
Unsupervised Change Detection Based on Image Reconstruction Loss

Hyeoncheol Noh *

Hanbat National University
hyeoncheol.noh@edu.hanbat.ac.kr

Jingi Ju *

Hanbat National University
jingi.ju@edu.hanbat.ac.kr

Minseok Seo *

SI Analytics Inc
minseok.seo@si-analytics.ai

Jongchan Park
Lunit Inc

jcpark@lunit.io

Dong-Geol Choi †

Hanbat National University
dgchoi@hanbat.ac.kr

Abstract

To train a change detector, bi-temporal images taken at
different times in the same area are used. However, col-
lecting labeled bi-temporal images is expensive and time
consuming. To solve this problem, various unsupervised
change detection methods have been proposed, but they
still require unlabeled bi-temporal images. In this pa-
per, we propose an unsupervised change detection method
based on image reconstruction loss, which uses only a
single-temporal unlabeled image. The image reconstruc-
tion model was trained to reconstruct the original source
image by receiving the source image and photometrically
transformed source image as a pair. During inference, the
model receives bi-temporal images as input and aims to re-
construct one of the inputs. The changed region between
bi-temporal images shows high reconstruction loss. Our
change detector demonstrated significant performance on
various change detection benchmark datasets even though
only a single-temporal source image was used. The code
and trained models are available in https://github.
com/cjf8899/CDRL

1. Introduction
In earth vision, change detection is a task to detect se-

mantic changes in two high spatial resolution (HSR) im-
ages of the same area at different times (i.e., bi-temporal
images). Change detection is a very important task in the
field of earth vision and is used for urban expansion, ur-
ban planning, environmental monitoring, and disaster as-
sessment [15, 32].

However, manual comparison and change detection be-
tween two HSR images is very labor-intensive and expen-
sive. To solve this problem, deep learning-based change
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Figure 1. Qualitative comparison of (a) unchanged, (b) changed,
and (c) pseudo-unchanged bi-temporal pair images. The pseudo-
unchanged pair was created by photometric transform.

detection methods [5, 11] have recently been proposed, and
their results are promising. Due to the data-driven nature
of deep learning methods, a large-scale training dataset of
bi-temporal images and corresponding change labels is es-
sential for supervised approaches [5, 11]. The challenge
lies in the expense of dataset creation; collecting the cor-
rectly registered bi-temporal HSR images is expensive, and
annotating the changes between them is more costly than
for general semantic segmentation [28] or object detection
datasets [31]. Another challenge is dataset imbalance. A
change detection dataset requires two images taken at dif-
ferent times in the same area, and in real-world scenarios,
changes are rare, so it is more difficult to collect a change
detection dataset in which changes exist (i.e., class bal-
anced).

To solve this data collection problem, various unsuper-
vised change detection (UCD) methods [10,14,21,25] have
been proposed. UCD approaches effectively solve the prob-
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lem of expensive annotations in change detection, but they
still require correctly registered bi-temporal HSR images or
their performance is low compared to supervised learning
methods.

In the existing UCD setting, because it does not explic-
itly train change and unchange, the prediction result is noisy
both when change occurs and when it does not. To solve this
problem, most UCD methods use post-processing. How-
ever, they do not disclose the post-processing method or
they overfit for specific situations e.g., pixels with small
area are removed).

Inspired by the study of unsupervised anomaly detec-
tion [13,20], we rethink the UCD setup. In both change de-
tection and anomaly detection, change/anomaly situations
are rare in the real world. Unsupervised anomaly detec-
tion methods [13, 20] train the image reconstruction model
with only normal data, and the model is fitted to a normal
distribution. During inference, normal inputs will be well
reconstructed, as they fall within the normal distribution;
meanwhile, anomaly inputs will have high reconstruction
error, as they fall outside the normal distribution. Can UCD
use reconstruction errors like unsupervised anomaly detec-
tion? Because unchanged pairs can be generated syntheti-
cally, we can train an image reconstruction model that trains
normal distributions. For example, if the change detector is
trained on the unchanged area by pairing Xt1 with itself, it
can be trained on the unchanged area without Xt2 images
or changed labels.

In this paper, we propose unsupervised change detec-
tion based on image reconstruction loss (CDRL) using only
unlabeled single-temporal single-source images. The pro-
posed method explicitly solves the challenges of data col-
lection in change detection, as it does not require expen-
sive bi-temporal HSR images, expensive annotations, or
balanced datasets with sufficient changes. CDRL is trained
to reconstruct the original source image by receiving the
source image and photometrically transformed source im-
age as a pair. The purpose of photometric transformations
is to create pseudo-unchanged pairs that mimic unchanged
pairs, as show in Fig. 1-(a) and Fig. 1-(c). In the unchanged
pairs, there are no structural changes by definition, only
style changes or photometric changes. The pseudo-changed
pairs can be used to train CDRL instead of changed pairs.
Similar to unsupervised anomaly detection, CDRL receives
only (pseudo-)unchanged pair images during training and is
trained to reconstruct the original source image, so if un-
trained cases (changed pair Fig. 1-(b)) are input during in-
ference, the reconstruction loss is high for that area.

However, unlike existing unsupervised anomaly detec-
tion approaches, change detection usually receives two im-
ages, so there are two major problems. First, the image re-
construction models should be able to reconstruct the orig-
inal source image by receiving two paired images. Second,

the reconstruction models should focus more on the struc-
ture information of the photometrically transformed source
image. To solve this problem, we propose an image re-
construction model using encoder–decoder-based genera-
tive adversarial networks. CDRL consists of a shared en-
coder to extract features from each image and a decoder to
fuse the features from the two images for image reconstruc-
tion. To focus on the structure information of the photo-
metrically transformed source image, spatial attention was
performed only on the photometrically transformed source
image.

To validate the efficacy of our proposed CDRL, we
evaluated it on LEVIR-CD [6] and WHU-CD [22]. Al-
though CDRL does not use bi-temporal pairs or pre-trained
weights, it outperforms the existing UCD method using
bi-temporal pairs and the UCD method using pre-trained
weights by a large margin.

Our major contributions can be summarized as follows:

• We propose CDRL, a method to train a change detector
on a single-temporal single-source image in UCD. To
the best of our knowledge, this is the first time a single-
temporal single-source image has been used in UCD.

• We propose an encoder–decoder-based generative ad-
versarial network that receives paired images as input.

• We evaluate CDRL on various change detection
datasets, and it outperforms existing UCD methods by
a large margin.

2. Related Work
The problem we are trying to solve involves the fol-

lowing issues: (1) obtaining a matched bi-temporal image
including a changed area is more difficult than obtaining
a general single-temporal image, and (2) pairwise anno-
tation is very expensive and time consuming. Therefore,
this section focuses on the problems encountered by exist-
ing change detection approaches and briefly introduces the
field of anomaly detection, which inspired our proposed ap-
proach.

2.1. Supervised Change Detection (SCD)

Supervised change detection (SCD) is largely divided
into a method that uses only single-temporal information
and an approach that performs modeling, e.g., temporal in-
formation modeling [33]. A change detector that uses only
single-temporal information, called post-classification com-
parison (PCC), trains a semantic segmentation model dur-
ing training [33, 34]. After that, the semantic segmentation
model predicts the change area through the xor operation
of the results obtained by predicting images from two dif-
ferent times during inference. PCC has the great advantage
of not requiring coregistrated pair images, but this method
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Figure 2. Overview of the overall CDRL framework. CDRL is trained to reconstruct Xt1 by receiving a pseudo-unchanged pair during
training, and when a changed bi-temporal pair that is not learned during training is input during inference, the reconstruction loss is large
in the region with large structure change.

only simply treats the change detection task as a seman-
tic segmentation task and ignores the temporal information
modeling, thus significantly decreasing the performance.

To solve this problem, change detection methods [5, 11]
have been proposed for temporal information modeling be-
tween pair images taken at different times in the same area.
All of these methods have achieved high performance, but
the generalization ability of these models is not guaranteed
because of the small size of the change detection benchmark
datasets [1, 4, 7–9, 12, 18, 19, 27]. The reason the change
detection benchmark datasets are small is that collecting bi-
temporal pair images is much more difficult than collecting
single-temporal images, and pairwise annotation is very ex-
pensive and time-consuming.

Because our proposed CDRL performs UCD using only
unlabeled single-temporal single-source images, it can alle-
viate the problem of collecting bi-temporal pair images and
the cost and time consumption of labeling.

2.2. Unsupervised Change Detection (UCD)

UCD is usually divided into a method [3,16,26,30] based
on the concept of change vector analysis (CVA) [23] and
a method [25] based on a generative adversarial network
(GAN) using an unlabeled bi-temporal pair image. How-
ever, because they use pre-trained weights without direct
training on the dataset, the performance is low, or large-
scale unlabeled bi-temporal pair images are required to train
the GAN model.

Our proposed CDRL can be explicitly trained on an un-
changed area and can be trained without bi-temporal pair
images.

2.3. Unsupervised Anomaly Detection

We were inspired by a reconstruction-based anomaly de-
tection method [2, 24]. Reconstruction-based methods typ-
ically utilize generative models like autoencoders or GANs
to encode and reconstruct the normal data. These methods
hold the insights that anomalies cannot be reconstructed be-
cause they do not exist in the training samples. These unsu-
pervised anomaly detection methods achieved an area under
receiver operating characteristic curve (AUC) performance
of over 95 o-n various benchmark datasets [2], even without
explicitly training the anomaly data.

We also applied the fact that only unchanged pair
(normal) images are trained during training like this
reconstruction-based anomaly detection, and when a
changed pair (anomaly) is input during inference, the re-
construction loss is high.

3. Method
This section describes the components of the CDRL in

detail. First, the training pipeline will be briefly described
in Sec. 3.1, and then a method of performing photometric
transform based on a single-temporal single-source image
is described in Sec. 3.2. Sec. 3.3 describes the reconstruc-
tor that receives pair images and is trained as an objective to
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reconstruct the original source image. Finally, Sec. 3.4 de-
scribes the entire objective function of the CDRL, including
the GAN model.

3.1. Overall Pipeline

CDRL performs photometric transform to create a pair
image as a single-temporal single-source image. Photomet-
ric augmentation of simple rules, such as brightness control
and channel shuffling, does not sufficiently express the style
change of the corresponding bi-temporal pair image in the
real-world unchanged area. Therefore, to express the style
change of the corresponding bi-temporal pair image of an
unchanged area in the real-world, we perform photometric
transform by style transfer using CycleGAN [35].

Next, the generated pair image is input to the U-Net-
based original source image reconstructor during training,
as shown in Fig. 2. For our purpose, to train the original
source image reconstructor with high reconstruction loss for
the region where the change has occurred, we must focus on
the channel information in the original source image and the
spatial information in the photometric transformed image.
To achieve this, we applied spatial attention to the photo-
metric transform image and channel attention to the orig-
inal source image using the convolutional block attention
module (CBAM) [29].

Despite these efforts, the original source image recon-
structor has a problem of overfitting the original source im-
age too easily during training. Therefore, to prevent over-
fitting, we made a discriminator and conducted adversarial
training with the image reconstructor.

3.2. Photometric Transformation

The purpose of photometric transform for training
CDRL is to create a natural style change while maintain-
ing the structure, like in an actual unchanged bi-temporal
pair image, as a single-temporal single-source image. To
achieve this, we adopted CycleGAN [35], which receives
unpaired images and changes the style while maintaining
the structure. In the existing CycleGan, when there are two
domains {x1, x2, ..., xn} ∈ X and {y1, y2, ..., yn} ∈ Y , it
receives two samples xi and yj and is trained to optimize
the parameters of two mapping functions G : X → Y ,
F : Y → X. However, since we need to perform unpaired
style transfer in one domain, we train a function that maps
two randomly selected samples xt1

i ∈ Xt1 and xt2
i ∈ Xt2

in one domain X . Therefore, when there is discriminator
Dt2 for mapping function G : Xt1 → Xt2 and discrimi-
nator Dt1 for F : Xt2 → Xt1, our objective function is as
follows:

L(G,F,Dt1, Dt2) = LGAN (G,Dt2, X
t1, Xt2)

+LGAN (F,Dt1, X
t2, Xt1) + λLcyc(G,F ),

(1)

where λ controls the relative importance of the two objec-
tives.

3.3. Pair Image-based Source Image Reconstructor

The pair image-based Source Image reconstructor R(.)
is trained to reconstruct Xt1 by receiving the pseudo un-
changed pair image Xt1, Xt2 previously created in Sec. 3.2
as an input. To achieve this, the pair image-based source im-
age reconstructor consists of a shared encoder and a decoder
that concatenates and fuses each feature map of the pair im-
age output from the encoder. R is trained to optimize the
objective function as follows:

Lmae(R) = MAE(R(Xt1, Xt2), Xt1), (2)

where MAE is the mean absolute error between the recon-
structed image and the source image.

A source image reconstructor trained only on pseudo un-
changed pair images during training should have a high re-
construction loss when a changed pair image is received
during inference. However, if the source image reconstruc-
tor relying only on the structure information of the source
image regardless of the photometrically transformed image,
the reconstruction loss will be low, even when a changed
pair image is input. To alleviate this problem, we modified
the CBAM structure to perform spatial attention on the pho-
tometric transformed image and channel attention on the
original source image. Through this process, the source im-
age reconstructor was trained by focusing on the structure
information of the photometric transformed image and on
the style information in the source image. Figure 3 shows
our attention structure modified from the CBAM structure.
As shown in the figure, channel attention is performed on
the Xt1 image and spatial attention is performed on the Xt2

image, which is then added and concatenated for training.

𝑋𝑡1

Max

Avg

MLP

+

Channel Attention

Spatial Attention +

𝑋𝑡2 𝑋𝑡2

𝑋𝑡1

Figure 3. Our proposed pseudo-pair CBAM structure. Channels
are applied to the Xt1 image, and spatial attention is applied to the
Xt2 image

3.4. GAN for detailed structure reconstruction

As in a previous study [17], if only the MLE loss
is used, the reconstruction image does not reconstruct the
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structure well and is blurry. If the reconstruction result is
blurry, the performance of the CDRL is degraded because
it is insensitive to structure changes. Therefore, we used a
GAN as in [17] to solve this problem. Therefore, given the
discriminator Dr, the objective function of the discrimina-
tor is

Lgan(R,Dr, X
t1, Xt2) = log(Dr(X

t1))

+log(1−Dr(R(Xt1, Xt2))),
(3)

where R aims to reconstruct images R(Xt1, Xt2) that look
similar to images from Xt1 , while Dr aims to distin-
guish between translated samples R(Xt1, Xt2) and orig-
inal source image Xt1

i . R aims to minimize this objec-
tive against an adversary Dr that tries to maximize it, i.e.,
minRmaxDrL(R,Dr, X

t1, Xt2).
The final objective function of the source image recon-

structor that combines the GAN loss and the MAE loss is

Ltotal = Lgan + λLmae (4)

where λ controls the relative importance of the two objec-
tives. We use λ as 100 in all experiments.

4. Experiments

In this section, CDRL is evaluated on two HSR re-
mote sensing change detection datasets. Section Sec. 4.1
describes the experimental setting in detail, and section
Sec. 4.2 describes the loss analysis results in detail. Also,
in Sec. 4.3, pixel-level change detection, which is the same
as existing change detection experimental settings, is eval-
uated, and in Sec. 4.4, we describe the patch level change
detection results suitable for our proposed change detector
application situation. Finally, in Sec. 4.5, qualitative re-
sults, and in Sec. 4.6, describes the results of an ablation
study.

4.1. Experimental Setting

Datasets Two HSR remote sensing change detection
datasets were used to train and evaluate the performance
of object change detection.

• LEVIR-CD [7]. The LEVIR-CD dataset contains 637
bi-temporal pairs of HSR images and 31,333 change
labels on building instances. Each image has a spatial
size of 1,024 × 1,024 pixels with a spatial resolution
of 0.5 m. The change labels provide information about
the construction of new buildings and the disappear-
ance of existing buildings. This dataset provides an of-
ficial split of 445 training, 128 validation, and 64 test
pairs. The evaluation results are computed in the test
pair set.

• WHU building change detection [18]. The WHU
dataset has one pair of aerial images of size 15,354 ×
32,507 pixels obtained in 2012 and 2016 at the same
area. It provides 12,796 and 16,077 building instances
labels, respectively, and changed labels across the pair.
We will use the change labels later to evaluate change
detectors. Training, validation, and test sets are given
specific areas containing 4,736, 1,036, and 2,416 tiles
respectively.

Implementation details CycleGAN was used to gener-
ate pseudo unchanged pairs for training of CDRL. The two
datasets Xt1 and Xt2 of CycleGAN are randomly divided
into datasets X . All implementation details strictly fol-
low the official CycleGAN code1. For the data augmenta-
tion, RandomRotate90, HorizontalFlip, VerticalFlip, Trans-
pose, RandomBrightnessContrast, and Sharpen of albumen-
tations 2 were used, and the probability p of almost all ap-
plications is 0.3.

We trained the source image reconstructor using the
Adam optimizer with beta values of (0.5, 0.999). The learn-
ing rate was set to 0.0002 and batch size was 1 for model
training. Evaluation was conducted on both the LEVIR-CD
and WHU validation (or test) sets. Our all models were im-
plemented on PyTorch and trained using a single NVIDIA
Quadro RTX 8000 GPU.

Evaluation Metrics

• Pixel Level Change Detection. We use the com-
mon metrics in pixel-by-pixel binary classification
tasks and object change detection tasks: intersection
over union (IoU), recall, and precision score. This
is because our goal is also to classify whether it has
changed or not at the pixel level.

• Patch Level Change Detection. We used classifica-
tion AUC for patch level change detection. Note that
if all the output mask values of the change detector are
0, it is set to unchanged; if at least one is 1, it is set to
changed.

4.2. Loss Analysis Results

We planned a loss analysis experiment to check whether
the source image reconstructor has a high reconstruction
loss in the part where the structure is changed a lot.

We divided the dataset into unchanged, small change (the
changed part is less than 30% of the total image), and large
change.

When the dataset was split based on these criteria, the
LEVIR-CD dataset was split into 8 unchanged pairs, 35

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2https://github.com/albumentations-team/albumentations
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Figure 4. Qualitative analysis of CDRL. The top 3 lines are the qualitative results of CDRL in the region where the change has occurred,
and the bottom line is the qualitative result of CDRL in the unchanged pair. It can be seen that CDRL localizes the area where the change
occurred.

Method Dataset Reconstruction Loss
Un Small Large

CDRL (Aug) LEVIR-CD 24.79 36.81 44.91
CDRL (Pseudo Unchange Pair) LEVIR-CD 14.45 34.74 43.49

CDRL (Aug+Pseudo Unchange Pair) LEVIR-CD 10.15 31.41 38.53
CDRL (Aug) WHU 35.95 41.11 50.89

CDRL (Pseudo Unchange Pair) WHU 22.89 39.37 49.46
CDRL (Aug+Pseudo Unchange Pair) WHU 17.20 38.03 47.65

Table 1. Loss analysis results of CDRL in LEVIR-CD dataset and
WHU dataset.

small change pairs, and 21 large change pairs. The WHU
dataset was split into 377 unchange pairs, 145 small change
pairs, and 138 large change pairs.

Table 1 lists the results of loss analysis of CDRL on
the LEVIR-CD and WHU test datasets. As shown in the
table, the loss for the unchanged pairs was the lowest on
both datasets, and the loss of the large change pair was the
highest. These experimental results indicate that the source
image reconstructor is not good at reconstructing the source
image when a pair with a large change in structure is input
during the test because only pseudo unchanged pairs were
input during training, as we intended. Also, the fact that
the loss was low for the unchanged pairs indicates that our
pseudo unchanged pair was generated at a level similar to
that of the actual unchanged pair.

However, if the source image reconstructor worked per-
fectly as we intended, the reconstruction loss would be close
to 0 when an unchanged pair is input. As shown in Table 1,
the unchanged pair showed the lowest loss, but the value

was not small. The reason for this is that the LEVIR-CD
and WHU datasets are only labeled with changes in build-
ings, and in fact, the unchanged pair includes many struc-
tural changes such as land becoming lakes, roads that did
not exist, and cars. A more detailed analysis result is de-
scribed with an example in Sec. 4.5.

4.3. Pixel Level Change Detection Results

We compared and analyzed the performance of CDRL
with other UCD and SCD methods. To compare our CDRL
with existing UCD methods, we reproduced all [10,21,21]
methods and tested them in LEVIR-CD and WHU. As
shown in Table 2, the existing UCD methods have high
recall values and low precision because prediction results
are very noisy and vulnerable to small structural changes.
These experimental results indicate that our CDRL is robust
to both small structural changes and style changes.

However, when compared with BIT, which is a state-
of-the-art supervised change detection method, the perfor-
mance of CDRL was low due to a large gap. The reason for
this is twofold. First, unlike supervised change detection,
CDRL does not learn the pixel-level change area explicitly,
so it can localize only the approximate location. Therefore,
compared to BIT, our CDRL has similar recall value but
clearly lower precision. Second, supervised change detec-
tion can be explicitly trained on information about changed
objects of interest, so it can explicitly learn that a car is
created or a lake is changed or unchanged, but our CDRL
predicts that they are all changed.
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Figure 5. Qualitative analysis result of unchanged bi-temporal images for which CDRL showed high reconstruction loss. CDRL predicted
that when roads, lakes, and cars were created, it was all change.

Method Dataset Supervision Precision Recall IoU

NMCD [21] LEVIR-CD Unsup 0.13 0.71 0.07
UCNN [10] LEVIR-CD Unsup 0.16 0.79 0.09

UCDGAN [21] LEVIR-CD Unsup 0.20 0.66 0.15
CDRL LEVIR-CD Unsup 0.63 0.92 0.59
BIT [5] LEVIR-CD Sup 0.89 0.89 0.80

NMCD [21] WHU Unsup 0.07 0.96 0.03
UCNN [10] WHU Unsup 0.07 0.95 0.03

UCDGAN [21] WHU Unsup 0.09 0.93 0.08
CDRL WHU Unsup 0.52 0.93 0.50
BIT [5] WHU Sup 0.86 0.81 0.72

Table 2. Quantitative comparison results of CDRL and UCD, SCD
methods. Note that, since there are no post-processing implemen-
tation details of the existing UCD methods, it was not applied.

4.4. Patch Level Change Detection Results

Many real-world applications that use change detectors
do not rely solely on change detectors. In these situations,
the role of change detectors is to reduce human labor inten-
sity by providing information on the patches or areas where
the change occurred among hundreds of patches. Consid-
ering this application situation, we aimed to solve change
detection with patch level classification.

Table 3 shows the patch level change detection results
for our CDRL on the LEVIR-CD and WHU datasets. As
shown in the table, a high AUC was achieved on both
datasets despite using only single-temporal single-source

Dataset AUC

LEVIR-CD 83.52
WHU 87.18

Table 3. Patch level binary classification results in the LEVIR-CD
dataset and the WHU dataset.

images Note that CVA-based methods predict that there is a
change in all patches because the output result is noisy.

4.5. Qualitative Results

CDRL was qualitatively analyzed on the LEVIR-CD
dataset. As shown in Fig. 4, the CDRL detects the changed
part well because the reconstruction loss is high in the part
where the structure change is large.

Also, for the unchanged pair, even if the style change is
large, because there is no structure change, it can be seen
that the reconstruction loss is low and no change is pre-
dicted. Therefore, it is thought that CDRL will be useful in
applications where it is not important to localize the exact
location but to know the approximate location or whether or
not changes have occurred in units of patches.

Fig. 5 shows the qualitative analysis results for samples
with poor CDRL performance. As shown in the figure, be-
cause CDRL cannot designate a specific change object of
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interest, it predicts that a change has occurred when a car
is created, the ground becomes a lake, or a lake becomes
ground. Therefore, the low IoU in all our experiments is
dominant for the above reasons.

4.6. Ablation Study

To compare and analyze the effects of the attention mod-
ule and adversarial training constituting the CDRL, we con-
ducted an ablation study on the LEVIR-CD dataset.

Attention Modules Table 4 lists the patch level classi-
fication results of CDRL in the LEVIR-CD dataset accord-
ing to the existence of channel attention and spatial atten-
tion. As shown in the table, performance was higher with
CBAM than without CBAM. Also, in our proposed CDRL,
the pseudo-pair CBAM, which provides channels attention
to the Xt1 image and spatial attention to the Xt2 image, has
the highest performance.

CDRL AUC

w/o Attention 77.38
w/ CBAM 80.90

w/ Pseudo-pair CBAM 83.52

Table 4. Patch level binary cleavage results of CDRL with or with-
out attention module.

Adversarial Training We designed an experiment to
check whether adversarial training solves the blurring prob-
lem of reconstruction images like [17] in CDRL.

w/o 𝐷𝑟 w/ 𝐷𝑟

Figure 6. Qualitative comparison of reconstructed images with
and without discriminator.

Fig. 6 is a sample of the reconstructed image with and
without discriminator. As shown in the figure, the recon-
structed image is blurred when there is no discriminator.
Meanwhile, if there is a discriminator, it can be seen that

CDRL AUC

w/o discriminator 69.09
w/ discriminator 83.52

Table 5. Patch level binary cleavage results of CDRL with or with-
out discriminator.

the boundary is reconstructed more clearly. These results
indicate that adversarial training is also effective in CDRL

Table 5 lists the results of measuring the AUC of CDRL
with and without discriminator on the LEVIR-CD dataset.
As shown in the table, higher AUC was achieved with the
discriminator. These experimental results show that the sen-
sitivity of the CDRL to the structure of the pair image helps
the performance, as intended.

5. Discussion and Future work

In this study, we performed change detection with source
image reconstruction loss using only unlabeled single-
temporal single-source images. However, the semantic
change we are interested in can exist in a variety of ways,
such as buildings, seasons, cars, and trees. The prerequisite
for CDRL is to make the reconstruction loss appear high in
the part where the structure change occurs regardless of the
style change. However, the semantic change that we are in-
terested in can be diverse, such as natural scenery, artificial
objects, weather, and environmental changes. Therefore, in
future work, based on the fact that CDRL has a significant
performance improvement in UCD, we plan to study semi-
supervised change detection to efficiently detect changes of
interest (change of specific objects).

6. Conclusion

In this paper, to solve the problem that it is difficult
to construct a bi-temporal pair dataset containing seman-
tic changes, we proposed a CDRL, which performs un-
supervised change detection using only a single-temporal
single-source image. To solve the unsupervised change
detection problem as a reconstruction-based unsupervised
anomaly detection problem, CDRL defined normal data as
unchanged pairs and anomaly data as changed pairs. Af-
ter that, a change detector (reconstructor) that receives pair
images was proposed. We verified the CDRL on the WHU
and LEVIR-CD datasets and achieved significant results de-
spite unsupervised change detection using single-temporal
single-source images. We hope that CDRL will be widely
used in real-world scenarios where it is difficult to obtain
labeled bi-temporal pair images.
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