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Abstract

Automatic terrain recognition in Mars rover images is
an important problem not just for navigation, but for sci-
entists interested in studying rock types, and by extension,
conditions of the ancient Martian paleoclimate and habit-
ability. Existing approaches to label Martian terrain ei-
ther involve the use of non-expert annotators producing tax-
onomies of limited granularity (e.g. soil, sand, bedrock,
float rock, etc.), or rely on generic class discovery ap-
proaches that tend to produce perceptual classes such as
rover parts and landscape, which are irrelevant to geologic
analysis. Expert-labeled datasets containing granular geo-
logical/geomorphological terrain categories are rare or in-
accessible to public, and sometimes require the extraction
of relevant categorical information from complex annota-
tions. In order to facilitate the creation of a dataset with
detailed terrain categories, we present a self-supervised
method that can cluster sedimentary textures in images cap-
tured from the Mast camera onboard the Curiosity rover
(Mars Science Laboratory). We then present a qualitative
analysis of these clusters and describe their geologic sig-
nificance via the creation of a set of granular terrain cate-
gories. The precision and geologic validation of these auto-
matically discovered clusters suggest that our methods are
promising for the rapid classification of important geologic
features and will therefore facilitate our long-term goal of
producing a large, granular, and publicly available dataset
for Mars terrain recognition. Code and datasets are avail-
able at https://github.com/TejasPanambur/mastcam.

1. Introduction

Automatic terrain recognition has aided the navigational
operations of Mars rovers by solving challenges such as

*Authors contributed equally. Correspondence to: {tpanambur,
dchakraborty}@umass.edu

traversability analysis [45,49], slip prediction [12, 16], and
minimizing driving energy [22]. A primary scientific ob-
jective of both the Mars Science Laboratory (MSL or Cu-
riosity rover) [18] and Mars 2020 (Perseverance rover) [58]
is to answer questions about water activity and the poten-
tial for past life on Mars. Toward this objective, a nec-
essary step is to discriminate and/or correlate the various
rock types and rock textures encountered along the rover
traverse. The missions also seek to understand the geo-
logical history and evolution of the planet, and to prepare
for future robotic and human exploration. These objectives
are pursued through a plethora of geological and geochem-
ical experiments onboard the rovers [9, 10, 35, 37]. Cru-
cially important are investigations related to imaging de-
vices as they provide essential geologic context and high-
light the presence of morphological or sedimentological
features that may be indicative of water alteration (e.g. the
presence of fractures in-filled by veins or nodular structures
that are directly responsible for chemical and mineralogi-
cal changes in the rock due to the interaction with water).
The prospect of automating the difficult and somewhat sub-
jective task of identifying and cataloging geomorphologi-
cal and textural classes in Martian terrain would greatly im-
prove the scientific return of Martian missions by allowing
scientists to focus on more fundamental analyses, and spec-
ulations on formational mechanics, rather than classifica-
tion. The need to provide scientists with relevant and gran-
ular terrain classes clearly arises. Deep learning approaches
have made great strides towards solving terrain classifica-
tion tasks [4,10,41,44,45,51,52,56], but the datasets and ap-
proaches available for rock classification are still very lim-
ited.

In this paper, we develop an approach that can automat-
ically assemble morphological and textural categories from
the large amounts of unlabeled images available. An as-
sessment from planetary scientists is used to validate our
discoveries and their ability to represent clear scientific phe-
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Figure 1. Taxonomy of geological classes (as found in our dataset). Note that a given class can be coded into any of the following categories
using a combination of alphabets and numbers as shown in bold. For instance, weakly laminated red mudstone, which is non-nodular, and
has calcium sulfate-filled hairline planar fractures can be represented as A-G2-T1-L2-N1-F2f.

nomena relevant to current scientific research.

Mars surface images originate from two primary
sources: Mars rover missions e.g. MSL, Mars2020, etc.,
and Mars orbiter missions e.g. Mars Global Surveyor
(MGS), Mars Reconnaissance Orbiter (MRO), etc. While
terrain can be identified both from ground and orbiter im-
ages, orbiter images are simply not acquired at scales fine
enough to discern finer textural details that are necessary
to uniquely identify categories related to rock types or the
presence of diagnostic small-scale alterations. Therefore
datasets constructed using these images [ 14,45, 57] are not
useful for the task at hand. Ground images captured from a
variety of cameras mounted on rovers (e.g. mastcam, nav-
cam, and chemcam) on the other hand, are acquired at
the necessary scale to facilitate detailed geomorphological
analysis. However, efforts to label these images [49,51,52]
usually produce coarse labels such as “sand”, “soil”, and
“bedrock™ as a result of non-expert annotations or percep-
tual classes such as “rover parts” and “landscape” as a re-
sult of generic class discovery approaches [53] preclud-
ing geologic analysis. Expert-labeled datasets on the other
hand, exhibit more detailed terrain categories [48] but oc-
casionally suffer from limited usability due to their com-
plex annotation-based representations [44]. Such labeled
datasets are, furthermore, inaccessible to the public.

This work is born from the desire to create a large,
publicly accessible database of scientifically relevant textu-
ral/morphological terrain categories from readily available
rover images, with a method that addresses the discrepan-
cies described above. We propose a self-supervised deep
clustering algorithm that can automatically group robust ter-
rain categories by utilizing a network designed for texture
recognition. A geology expert then provides a qualitative
assessment of the discovered clusters and the scientific sig-
nificance of such clusters. The expert also assigns a set of
granular labels to images selected randomly from the dis-
covered clusters. These labels have broad categories that
can be further divided into subcategories based on differ-
ent attributes (similar to LabelMars [48]). Here, top-level
categories such as bedrock, floatrock, unconsolidated ma-
terial, and non-rocky materials, have been further classified
based on types of rock formations and other attributes such
as grain size, tonality (hue), apparent lamination strength,
nodule and fracture pervasiveness, as applicable (Figure 1).
We don’t claim that our work is a gold standard for terrain
classification, but believe it to be a step in the right direc-
tion. Finally, we use the expert-derived labels to evaluate
the quality of our clustering algorithm both by showing that
it can produce homogeneous and well separated clusters, as
well as evaluating its precision on a test set.
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Our contributions in this paper are two-fold:

1. We develop a novel synthesis of deep texture encod-
ing techniques and self-supervised deep clustering al-
gorithms to support rapid and robust terrain categoriza-
tion.

2. We produce an exhaustive taxonomy for classifying
Martian terrain as seen in curiosity mastcam images,
designed by a planetary geologist and supported with
a review of how our approach could help geologic ex-
ploration.

2. Related work
2.1. Efforts to label Martian terrain

Several efforts have been have been proposed for Mars
terrain classification [14,44,45,48,49,51,52,55,57]. Ear-
lier works, such as [14, 45, 57] annotated orbiter images
from the MRO Context Camera (CTX) [33] or High Reso-
lution Imaging Science Experiment (HiRISE) [36] to facil-
itate rover navigation. Although some of these works have
defined important geomorphological categories, orbiter im-
ages with a resolution of around 25 cm/pixel are only par-
tially suited for detailed geological analysis. This motivated
the creation of labeled datasets using ground images cap-
tured from Mars rover cameras that have a much higher
resolution (150 or 450 pum/pixel in the MSL right and left
mastcam [!] for instance). It is the following works there-
fore, with which we compare and contrast in this paper.
Wagstaff et al. curate a set of around 9000 images in to-
tal using a combination of expert annotation and automatic
class discovery using the DEMUD [53] algorithm [51,52].
These labels include a variety of rover parts and artifacts,
and a small set of geological categories such as float rock,
layered rock, veins, sand, etc. Al4Mars [49] is currently the
largest labeled Mars terrain dataset, containing 326k im-
ages with semantic segmentation labels of categories such
as soil, bedrock, sand, and big rock. These labels, while
simple and useful for tasks such as navigation, are not gran-
ular enough for geological analyses. Inspired by the need
for a content-based search system that enables scientists to
interact with the rover using natural language descriptions,
Qiu et al. propose SCOTI [44]. They create a Mars image
caption dataset starting from 1250 expert captioned images,
training an image caption model, and progressively grow-
ing using predictions on unlabeled images with open/expert
review. The final dataset contains more than 12, 500 images
with natural language descriptions which include relevant
geomorphological features together with general statements
of limited relevance. A scientist seeking to carefully cata-
log the different textural/morphological categories in an im-
age would find it difficult to extract a large set of uniquely

identifiable class labels from the long descriptions. This an-
notated dataset is publicly unavailable. More similar to our
effort is the the LabelMars project [48] that annotated 5000
images with the help of undergraduate geology students us-
ing a labeling scheme based on hierarchical morphological
categories. Coarse categories such as “sedimentary”, “mag-
matic”, or “meteoric” are further divided into sub-categories
such as concretions/nodules and light/dark tonality, but this
dataset is also publicly unavailable. Our proposed approach
also discovers similar classes with high granularity that are
labeled by an expert (see Fig. 1), albeit in an self-supervised
fashion. This work pushes the labeling effort to the point
that the identified categories reproduce exhaustively the set
of criteria that are necessary for a complete characterization
of the terrain that is possible by an expert with the imaging
data available. Our dataset is described in detail in Sec. 4.

2.2, Terrain recognition

Terrain recognition is a popular area of research in com-
puter vision due to its vast applications in autonomous driv-
ing and terrain classification. It is usually cast as a tex-
ture recognition problem, and traditional approaches used
geometric features, particularly curvature, color features,
lighting, illumination direction, and photometric properties
[5,15,29,61], followed by feature pooling as seen in bag-of-
words models [ 1,28]. Recently, deep learning models with
end-to-end texture/terrain recognition have gained popular-
ity. However, naive CNN architectures are inadequate for
texture recognition as they aren’t invariant to spatial lay-
out, and recognizing textures typically requires preserving
some orderless information. Therefore, texture recognition
approaches usually have distinct architectures compared to
CNNs used for object recognition, to preserve fine textu-
ral details. Zhang et al. introduce a CNN architecture with
end-to-end dictionary learning and feature pooling for or-
derless texture recognition [65]. Further, Xue et al. hypoth-
esize that surfaces are not completely orderless, and pro-
pose the Deep Encoding Pooling Network (DEP) [60] that
incorporates both orderless texture details and local spatial
information, combined using bilinear pooling [30]. Sev-
eral state-of-the-art approaches have since been proposed
by integrating stronger geometric priors into deep networks
or by encoding features from different layers in the net-
work [8,23,59,63,64]. However, our method is based off of
Xue et al. [60] for its simplicity and adaptability to a self-
supervised objective such as the one we use in this paper.

Self-supervised and unsupervised deep embedding
learning is a relatively new and active area of research
[3,6,7,17,20,25,27,40,62]. A majority of the existing
methods work fairly well on object-centric [26, 32,46, 54]
or scene-centric [13, 19, 31] datasets. However, very lit-
tle research exists for unsupervised texture/terrain recogni-
tion [42, 43]. Panambur and Parente [43] use an alternat-
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ing clustering and classification approach similar to Deep-
Cluster [2] to cluster mars terrain images. The resulting
learned representations form homogeneous clusters of dif-
ferent kinds of terrain. In a followup work, Deep Cluster-
ing using Metric Learning (DCML) [42], the authors train a
triplet network by iteratively clustering the features and us-
ing the cluster labels to form triplets. The features generated
have high inter-class distance while preserving low intra-
class distance, making it ideal for retrieval tasks. However,
there is no expert evaluation of the quality of clustering,
unlike our work. Moreover, these approaches still suffer
from the same drawbacks of traditional CNN architectures
used for texture recognition. To rectify this problem, we in-
corporate the texture encoding module [60] into the CNN
architecture to get better terrain recognition performance,
while using the same metric learning approach as [42] in
order to leverage the large amounts of unlabeled Mars ter-
rain images. We hypothesize that the learned representation
can capture better the nuances between rocks that are geo-
logically significant, while grouping similar types of terrain
together.

3. Deep self-supervised texture recognition

We first present the network architecture that is used in
our approach in Sec. 3.1. This architecture was specif-
ically designed for texture classification, and modified to
support self-supervised training. We then describe our self-
supervised training objective in Sec. 3.2.

3.1. Deep encoding pooling network

We start from the CNN architecture described in [60].
Given an input image I, and the backbone feature extrac-
tion function Fy (in this case ResNet-18 [21]), we obtain
features Xy = Fy(I) . The outputs from the feature extrac-
tor feed two separate layers in the network. One of these
is a texture encoding layer [65] that produces an orderless
representation of the features and preserves fine textural de-
tails, the kind that can be seen in terrain images. Given a
feature map Xy and an encoding layer I, we obtain a tex-
ture embedding X; = F.(X ). The other layer is the usual
global average pooling (GAP) layer that preserves spatial
information, and the pooled embedding is defined as X,.
The outputs of these layers are combined using a bilinear
pooling layer [30] that helps in capturing the relationship
between the orderless texture information and spatial infor-
mation. The output embedding X, from the bilinear layer
combines texture features X; and spatial features X,. Fur-
ther, a fully connected layer and a linear classification layer
are normally used to train the network using a supervised
classification objective. We remove the final classification
layer from the network that is generally used to map the
embeddings to the fixed number of labeled categories in the
dataset. Since we train our network on unlabeled data, we

directly use the embeddings generated on the penultimate
layer (fc-7 features) given by Xe 5.

3.2. Deep clustering using metric learning

The DCML algorithm alternatively clusters the embed-
dings using standard K-means clustering algorithm and uses
the subsequent assignments as pseudo-labels to train a met-
ric learning objective [42]. We cluster the features from the
embedding layer X.,,;, and assign pseudolabels to these
clusters so that they can be used to generate triplets com-
prising an anchor, a positive, and a negative example. Posi-
tive examples are samples from the same cluster as the an-
chor, and negative examples belong to a different cluster.
These triplets are used to minimize a distance metric objec-
tive called triplet loss. The triplet loss minimizes the dis-
tance between the anchor and positive examples and maxi-
mizes the distance between the anchor and negative exam-
ples in the embedded space. We use the same triplet loss
objective with triplet sampling strategy defined in [42] as:

N
, , ) . . )
L= Z [ Xemb, — ;mprQ — |1 Xemb, — Xemsb, ll2 +a (1)
i=1
i i i :
where X¢, ., . X0 X, are the embeddings of the

anchor, positive, and negative examples, and « is the desired
margin [42,47]. We set & = 1 in our experiments.

4. Dataset
4.1. Sourcing data and preprocessing

Our dataset consists of DRCL (decompressed, radiomet-
rically calibrated, color corrected, and geometrically lin-
earized) images [34] acquired by the MSL Mast cameras
between sol 1 and sol 2800. We restrict our focus to terrain
images by following the settings in [42] to eliminate the
majority of images containing rover parts, sky, etc. In order
to prevent scale disparities in terrain features, we limit our
analysis to images in which the distance of a target to the
rover is within 15m. The resulting dataset contains 30, 000
images of size typically 1200 x 1600 pixels. Since an image
of this size might contain several different kinds of terrain,
smaller patches of size 128 x 128 and 256 x 256 were ex-
tracted from it using a sliding window with a stride 50%
that of the patch size. The difference in patch size corre-
sponds to the difference in focal lengths of the two cameras
that make up the “left eye” and “right eye” of the curiosity
rover, and were applied accordingly. This yields a total of
2.4M patches which is twice the size of the ImageNet-1k
dataset [46].

A problem of class balancing still remained as a large
number of patches contain mostly unconsolidated terrain
and classes of geologic relevance are less frequent (long-
tailed distribution). Therefore, in order to avoid any dis-
tribution mismatch between the training and test sets, we
do not select patches randomly for each set (as is common
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practice). Instead, we follow a careful patch extraction strat-
egy where patches in the training set are selected from the
left 60% portion of a given image, and patches from the
remaining 40% of the image are reserved for the test set.
Criticism then arises that such an approach could lead to
different views of the same geographical area appearing in
both training and test sets due to panning of the camera.
Though this is a rare occurrence (mastcam has a small field
of view), two patches imaging the same area have different
viewpoints and are as similar or different as two samples
drawn from the same distribution albeit strongly correlated.
Therefore, in addition to ensuring that the same “patch” is
never used for both training and testing, patches captured
from the same site and drive of the rover are removed from
the results before evaluation.

4.2. Grouping data and discovering classes

Once the model described in Sec. 3 is trained on the unla-
beled data obtained as above, we collect expert feedback on
the model performance through a web-based user interface.
We think that a natural way to do this is using query images
to retrieve the top-K most similar images from the dataset
(K -Nearest Neighbors). The query images are randomly
sampled from the clusters found by the model. The nearest
neighbors are the top-K images in the dataset whose em-
beddings (output of the penultimate fully connected layer
of the trained network or fc-7 features) are closest (using a
distance measure such as euclidean distance) to the embed-
ding of the query image. We then display the query images
along with top-K nearest neighbors on a webpage which
supports image annotation. The interface is shown in the
appendix (Fig. A.1). We ask an expert in planetary geology
to do the following:

1. Characterize and label the query image using detailed
geological/geomorphological criteria.

2. Assess how many of the top-K neighbors belong to
the same category as the query image and identify the
mistakes.

3. Evaluate the homogeneity of a randomly sampled sub-
set of clusters produced by the network and comment
on their geological relevance.

Several geological categories naturally emerge from this
process (See Sec. 5.2 for the analysis). The top level cate-
gories include “bedrock”, “floatrock”, “unconsolidated ma-
terial”, and “non-rocky materials”. These are further sub-
divided based on rock type, grain size, tonality (hue), lami-
nation strength, fracture and nodule pervasiveness, and pre-
ponderance of unconsolidated materials as apparent from
the image. The full taxonomy is shown in Fig. 1.

We can traverse this hierarchy to generate detailed and
uniquely-defined classes and also assign them a taxonomy

code. For instance, a particular traversal could be repre-
sented as A-G2-T1-L2-N1-F2f. Here A-G2 denotes
bedrock with no visible grain (e.g. mudstone), T1 is light-
toned (in this case red colored), L2 indicates weakly lami-
nated, N1 encodes the absence of nodules on this rock, and
F2f indicates that the rock is commonly (lightly) fractured
with calcium sulfate filled veins. Note that since the above
classifications were formulated by the expert after looking
at the clusters produced by our model, our model reflects
the kind of granular observations of terrain features a ge-
ologist would have to make as part of their scientific study
(see discussion in Sec. 5.2). Our taxonomy provides an ex-
haustive set of criteria that could be used to classify terrain,
and leaves room for the addition of even finer categories still
(which may not be present in our dataset), depending on the
application, without any need to alter the hierarchy.

This level of granularity in categories in our dataset,
while complex, is unprecedented for any terrain recogni-
tion dataset on Mars (and possibly Earth) and demands a
high level of sophistication from automatic terrain classi-
fiers. Note however that expert review is a long process,
and due to the time available and also potential undersam-
pling of certain categories, only a finite number of labels
(25) could actually be identified in the sampled images. The
full list of class descriptions along with their taxonomies is
presented in the appendix (Tab. A.1). Most of these classes
are from the bedrock category, as it is the focus of MSL
missions and also a central category for geologic analysis.
We plan to expand the number of classifications available
for floatrocks and unconsolidated materials in future work.

S. Experiments
5.1. Implementation details

For the proposed method we use the DEP architecture
[60] with ImageNet pretrained 18-layer ResNet [21] as the
backbone. The dimensionality of the embedding layer is set
to 512. For the clustering, the embeddings are PCA-reduced
to 256 dimensions, whitened and #2-normalized. We use
Faiss K-means clustering algorithm [24] with K set to 150
as determined by visual inspection of clusters. We use the
SGD optimizer to train our network with a learning rate of
le—4 and weight decay of le—b5. The size of a minibatch
corresponds to the number of samples per cluster times the
number of clusters. We set number of samples per cluster as
4, and the resulting batch size is 600. We train on 4 Nvidia
M40 GPUgs, and training takes around 3 days. The criteria
for convergence is the cluster stability over epoch. This is
measured using Normalized Mutual Information (NMI) by
calculating it between cluster assignments at epoch ¢ and
t—1[2]. We find that the training saturates at epoch 40 with
NMI= 0.756. We resize the image patches into 224 x 224.
Since our model is trained to identify terrain features, it
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calcium sulfate-filled chaotic/curviplanar fractures

calcium sulfate-filled hairline planar fractures

calcium sulfate-filled hairline planar fractures

weakly laminated red mudstone, pervasively nodular, unfractured
weakly laminated red mudstone, non-nodular, pervasive planar

weakly laminated red mudstone, non-nodular, common planar

weakly laminated red mudstone, non-nodular, lightly fractured (unfilled)
weakly laminated gray mudstone, non-nodular, common planar

strongly wavy/non parallel-laminated red mudstone, non-nodular, unfractured

Figure 2. t-SNE [50] visualization of 6 clusters from the model. The clusters show good separation, and overlap only when an increasing
number of features are common (e.g. green and yellow). Best viewed in color (accessible) on a pdf processor with zoom.

can be very sensitive to scale and orientation of the images.
Therefore, we avoid using augmentations such as random
resized crops and horizontal flips in order to avoid training
on instances that might represent unrealistic viewpoints or
non-existent geological formations.

5.2. Evaluation

Our clustering performance is evaluated in two ways:
using a visual inspection of homogeneity and cluster
separation from t-SNE [50] plots of learned embeddings,
and computing the precision of a retrieval task from a
test set given a query image. The precision of our model
for retrieval tasks demonstrates the usefulness of our
approach by allowing scientists to automate the process
of finding visually similar terrain. Additionally, an expert
opinion on the scientific significance of the clusters found
by our model adds depth to the analysis of our model’s
performance and shows how our approach could be used to

support geologic exploration.

Qualitative. Figure 2 shows a plot of 6 clusters obtained
by projecting the embedding vectors for the points (512-
dimensions) onto 2-dimensions. Notice how the clusters
are homogeneous and well separated in most cases, with
occasional overlap in the case of highly similar terrain. We
asked the expert to review a small subset of clusters pro-
duced by the model by looking at randomly sampled images
from these clusters, and explain if our clusters could be use-
ful for geological analysis the details of which follow.

Here, the clusters in green and yellow represent two
classes of weakly laminated red mudstone, that are non-
nodular and fractured. The sole difference is that the frac-
tures are either filled with calcium sulfate or unfilled, re-
spectively. Using automation to make these sorts of subtle
distinctions could be useful for scientists to rapidly make in-
terpretations with important science and operational impli-
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Taxonomy

A-G1-T2-L3-N1-F1

C3

A-G2-T1-L2-N1-F3f

A-G2-T2-L2-N1-F2f

A-G2-T1-L1-N1-F2u

A-G2-T1-L3-N1-F1

C2

A-G2-T1-L3-N1-F3u

A-G2-T1-L3-N1-F1

A-G2-T1-L1-N2-F1

Figure 3. Top-10 nearest neighbors retrieved for 10 query images (green). Nearest neighbors are from the test set, and restricted to be from
different sites along the rover traverse. The rows are arranged in ascending order of mistakes (cyan) made by the model while retrieving
patches. Only 10 out of 25 classes have been shown here along with their taxonomies. Best viewed in color (accessible).

cations. In this example scenario, one could plausibly iden-
tify two generations of fracturing events within the dataset:
one in which water was available to fill the fractures with
calcium sulfate, and one in which it was not. Note how these
clusters still have some overlap in the t-SNE plot which is
consistent with their highly similar nature.

Another similar type of rock is seen in the red cluster,
where the rocks appear less red. This could either be be-
cause dust cover is minimized here, or because there is an
inherent change in bedrock composition. This could be
verified by spatially mapping these images and comparing
whether these regions overlap with spectrally bland regions,
which are often attributed to dust cover in CRISM data [38].
In yet another well separated cluster (purple), we can see
instances of well laminated, coherent bedrock from which

sedimentary geologists typically infer ancient depositional
processes. This cluster may be useful to this community as
a way to rapidly identify exposure to facilitate more detailed
sedimentological analysis.

Moreover, geologists are often interested in finding
and mapping peculiarities in terrain, such as an increased
amount of nodule formations in the bedrock as seen in the
blue cluster, or those which appear unusual such as the
inordinately red rocks seen in the cyan cluster. The large
number of images present make this task impossible to
accomplish manually. Our model can quickly retrieve all
images that are similar to a provided example, which could
then be used to generate viewsheds on top of Mars orbital
views [39] allowing geologists to corroborate their findings
using global context.
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Table 1. Precision@10 obtained by expert review of each category
present in our dataset. Only taxonomies are shown here to preserve
space, the full description of classes is available in Tab. A.1.

ID Taxonomy Precision@10
1 A-G1-T2-L3-N1-F1 1.0
2 A-G2-T1-L3-N1-F1 0.9
3 A-G2-T1-L3-N1-F1 0.9
4  A-G2-T1-L3-N1-F3u 0.7
5 A-G2-T1-L3-N1-F1 0.6
6 A-G2-T1-L2-N1-F1 0.8
7  A-G2-T1-L2-N1-F2u 1.0
8 A-G2-T1-L2-N1-F3u 0.9
9  A-G2-T1-L2-NI1-F2f 1.0
10 A-G2-T2-L2-N1-F2f 1.0
11 A-G2-T1-L2-N1-F3f 1.0
12 A-G2-T1-L2-N3-F1 0.9
13 A-G2-T1-L2-N3-F3f 1.0
14  A-G2-T1-L1-NI1-F2 1.0
15  A-G2-T1-L1-N3-F1 1.0
16  A-G2-T1-L1-N2-F1 0.4
17 B1-G2-T1 0.7
18 B1-G2-T2 0.3
19 Cl 1.0

20 C2 0.8

21 C3 1.0

22 D1 0.1

23 D2 0.9

24 D3 1.0

25 D4 1.0

Avg. 0.836

Quantitative. Due to the lack of supervised annotations
available for our data, we measure the performance of our
model using a retrieval task. Given a query image I with
known category cy, we poll the model to retrieve the top-
K images Ij, from the test set whose embeddings Fy(I})
have the least distance to the embedding of the query image
Fy(I). Here Fy represents our deep network parameterized
by 6, and the distance measure selected is the euclidean dis-
tance between two vectors, d(u, v) = |[lu—v||o. We use the
metric Precision@ K to evaluate the quality of the retrieved
images. Precision@ K is defined as follows:

1
Precision@K £ Z Z I(er = exp) (2)
kel K

where I is the indicator function. Here, we use K = 10.
Since we don’t have actual labels available for the retrieved
images, we once again seek expert review to correctly iden-
tify the classes of all retrieved images. The results for each
category are shown in Tab. 1. Figure 3 shows a subset of

labeled query images from our dataset and the retrieved
nearest neighbors. The nearest neighbors are restricted to
be from different sites along the rover traverse in the Gale
crater. This demonstrates our model’s generalization per-
formance and ability to retrieve interesting terrain images
from different locations using a query image. This mech-
anism could potentially be used to propagate the label of a
query image to similar unlabeled images and overlaid on a
map to study terrain changes along the rover traverse. Our
model obtains an overall Precision@10 of 83.6%. Queries
from 12 (out of 25) classes in our data have 100% precision
of retrieval (subset shown in first 5 rows in Fig. 3) and the
performance degrades slightly for other classes. Common
failure modes include bedrock with nodules confused with
pebbles on the surface of the bedrock (Row 10 in Fig. 3)
and rover tracks mistaken for fractured or strongly lami-
nated bedrock (not shown). The former is a result of nat-
ural scale variations in the dataset due to the focus distance
and the model’s inability to capture them, whereas the latter
happens in part because of the high visual similarity of sand
tracks to laminated rocks and in part because of limited data
available for such classes.

6. Conclusion

We presented a framework that would allow the creation
of a large database of robust, readily available, and geo-
logically relevant terrain categories of the Martian surface
based on mastcam images. Our self-supervised deep clus-
tering algorithm can automatically identify nuanced terrain
categories by utilizing a network designed for texture recog-
nition. The automatically discovered clusters enabled the
creation of a robust taxonomy of scientifically relevant ter-
rain categories through expert assessment, that can be used
to rapidly label images. The granularity and homogeneity
of the discovered clusters were evaluated using such labels
qualitatively and quantitatively. The agreement between the
membership identity of the clusters and the expert terrain
categories show promise for extensive, automated analysis
of geologic features on the Martian surface pertaining to
a better understanding of depositional processes and inter-
preting the paleoclimate to ultimately answer the question
of whether life once existed on Mars.
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