to traditional stereo pipelines

Sat-NeRF learns high quality 3D models, similar in ac-
curacy to those obtained with satellite stereo pipelines re-
lying on traditional algorithms for stereo matching [4, 12].
In this work, we compare the DSMs produced by Sat-NeRF
with a multi-view stereo DSM of the same area generated
with S2P [12, 15], the satellite stereo pipeline that won the
2016 IARPA Multi-View Stereo 3D Mapping Challenge [9].

We follow the methodology described in [15] to produce
the S2P DSMs. For each AOI, we manually select 10 stereo
pairs for disparity estimation. The selection criterion prior-
itizes pairs with an angle between views of 5 to 45 degrees,
with a maximum incidence angle of 40 degrees for each
view. Within this set, we take the 10 pairs with closer ac-
quisition dates and run S2P. The RPCs used by S2P were
the same used to train Sat-NeRF, i.e. all RPCs are bun-
dle adjusted using [31]. The 10 pairwise models are fused
into a single DSM by taking the median altitude at each
cell. To maximize the quality of the S2P DSMs we used the
panchromatic product of the WorldView-3 images, instead
of the RGB crops employed to train Sat-NeRF. Considering
that the RGB images have a compressed dynamic (integer
values in [0, 255]), i.e with less texture and more saturated
areas, the Sat-NeRF DSMs are very encouraging compared
to the state of the art with manual pair selection.

As shown in Figure 5 and 6, structures are more de-
tailed in Sat-NeRF DSMs, but S2P provides more regular
surfaces. Numerically, the global altitude MAE obtained
with Sat-NeRF can be slightly better compared to the S2P
DSMs (Table 2, last row), which are affected by single-point
outliers. Future work points to hybrid methods or the aggre-
gation of contour-preserving regularization techniques.
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PSNR ↑ SSIM ↑ Altitude MAE [m] ↓
Area index 004 068 214 260 004 068 214 260 004 068 214 260

0. S-NeRF + SC [14] — — — — 0.344 0.459 0.384 0.416 4.418 3.644 4.829 7.173
1. NeRF 17.93 10.26 15.26 14.95 0.559 0.536 0.736 0.443 3.327 2.591 2.691 3.257
2. S-NeRF 25.87 24.20 24.51 21.52 0.864 0.900 0.939 0.829 1.830 1.496 3.687 3.245
3. S-NeRF + SC 26.14 24.07 24.93 21.24 0.871 0.891 0.943 0.825 1.472 1.374 2.406 2.299
4. Sat-NeRF 26.16 24.80 25.54 21.88 0.876 0.903 0.951 0.840 1.416 1.275 2.125 2.428
5. Sat-NeRF + SC 26.67 25.07 25.50 21.78 0.884 0.908 0.950 0.842 1.288 1.249 2.009 1.864
6. Sat-NeRF + SC (no BA) 21.55 22.87 24.53 20.96 0.571 0.874 0.942 0.816 1.577 1.392 2.176 1.875
7. Sat-NeRF + DS 26.43 25.27 25.69 21.94 0.879 0.913 0.952 0.842 1.420 1.298 1.714 1.624
8. Sat-NeRF + DS + SC 26.62 25.00 25.66 21.66 0.881 0.909 0.952 0.839 1.366 1.277 1.676 1.638

S2P (10 pairs) [15] — — — — — — — — 1.370 1.174 1.811 1.640

Table 2. Numerical results using the test images (unseen in training). Rows 1-8 use the RPC-based sampling introduced in Section 3.3.
λSC = 0.05/3 in row 3, otherwise λSC = 0.1/3 and λDS = 1000/3 where solar correction (SC) and depth supervision (DS) are used. The best
altitude MAE values are given gold , silver and bronze medals. Sat-NeRF + SC and/or DS are the most awarded NeRF variants.
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Figure 5. Left to right: ground truth lidar DSM, Sat-NeRF DSM
and S2P DSM [12]. The Sat-NeRF DSM corresponds to the model
with lowest altitude MAE, in bold in Table 2. Compared to S2P,
structures are sharper and more detailed in Sat-NeRF DSMs (green
arrows), which are also free of single-point outliers. However,
Sat-NeRF produces more local irregularities: roofs and roads are
less flat (red arrows). Certain roofs exhibit holes, that can be ex-
plained by their constant changes across the training sequence.
The uncertainty coefficient β can only absorb occasional inconsis-
tencies, which does not include roofs under construction (arrows
1-2) or roofs that are unusually free of parked cars (arrows 3-4).
For clarity, we provide an RGB view of the area from a near-nadir
perspective. Water bodies are masked in the DSMs.

5. Conclusion

We introduced Sat-NeRF, a NeRF variant adapted for
multi-date collections of multi-view satellite images. The

Lidar Sat-NeRF S2P

Figure 6. 3D visualization of the lidar, Sat-NeRF and S2P DSMs
shown in Figure 5 (068). Compared to S2P, Sat-NeRF provides
finer details and sharper edges but exhibits local irregularities.

geometry and appearance of permanent structures are si-
multaneously learned using a main backbone, while shad-
ows and transient objects are learned by secondary heads.

The proposed method achieves state-of-the-art results
in novel view synthesis and 3D modeling from satellite
imagery. It also highlights the benefits of incorporating
well-known techniques for satellite image processing into a
NeRF framework. In particular, we show how to represent
the input cameras using the RPC models characteristic of
satellite images, instead of the pinhole cameras commonly
used in NeRF for close-range imagery. We also demonstrate
the advantages of applying a bundle adjustment step before
training time, to improve reconstruction quality and, option-
ally, to provide additional cues for depth supervision.
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