This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Fast building segmentation from satellite imagery and few local labels

Caleb Robinson
Microsoft Al for Good Research Lab

caleb.robinson@microsoft.com

Anthony Ortiz
Microsoft Al for Good Research Lab

anthony.ortiz@microsoft.com

Hogeun Park Nancy Lozano Gracia Jon Kher Kaw
World Bank World Bank World Bank
hpark2@worldbank.org nlozano@worldbank.org jkaw@worldbank.org
Tina Sederholm Rahul Dodhia

Microsoft Al for Good Research Lab

tinase@microsoft.com

Microsoft Al for Good Research Lab

radodhia@microsoft.com

Juan M. Lavista Ferres
Microsoft Al for Good Research Lab

jlavista@microsoft.com

Abstract

Innovations in computer vision algorithms for satellite image
analysis can enable us to explore global challenges such as
urbanization and land use change at the planetary level. How-
ever, domain shift problems are a common occurrence when
trying to replicate models that drive these analyses to new ar-
eas, particularly in the developing world. If a model is trained
with imagery and labels from one location, then it usually will
not generalize well to new locations where the content of the
imagery and data distributions are different. In this work, we
consider the setting in which we have a single large satellite
imagery scene over which we want to solve an applied problem
— building footprint segmentation. Here, we do not necessarily
need to worry about creating a model that generalizes past the
borders of our scene but can instead train a local model. We
show that surprisingly few labels are needed to solve the build-
ing segmentation problem with very high-resolution (0.5m/px)
satellite imagery with this setting in mind. Our best model
trained with just 527 sparse polygon annotations (an equivalent
of 1500 x 1500 densely labeled pixels) has a recall of 0.87 over
held out footprints and a R2 of 0.93 on the task of counting the
number of buildings in 200 x 200 meter windows. We apply our
models over high-resolution imagery in Amman, Jordan in a
case study on urban change detection.

The authors declare that the findings, interpretations, and conclusions
expressed in this paper are entirely those of the authors. They do not necessarily
represent the views of their affiliated organizations.

Predictions

2010

2020

Figure 1. Example predictions from building footprint segmentation
models trained from scratch using only high-resolution RGB satellite
imagery and < 600 polygon labels. The imagery shows a rapidly
developing part of Amman, Jordan in 2010 and 2020. Predictions are
made with models trained using 527 and 367 sparse polygon labels
collected from a small part of the 2010 and 2020 scenes respectively.

1. Introduction

Building footprints are a crucial piece of data in many applica-
tions, for example: disaster response damage assessments, pop-
ulation mapping, and urban planning [10,24]. High-resolution
satellite or aerial imagery can be hand-labeled to create accurate
building footprints, however such an approach quickly becomes

1463



prohibitively expensive as the scale of the problem increases.
Model-based approaches that predict building footprints from
satellite imagery can easily be applied at large scales, however
must deal with problems of generalizing across different imag-
ing conditions and geographies to produce meaningful results.

Two approaches are traditionally used to improve the gen-
eralization performance of such models: domain adaptation
methods, and training with large diverse training sets. First,
domain adaptation (DA) methods have been proposed for Earth
Observation applications [2 1] to account for distribution shifts
in satellite imagery and create generalizable models. In general,
DA methods aim to obtain models robust to differences between
two different datasets (a source and target) with different image
and label distributions. DA methods tackle the domain shift
issues by either aligning the distribution of the source set to
match that of the target set [ 1,5, | 5] or by mapping both sets to a
common space. Deng et al. proposed a scale aware adversarial
learning framework for domain adaptation in building segmen-
tation between datasets collected at different scales [5]. Tasar et
al. proposed to use a Generative Adversarial Network (GAN) to
generate fake synthetic training images that are semantically sim-
ilar to the training images, but with spectral distribution similar
to the distribution of the target imagery for better generalization
of building segmentation models for different cities [20]. These
approaches tend to improve overall model performance in the tar-
get domain, however the results are often suboptimal compared
to supervised learning in the target domain. Second, training
with larger diverse datasets can produce models with better
generalization performance. Some existing open datasets for
building damage assessment or building footprint segmentation,
such as the xBD [10] and SpaceNet datasets [23], purposefully
include labels from different geographic regions. This allows
practitioners to experiment with domain adaptation methods and
measure generalization performance. However, these datasets
alone are not sufficient for training models that can be applied
as-is to new satellite imagery from around the Earth [3].

Previous projects have shown positive results from building
footprint segmentation models at continent level scales using
a mixture of domain adaptation methods and large training
datasets. For example, Google released a dataset of modeled
building footprint estimates for Africa [19], Microsoft has
released building footprint datasets for the continental US,
Canada, Australia, and South America [ 3], while Facebook has
released population density datasets driven by building detection
models for over 160 countries [¢]. The Google Open Buildings
model required “manually labelling 1.75 million buildings in
100k images” [19], the Microsoft US Building footprint model
was generated with access to “millions of labels” and used
unsupervised learning techniques to improve generalization
performance [ 14], while Facebook’s building mapping efforts
started with “a seed dataset of around 1M labeled patches
of imagery” and used a variety of techniques to improve
generalization performance [4]. While these projects have all

resulted in useful datasets that help advance humanitarian goals,
the models and imagery behind these efforts have not been
open-sourced and therefore cannot be used on new imagery.
This is a limitation for applications such as building damage
assessment dafter disasters that require on-demand processing
of new imagery and urban change detection that require
processing multiple layers of historical imagery on-demand
(versus generating a static map of current buildings).

In this work, we come at the applied problem of building
segmentation from a different direction and do not attempt to
train models that can generalize to new inputs at all. Instead, we
ask the question, “how many labels do we need to collect from
a single scene in order to train a model to an acceptable perfor-
mance within that scene?”. We build a workflow in which we
can quickly solicit polygon-based labels with a web application
that are tied to a given satellite imagery scene, train a model us-
ing those labels and imagery, then run the model over the whole
scene producing the desired predictions. Given new imagery,
this workflow can be executed in less than a day of work to pro-
duce consistent results without concerns about out-of-domain
generalization performance. We use this workflow in Amman,
Jordan to create a detailed change map of buildings from 2010
to 2020 that can directly inform urban planning decisions.

To summarize, our contributions include:

* An analysis of the necessary components in an on-demand
building segmentation modeling method with few sparse
labels.

* An open-source web-based tool for collecting poly-
gon labels over a given remotely sensed imagery
scene: https://github.com/microsoft /
satellite-imagery—-labeling-tool.

e A case study applying our methods to urban change
detection in Amman, Jordan.

2. Problem statement

Given a large satellite image, X, and an accompanying
sparse label mask, Y, we want to learn the parameters of a
semantic segmentation model, f(X;0)= Y that can make dense
predictions, Y over the entire image. Here, entries in the label
mask Y;; indicate that the corresponding pixel in the imagery
Xi; is either part of a building footprint, is not part of a building
footprint, or is unknown. We note that with modern commercial
high-resolution satellite imagery, the spatial dimensions of
X can exceed 100,000 x 100,000 pixels and cover hundreds
of square kilometers. We assume that X was captured at a
single point in time, i.e. that the only source of variance in the
imagery that f needs to capture is related to how buildings look
in that particular scene (and not due other differences such as
lighting, off nadir angles, seasonality, etc.). While in this work
we specifically focus on the building segmentation problem,
the same ideas can be applied to other earth observation tasks.

1464



= _ - Satellite image annotation tool A

Location: Seattle, Washington, USA

Imagery: NAIP Imagery

i Save status: Unsaved

| secondary Classes
OPossible
OProbable
@ Definite

Figure 2. A web-based satellite imagery labeling tool allows us to quickly solicit polygon labels that are aligned with a particular satellite imagery
scene. Users receive a link for a particular scene, then can annotate the imagery with different labels and confidence levels, and finally download

the annotations in a GeoJSON format for further processing or distribution.

3. Methods

Our proposed methods are simple, to generate building
footprints in a large high-resolution satellite imagery scene
we 1.) sparsely label instances of buildings and non-building
(or background) classes in that scene; 2.) train a semantic
segmentation model from scratch using these labels; and 3.)
run the trained model over the entire scene.

3.1. Satellite imagery labeling tool

Creating labels over large satellite imagery scenes is a
non-trivial task. First, multispectral high-resolution satellite
imagery scenes can be many gigabytes in size and therefore
difficult to download locally without a dedicated internet
connection. Second, these scenes usually require domain
expertise and specialized desktop GIS software to visualize and
annotate (for example, a user may need to select the RGB bands
in the imagery and perform normalization steps to convert
the spectral values into a reasonable range for visualization).
Finally, once a user has created annotations they must be
exported and distributed with their geographic metadata to
avoid alignment issues between the annotations and imagery.

Considering these difficulties, we have created an open-
source web-based tool that allows users to create annotations
over basemap imagery layers, then export the annotations in a
GeoJSON format for use in modeling pipelines (Figure 2 shows
a screenshot of the tool). This allows a technical user with GIS
expertise to create a hosted basemap from a satellite imagery
scene, then simply distribute a URL in order to solicit labels
from non-technical annotators. We note that this same type
of setup — web-based annotation of satellite imagery — is used

in other hosted applications such as Open Street Map’s online
map editor. Our implementation, however, does not require any
server components other than a standard web server (optionally,
a tile server for dynamically rendering of basemaps). In other
words, the entire application runs in a client’s web browser. This
simplifies the deployment of new instances of the application.

3.2. Modeling

We treat the problem of creating building footprints as a
standard semantic segmentation problem with an additional
building polygonization step (i.e. converting pixel-wise
predictions of buildings into polygons) and use a U-Net model
architecture [ 18] as implemented in the Segmentation models
PyTorch library [25].

‘We train models using an unweighted pixel-wise cross en-
tropy loss that ignores pixels that haven’t been labeled. Related
work has proposed using weighting schemes that heavily weight
the loss of pixels at the edges of building masks [12, 18, 19], us-
ing different loss functions such Focal Loss, Tversky loss, Focal-
Tversky loss [19], Jaccard loss [1 1], or F-Beta loss [12], as well
as deriving and predicting a “building-edge” class in a multi-
task setting [11]. These innovations focus on reducing false
positive predictions, reducing the impact of imbalanced training
samples, and, importantly, encouraging the network to predict
background class labels between adjacent buildings (versus
“merging” adjacent buildings). In contrast to these approaches,
we found it sufficient to buffer our sparse building footprint la-
bels with a ring of “background” labels. Specifically, we assume
that every pixel within 2 meters of a “building” label (and not
labeled otherwise) is a “background” label. We find that models

1465



Study area

Training area

- Background class
- Building class

Figure 3. Overview of the Amman, Jordan study area showing the 2020 imagery layer. The map inset shows the area over which the train split

labels were created along with the 367 training polygons for 2020.

trained with these buffered labels are able to separate buildings
while models trained on the unbuffered sparse labels do not (see
Section 4). Finally, we train using an AdamW optimizer, we
decay learning rate by a factor of 0.1 on training loss plateaus
and we use random rotation, flipping, sharpness and color jit-
ter augmentations as implemented by the Kornia library [17].
We tune learning rate, weight decay, and weight initialization
hyper-parameters based on validation set performance.

In a post-processing “polygonization” step, we convert
the per-pixel predictions made by our model into building
polygons for use in downstream applications. Here, we assume
we have used a trained model to run inference over a whole
area classifying each pixel as “building” or not. First, we run
a median filter with a 7 x 7 kernel to remove small erroneous
predictions and fill gaps in predicted buildings. Next, we convert
each connected component of building pixels into a polygon
(where pixel borders are replaced by edges), and simplify the
polygon with a tolerance of 0.5m using the Douglas-Peucker
algorithm [6] as implemented by the shapely library [9].
Finally, we remove a polygon (replacing the predictions with
“background”) if it has an area that is less than 30 square meters.

3.3. Datasets

We use 4 separate high-resolution (0.5m/px) RGB satellite
imagery scenes from Maxar’s World View-2 satellite in this study,

Off Nadir Sun Max Target

Date Angle Elevation  Azimuth Area
6/4/2010 18.6° 74.5° 172.7°
6/4/2010 11.5° 74.6° 49.8° 581.7 km?
6/15/2010 13.4° 74.7° 61.1°
9/24/2020 27.8° 52.2° 298.9° 558.6 kim?

Table 1. World View 2 imagery metadata from the scenes used over
Amman.

detailed in Table 1. We create a mosaic covering Amman with
the three scenes from June 2010, and use this as the 2010 layer,
and use the single scene from September 2020 as the 2020 layer.

We use the labeling tool described in Section 3.1 to collect
four sets of labels, or splits, over each layer of imagery:

Train consists of sparse polygon labels created over the
same 4km? area from both layers. These labels include
“background”, “road”, and “building” classes.

Val consists of dense “building” class labels created over a
subset of the 4km? training area (that does not contain
labels in the train split). Here, we label each building
in a small area so that we can assume that all unlabeled
pixels in that area are not buildings (i.e. background or

1466



Split Layer Background Road Building Totals

Train 2010 % ) pold i
2020 27 27 313 367
W h
Test ;8;8 : : 4312;1 :
Test counts ;8;8 : : : ;g 2232:2

Table 2. Size of the different splits (in number of polygons) for the
2010 and 2020 layers over Amman.

road). This allows us to measure the pixel-wise precision
and recall for the “building” class during training.

Test consists of sparse polygon “building” class labels created
by randomly labeling buildings over the entirety of each
layer. We hold these labels out during training and use
them to approximately measure the recall of our models
over the entire layers. Note that we cannot measure
precision using this set of labels as knowing whether a
prediction is a false positive requires knowing where all
true positives are.

Test counts consists of counts of the number of buildings over
29 randomly sampled 200 x 200 meter polygons from
each layer. Similar to the test set, we hold these labels
out during training. This allows us to measure how well
our models capture the density of actual buildings in each
layer. For example, a trivial model that labels every pixel
as the “building” class would have 100% recall, however
the count of the number of buildings predicted by this
model would be completely uncorrelated with the actual
number of buildings in an area.

Figure 3 shows an overview of the study area and the small
area used for training in Amman, Jordan for 2020. Notice how
the training area is less than 1% of the total study area with only
367 training polygons available.

Table 2 shows the number of labels of each class we collected
over each layer. We differentiate between “‘background”’, “road”,
and “building” classes in order to test whether a finer grained
classification can improve the performance of models on the
building class. Finally, we estimate that an experienced user
can create ~ 6 labels per minute (our average rate). At this rate
it would take a total of ~ 5 hours of labeling effort to reproduce
the train, val and test splits we use here. Reproducing the test
counts dataset is similarly easy as it only involves counting and
recording the number of buildings over a few fixed areas.

3.4. Baseline methods and performance metrics

We compare our modeling approach against off-the-shelf
building segmentation models from [12] and to a random forest

model from the scikit-learn library [16].

Jiwani et al. provide pre-trained weights for three models
trained on the SpaceNet, CrowdAl, and Urban3D datasets [12].
Identical to our problem setting, these models are trained to
segment buildings from RGB satellite imagery, and notably,
were the only publicly available models we could find for this
task. We use these models as-is to test how the best off-the-shelf
approaches will work when applied on new imagery. That is, to
simulate how a practitioner may try to use the models in an ap-
plied setting. We expect that these models would perform better
if fine-tuned with labeled data from our two layers of imagery,
and we expect that the methods proposed in [ 2] are relevant to
our task however have left this investigation to future work.

The local random forest model uses the RGB values at a
pixel as a feature representation and is trained over the labeled
pixels in each layer’s train split. We merge the road and
background classes into a single class to reduce the problem to
a binary classification. This serves as very simple color-based
segmentation of the imagery and a lower bound on what should
be possible for other approaches.

We test the predictions made by each method in three ways:

* Pixel-wise F1 score of the building class using the dense
labels from the val splits.

* Recall@k using the building level labels from the test
splits. We define Recall @k as the percentage of buildings
in which > k% of the pixels in a building are correctly
predicted as the building class. In other words, a labeled
building in the test split is counted as a true positive if k%
of the pixels in that building are predicted as the building
class, else it is counted as a false negative.

¢ Coefficient of determination (R2) calculated between the
counts of buildings over the 29 areas in the test count splits
compared to the predicted number of buildings over the
same areas. Specifically, for each of the 29 200 x 200 me-
ter areas in the test count split, we compute the number of
model predicted buildings by totaling the number of poly-
gons that intersect with that area after the polygonization
post-processing step described in Section 3.2.

4. Experiments and results

Table 3 shows the performance of our best performing U-Net
model trained with local labels along with the baseline method
performance. We observe that the CrowdAl pretrained model
and U-Net models are the only models that make reasonable
predictions. Here, the CrowdAl model makes a large number of
false positive predictions and frequently ignores boundaries be-
tween adjacent buildings in both layers of imagery. This results
in high recall scores, but predictions that don’t correlate as well
with the actual number of buildings over an area — achieving
0.76 and 0.67 R2 scores for 2010 and 2020 respectively. The

1467



0.80

™~

[N

# 0.75

©

(W)

2 0.70

T

= ——

@ 0.65 2010

2020

100 200 300 400 500

Number of samples

_ 095 /,‘,//*\
S
3 0.90
[
o
£ 0.85
=)
=)
3 0.80
[T,
2 0.75 —— 2010
[al
0.70 2020
100 200 300 400 500

Number of samples

Figure 4. The effect of the number of training samples on U-Net
model performance in the 2010 and 2020 layers. (Top panel) shows
the impact on the building class F1 score as measured on the val splits.
(Bottom panel) shows the impact on the R2 of the predicted building
footprint counts as measured on the test counts splits.

U-Net, in comparison, has a slightly lower recall scores (86.9
vs. 90.7 and 83.7 vs. 89.1) but is able to consistently segment
individual buildings. This results in predictions that are highly
correlated with the actual number of buildings — achieving 0.93
and 0.84 R2 scores. The SpaceNet model achieves near perfect
recall, but with a 0 R2 score, as it predicts the building class
for almost any input. As expected, the random forest model
does not perform well as per-pixel color features alone are not
sufficient to identify buildings in high-resolution imagery.

We also investigate the impact of the number of labels used
on the performance of the best U-Net model configurations.
Here, we subsample different numbers of polygons without
replacement and train the U-Net with the reduced set of labels.
Figure 4 shows the averaged performance over 5 different sub-
samples / random weight initializations (+/- 1 standard deviation
is shown in the shaded area). We observe a consistent increase
in building class F1 scores across both layers of imagery up to
the maximum number of labels we gathered which suggests
that more labels would continue to increase performance of the
model locally and produce better footprints. However, we also

observe an immediate plateau in the R2 counting performance of
the models, and large standard deviations in performance. This
suggests that even 100 to 200 labels is sufficient to train a build-
ing footprint model especially if the predictions made by that
model are used primarily for building density estimation tasks.
The fact that some sets of 100 labels achieve very high R2 values
in the 2010 layer further suggest that which labels are used in
training are more important than how many are used. Overall,
we find that the performance of the models on the 2020 layer is
uniformly worse than on the 2010 layer. One explanation for this
is that the 2020 imagery was taken with a greater off-nadir angle
than the 2010 imagery (Table 1) and is of generally lower quality.

Finally, ablation studies to investigate the effect of different
modeling choices. Specifically, we test the impact of merging
the “road” class with the “background” class or not, the impact
of using ImageNet pre-trained weights versus random weight
initialization, and the effect of buffering the “building” class
labels with a small ring of “background” class labels. We run
each combination of these choices for several learning rate and
weight decay parameters. Table 4 show the building class F1
scores for each choice averaged over all valid combinations (e.g.
the score of 0.710 for “Road class separate” in 2010 is averaged
over all other runs in the grid that were trained using “road” as
a unique class). First, we observe that merging the road class
with the background class results in slightly better performance
in both layers of imagery. Second, we find that buffering the
“building” class does not impact the results in 2010, however dra-
matically improves the performance in the more off-nadir 2020
imagery. Finally, we find that starting from a random weight
initialization is better than starting from ImageNet pre-trained
weights, with a large improvement in 2010. We observe that the
models that were trained starting from ImageNet weights are of-
ten able to overfit completely, achieving close to O training loss
but producing nonsensical predictions elsewhere in the imagery.

Method Layer Recall @ 0.7 R2
Local random forest 2010 21.22% 0.76
SpaceNet model 2010 99.71% 0.00
CrowdAI model 2010 90.70% 0.76
Urban3D model 2010 21.22% 0.05
Local U-Net 2010 86.92% 0.93
Local random forest 2020 31.26% 0.22
SpaceNet model 2020 99.57% 0.05
CrowdAI model 2020 89.08% 0.67
Urban3D model 2020 2548% 0.01
Local U-Net 2020 83.73% 0.84

Table 3. Model performance on each layer of imagery over Amman
evaluated using the test and test count splits. The SpaceNet, CrowdAl
and Urban3D models are pre-trained models from [12] and are not
fine-tuned. Best values in each column are shown in bold.

1468



Road merging Road class separate ~ Road class merged

2010 0.710 0.728

2020 0.674 0.687
Building buffering Buildings not buffered  Buildings buffered

2010 0.720 0.718

2020 0.649 0.710
Weight initialization ImageNet Random

2010 0.670 0.768

2020 0.664 0.697

Table 4. Ablation results showing the average impact of different
modeling choices. Values are building class F1 score measured.

5. Case study in Amman

Jordan has received over 670,000 refugees since the
beginning of the Syrian conflict in 2011 [22] . Although overall
violence has declined in the region, poor economic performance
and limited basic services in hosting cities exacerbate residents’
living conditions and livelihoods. Given that the vast majority
of the refugees in Jordan, 83 percent, live in cities instead of
camps [22], the influx of people has caused severe challenges
in maintaining and providing basic infrastructure and public
services. However, due to limited planning resources and the
excessive number of incoming refugees, our understanding of
how Amman has changed within this period is limited. Thus,
we use the methods described above to create building footprint
layers for the 2010 and 2020 imagery, create density maps, and
use these maps to identify growth at an urban scale.

From Table 3 we know that the count of buildings predicted
by our model are highly correlated with the true count of
buildings over 200 x 200 meter windows. However, our model
could systematically over or under predict buildings and still
have highly correlated counts. To account for this and derive
counts that accurately reflect the number of buildings on the
ground, we can fit a linear regression model using the predicted
and actual counts, then adjust our model’s predicted counts
over the same sized windows using the slope and intercept of
the model. After this procedure our models adjusted predicted
counts have a root-mean-squared error of 2.81 in 2010 and 5.13
in 2020. This allows us to directly compare the counts between
the two years of imagery to see where in Amman new buildings
were created between 2010 and 2020.

Over the entire study area we find ~ 138,500 buildings in
2010 and ~ 150,500 buildings in 2020, for an estimated growth
of 12,000 buildings. Figure 5 shows the spatial distribution of
growth, i.e. the difference in number of buildings between 2020
and 2010 over 0.25 square kilometer grid cells. We observe that
the north-west portion of the city has experienced the largest
amount of growth.

The change in number of buildings over time sheds light
on the spatial configuration of the city. In a post-conflict setting,

Number of new
! buildings in 2020
-
j@ ; [—
g 152
78
e 104
= 130
. 156
W 180
I 200

Figure 5. Map of the increase in number of buildings between 2010
and 2020 over a 0.25 square kilometer grid in Amman, Jordan.

official statistical surveys (i.e., census) often cannot be carried
out and/or do not fully address emerging population growth due
to limited institutional resources and long-time span of survey
instruments. However municipal and central governments
still need to allocate fiscal/institutional resources to align
with the broader goals of city development (e.g., solid waste
management and water and sewer services). Building change
maps enable us to understand when/where new buildings
were constructed and thus estimate the associated needs of
infrastructure and basic service provision. The findings in this
case study will be used to carry out strategic policy dialogue
with the local and central government.

Low-quality building classification We can further inves-
tigate the predicted building footprints to understand quality of
buildings in the city of Amman. In the context of post-conflict
and disaster setting, incoming refugees and migrants are often
found living in poor quality housing that needs immediate
assistance. Here, we define the quality of buildings based on
their morphological features (e.g., size, density, shape, slope,
etc.). From our partner’s local experience in Amman we know
low quality buildings are unevenly distributed within a plot,
small, irregularly shaped, often built on steep terrain, and are
closely packed with surrounding buildings (i.e., narrow gap
between buildings).

First, we extract building level features from the predicted
footprint layers, following methodology similar to [2, 7].
Specifically, for each building we determine: the area of
the footprint, the ratio of the area of the minimum bounding

1469



Figure 6. Low-quality housing neighborhood in Amman (photo taken
on Feb 6, 2022)

rectangle to the area of the footprint, the number of other
buildings in a 200-meter radius, the distance to the nearest
building, the maximum slope of the ground the building is on,
and the number of corners in the building.

Second, we generate labels indicating whether a building
is either “Regular” or “Low-quality” in two ways: 1) through
visual inspections of the high-resolution imagery with a series
of consultations with local experts, and 2) through a field visit
to take geo-coded “ground truth” photos. During the field visit,
which was held in Feb 3-8, 2022, we took 308 photos near Al
Nathif, Al Akhdar, and Al Zohour. As shown in Figure 6, these
unplanned areas suffer from overcrowding and limited basic
service and infrastructure provisions. Overall, we collected a
dataset that positively identifies 399 “Regular” buildings and
105 “Low-quality” buildings using the 2020 layer of imagery.

Using the above features and labels, we train a gradient
boosting classifier 50 times on random 25%/75% data splits
and report the average and standard deviation F1 score per class.
Here, we observe F1 scores of 0.97 4+ 0.01 and 0.89 £ 0.03
for the regular and low-quality classes respectively. We find
that the number of neighbors in 200m of a building is the most
important feature in the model, with an importance of 87.23%,
which aligns with how the local experts evaluate the imagery.
Importantly, the trained gradient boosting classifier is now
able to be run on any layer of predicted footprints (despite
only having labels from recent years) after the same feature
extraction step. Figure 7, for example, shows the predictions
of the model over part of predicted building footprint layer
for 2010. This allows us to further break down the changes in
Amman by predicted building quality.

6. Conclusion

Building footprint segmentation from high-resolution im-
agery is an important task in many urban planning and disaster
response applications. However, creating models that generalize

Low-quality building &
predictions

Regular building
predictions

Figure 7. Map of predicted building footprints along with their
predicted regular or low-quality classification in a section of Amman
in 2010. Black outlines show known refugee camp locations. The
model predictions align with on-the-ground knowledge.

well for on-demand building footprint segmentation is difficult
due to differences in input imagery. We propose a workflow
to bypass problems in generalization that simply involves
creating labels for a new scene, training a building segmentation
model from scratch, then running the model over the scene.
We argue that this workflow is easily reproducible in any
location with several hours of labeling efforts. As an example,
we successfully apply this method in a case study mapping
buildings over time in Amman, Jordan to quantify urban change.

Acknowledgements

This work was made possible by a grant from Microsoft’s
Al for Humanitarian Action program.

References

[1] Nassim Ammour, Laila Bashmal, Yakoub Bazi, Mohamad Mah-
moud Al Rahhal, and Mansour Zuair. Asymmetric adaptation
of deep features for cross-domain classification in remote
sensing imagery. IEEE Geoscience and Remote Sensing Letters,
15(4):597-601, 2018. 2
Qonita P Ashilah, Revi Hernina, et al. Urban slum identification
in bogor tengah sub-district, bogor city using unmanned aerial
vehicle (uav) images and object-based image analysis. In IOP
Conference Series: Earth and Environmental Science, volume
716, page 012133. IOP Publishing, 2021. 7
[3] Vitus Benson and Alexander Ecker. Assessing out-of-domain
generalization for robust building damage detection. arXiv
preprint arXiv:2011.10328, 2020. 2

[2

—

1470



(4]

[5]

(6]

(7

(8]

9

(10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

Derrick Bonafilia, James Gill, Saikat Basu, and David Yang.
Building high resolution maps for humanitarian aid and
development with weakly-and semi-supervised learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 1-9, 2019. 2
Xueqing Deng, Yi Zhu, Yuxin Tian, and Shawn Newsam. Scale
aware adaptation for land-cover classification in remote sensing
imagery. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2160-2169, 2021. 2
David H Douglas and Thomas K Peucker. Algorithms for the
reduction of the number of points required to represent a digitized
line or its caricature. Cartographica: the international journal
for geographic information and geovisualization, 10(2):112-122,
1973. 4

Noah J Durst, Esther Sullivan, Huiqing Huang, and Hogeun Park.
Building footprint-derived landscape metrics for the identification
of informal subdivisions and manufactured home communities:
A pilot application in hidalgo county, texas. Land Use Policy,
101:105158, 2021. 7

Facebook Connectivity Lab and Center for International Earth
Science Information Network. High Resolution Settlement
Layer (HRSL). https://dataforgood. facebook .
com/dfg/tools/high-resolution-population—
density-maps, 2016. 2

Sean Gillies et al. Shapely: manipulation and analysis of
geometric objects, 2007—. 4

Ritwik Gupta, Richard Hosfelt, Sandra Sajeev, Nirav Patel, Bryce
Goodman, Jigar Doshi, Eric Heim, Howie Choset, and Matthew
Gaston. xbd: A dataset for assessing building damage from
satellite imagery. arXiv preprint arXiv:1911.09296, 2019. 1,2
Vladimir Iglovikov, Selim Seferbekov, Alexander Buslaev, and
Alexey Shvets. Ternausnetv2: Fully convolutional network for
instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages
233-237,2018. 3

Aatif Jiwani, Shubhrakanti Ganguly, Chao Ding, Nan Zhou,
and David M Chan. A semantic segmentation network for
urban-scale building footprint extraction using rgb satellite
imagery. arXiv preprint arXiv:2104.01263,2021. 3,5, 6
Microsoft. Building Footprints. https://www.microsoft.
com/en-us/maps/building-footprints, 2021. 2
Microsoft. US Building Footprints. https://github.com/
microsoft/USBuildingFootprints,2021. 2

Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi,
and Kyungnam Kim. Image to image translation for domain
adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4500-4509, 2018. 2

F Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011. 5
Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and
Gary Bradski. Kornia: an open source differentiable computer
vision library for pytorch. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
3674-3683, 2020. 4

(18]

(19]

[20]

(21]

(22]
(23]

(24]

[25]

1471

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and
computer-assisted intervention, pages 234-241. Springer, 2015. 3
Wojciech Sirko, Sergii Kashubin, Marvin Ritter, Abigail
Annkah, Yasser Salah Eddine Bouchareb, Yann Dauphin, Daniel
Keysers, Maxim Neumann, Moustapha Cisse, and John Quinn.
Continental-scale building detection from high resolution satellite
imagery. arXiv preprint arXiv:2107.12283,2021. 2, 3

Onur Tasar, SL. Happy, Yuliya Tarabalka, and Pierre Alliez.
Colormapgan: Unsupervised domain adaptation for semantic
segmentation using color mapping generative adversarial
networks. IEEE Transactions on Geoscience and Remote
Sensing, 58(10):7178-7193, 2020. 2

Devis Tuia, Claudio Persello, and Lorenzo Bruzzone. Recent
advances in domain adaptation for the classification of remote
sensing data. arXiv preprint arXiv:2104.07778, 2021. 2
UNHCR. Jordan fact sheet, September 2021. 7

Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow.
Spacenet: A remote sensing dataset and challenge series. arXiv
preprint arXiv:1807.01232, 2018. 2

Yongyang Xu, Liang Wu, Zhong Xie, and Zhanlong Chen.
Building extraction in very high resolution remote sensing
imagery using deep learning and guided filters. Remote Sensing,
10(1):144, 2018. 1

Pavel Yakubovskiy. Segmentation Models Pytorch.
https ://github . com/ qubvel / segmentation_
models.pytorch, 2020. 3



