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Abstract

Transformer models have recently approached or even
surpassed the performance of ConvNets on computer vision
tasks like classification and segmentation. To a large de-
gree, these successes have been enabled by the use of large-
scale labelled image datasets for supervised pre-training.
This poses a significant challenge for the adaption of vision
Transformers to domains where datasets with millions of la-
belled samples are not available. In this work, we bridge the
gap between ConvNets and Transformers for Earth obser-
vation by self-supervised pre-training on large-scale unla-
belled remote sensing data1. We show that self-supervised
pre-training yields latent task-agnostic representations that
can be utilized for both land cover classification and seg-
mentation tasks, where they significantly outperform the
fully supervised baselines. Additionally, we find that subse-
quent fine-tuning of Transformers for specific downstream
tasks performs on-par with commonly used ConvNet archi-
tectures. An ablation study further illustrates that the la-
belled dataset size can be reduced to one-tenth after self-
supervised pre-training while still maintaining the perfor-
mance of the fully supervised approach.

1. Introduction
The identification of land-cover characteristics from

satellite imagery is one of the key objectives in the remote
sensing domain. With an increasing number of Earth ob-
servation satellites in orbit, the amount of available remote
sensing data is steadily growing. This abundance of data
makes it possible to address a wide range of problems in
Earth observation with statistical learning methods that ben-
efit from large datasets. However, while raw satellite data
is available in large quantities today, land cover labels are
comparatively scarce and must be obtained through a man-

*Both authors contributed equally to this work
1https://github.com/HSG-AIML/SSLTransformerRS
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Figure 1. We propose to use large datasets of unlabelled remote
sensing data for self-supervised pre-training of vision Transform-
ers. After self-supervised training of the backbone (A), the model
and task-specific head can be fine-tuned on much smaller labelled
datasets for different downstream tasks (B).

ual annotation process that is prohibitively expensive for
more than a small fraction of the existing satellite data.

In parallel to the general computer vision (CV) commu-
nity, deep learning techniques such as Convolutional Neu-
ral Networks (ConvNets) have become the state-of-the-art
tools for a range of tasks in remote sensing over the last
years [41]. More recently, variations of the Transformer ar-
chitecture [35], which was originally devised for sequential
data and has led to breakthroughs in natural language pro-
cessing, have matched ConvNet performance on important
CV benchmark tasks like ImageNet classification [10].

In this work, we propose to combine Transformer-based
computer vision approaches with self-supervised learning
(SSL) for the remote sensing domain. This enables us to
pre-train Transformer models on large amounts of unla-
belled satellite imagery with a contrastive self-supervised
training setup tailored to multi-modal remote sensing data.
This facilitates training of large and data intensive Trans-
former models when only a small amount of labelled data
is available. Additionally, it allows us to use the same
backbone model for tasks such as classification or seg-
mentation by changing only the model head. We utilize
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the shifting-window vision Transformer architecture (Swin
Transformer) [17] with a contrastive data fusion SSL strat-
egy [25] and evaluate this pipeline with single-label classifi-
cation, multi-label classification and semantic segmentation
(i.e. pixel-wise classification) as downstream tasks.

We summarize the contributions of this work as follows:

• We show that vision Transformers combined with self-
supervised pre-training provide an effective approach
for deep learning in the remote sensing domain, sur-
passing ConvNet performance in some settings.

• We show that latent representations derived through
self-supervised pre-training and subsequent supervised
fine-tuning are task agnostic and can be utilized for
both land cover classification and segmentation.

• Our work further illustrates that SSL in combination
with vision Transformers or ConvNets can yield large
performance gains (up to +30% over supervised base-
lines) across different downstream tasks when fine-
tuned with labelled data.

• In an ablation study on fine-tuning self-supervised
models with different amounts of labelled data we
demonstrate that fully supervised approaches can be
outperformed with as little as 10% of labelled data
through SSL.

2. Related Work
2.1. Self-supervised Learning

Self-supervised learning is a branch of machine learn-
ing that aims to learn data representations from unlabelled
datasets. The literature on self-supervised deep learning
rapidly expanded in the last years, following the success of
methods like Word2Vec [19] or GloVe [22] in Natural Lan-
guage Processing (NLP). Consequently, similar approaches
were also adopted in the vision domain. Most SSL meth-
ods for images either employ pretext tasks or the princi-
ple of contrastive learning. Pre-text based methods utilize
inherent properties of data samples to construct prediction
tasks for training. These tasks include the prediction of fu-
ture states from earlier states in sequential data (e.g. au-
dio [34] or text [38]), as well as colorization of artificially
gray-scaled images [40], jigsaw tasks [20] or rotation pre-
diction [12] in image data. The second popular SSL strat-
egy, contrastive learning, trains neural networks to learn
the relationships between different data points by distin-
guishing among them. Fundamentally, this approach aims
to structure the latent space such that embeddings of similar
samples are close together, while those of dissimilar sam-
ples are far apart [13]. Different techniques for contrastive
learning on image data have been proposed [6,14,21,32,37]
and recently even surpassed the performance of supervised
training for ImageNet classification [7].

The remote sensing community has adapted SSL techniques
to learn meaningful representations of satellite imagery in
multiple works. Pretext tasks like inpainting and the pre-
diction of relative positions for image patches have been
utilized with different satellite datasets and compared to
contrastive estimation [30]. The authors of Seasonal Con-
trast [18] obtain positive samples for contrastive learning
from satellite images of the same locations at different
points in time together with augmented data points. Addi-
tionally, the data is mapped into multiple embedding sub-
spaces, which results in representations with invariances
with respect to different transformations. Work based on the
momentum contrast SSL technique [14] also utilizes satel-
lite imagery of given locations at different points in time as
temporal positives in contrastive learning, but combines it
with location classification in a multi-task framework [1].
The Contrastive Multiview Coding [32] framework for SSL
has also been adapted to remote sensing data [27,29]. These
works explored the potential of multi-spectral imaging data
in SSL with different band and sensor combinations, as well
as cross-dataset transfer of pre-trained models. A different
strategy for self-supervised pre-training specific to Trans-
former models is proposed in [39]. This approach exploits
the temporal structure of satellite imagery and frames the
prediction of artificially corrupted observations in a satel-
lite image timeseries as pretext task. Most relevant to our
work, [8] propose the use of a UNet-like architecture to ob-
tain pixel-wise representations of multi-modal remote sens-
ing data through contrastive learning. Similarly, [24] com-
bines three different unsupervised loss functions, including
a contrastive loss, on multi-modal remote sensing data to
pre-train a change detection model. Our work builds on the
multi-modal SSL approach from [25] which utilizes image
pairs from different satellite instruments as positive pairs.
However, we move beyond ConvNets and the proposed vi-
sion Transformer backbone enables our technique to learn
task agnostic representations for classification and segmen-
tation downstream tasks in a self-supervised fashion.

2.2. Vision Transformers

Transformers in NLP Transformers have revolutionized
the field of Natural Language Processing, being the state of
the art for several NLP tasks [3, 9], and slowly replacing
RNN-based models. Unlike RNNs, Transformers use atten-
tion mechanisms that allow them to process sequential data
without necessarily following the order of the sequence, and
capture long-range dependencies between tokens in a se-
quence (e.g. words in a sentence).

Transformers in vision In computer vision, however,
convolutional architectures remain dominant. Inspired by
the successes of Transformers in NLP, several works [2,31]
attempt to combine ConvNet-like architectures with atten-
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Figure 2. Network architecture for our proposed method. The training is performed in two stages. First, for Sentinel-1 and Sentinel-2
input pairs, we train a unique backbone consisting of two streams of Swin Transformers (Section 3.2), using a self-supervised contrastive
approach (A) (Section 3.1). Then, for the supervised learning of both tasks (B), the two outputs of the backbone (Z1,Z2) are fed into the
classification head (B.1) and the segmentation head (B.2). Intermediate representations (Z1i and Z2i ) are also used for the segmentation
head. The final projection layer of the segmentation head consists of an up-sampling layer followed by a 1x1 convolutional layer.

tion mechanisms. Moreover, ConvNet-Transformer hybrid
models began to emerge, using convolutions for the back-
bone, and appending a Transformer for the task head [5].
Vision Transformer (ViT) [10] is the first to replace con-
volutions entirely and proposes to apply a standard Trans-
former directly to images, with as little modification as pos-
sible, by dividing an image into patches and treating these
patches the same as tokens (words) in an NLP application.
This Transformer applies self-attention on a global recep-
tive field, and has a quadratic computational complexity to
the number of token. After being pre-trained on a large-
scale labelled dataset, ViT obtained competitive results on
ImageNet, but has some limitations on dense pixel-level
predictions (e.g., semantic segmentation), failing to cap-
ture the fine details due to its fixed patch size. For these
reasons, the Swin Transformer [17], a variant of the vi-
sion Transformer, proposes a hierarchical way of process-
ing the image, with the goal of achieving scale-invariant
representation. It uses the same concept of dividing the im-
age into patches, but groups non-overlapping patches into
windows and applies self-attention within each window. A
shifted-window scheme is used to allow for cross-window
attention connection, which provides a better global repre-

sentation. The Swin Transformer achieves a better speed-
accuracy tradeoff compared to other architectures of the
same complexity, for many downstream tasks such as im-
age classification and object detection. We use the Swin
Transformer for single-label and multi-label classification.

Semantic segmentation with Transformers Semantic
segmentation consists of classifying each pixel of an im-
age into a label. This prediction task requires modeling the
interactions between pixels to generate refined representa-
tions, which is not straightforward using Transformers. Re-
cently, [36] proposed a pure attention-based model for se-
mantic segmentation and introduced the position-aware ax-
ial attention layer that propagates information densely and
efficiently along the axes of height and width sequentially.
While this work follows a ConvNet-like design by gradually
reducing the spatial dimension of feature maps, others have
proposed complete encoder-decoder architectures based on
Transformers [28]. Here, we do not propose a new segmen-
tation network, instead we study the advantages of using
a task-agnostic representation obtained by self-supervised
pre-training of Swin Transformers with multimodal inputs,
which greatly improves the segmentation task.
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3. Methods
Figure 2 illustrates our overall approach, which we detail in
the following.

3.1. Self-supervised Learning

In this work we propose the use of contrastive SSL for
pre-training of Transformer models on remote sensing data.
A key property of remote sensing data is that data obtained
by a multitude of sensors aboard different satellites close in
time may be available for the same location. This prop-
erty can be exploited to generate multiple views of the
same scene in an augmentation free manner. The resulting
SSL strategy uses satellite imagery from different sensors
for the same location as positive image pairs and images
from other sensors and locations as negative samples [25].
This approach enables contrastive SSL without the use of
strong random augmentations and with dedicated encoders
for each modality (i.e., no weight-sharing), contrary to stan-
dard practice in SSL methods for natural images [6]. The
contrastive loss is defined as:

Li,j = −log
exp(sim(Ri,Rj)/τ)∑2N

k=1 1[k ̸=i]exp(sim(Ri,Rk)/τ)
, (1)

where Ri and Rj are representations of a positive pair
Rk are negative (contrastive) representations
sim(·, ·) is the dot product
1 is the indicator function
τ is a so-called temperature parameter

The vector representations R are obtained by passing the
samples through the backbone models (see Figure 2).

3.2. Swin Transformers

Swin Transformers [17] are vision Transformers de-
signed as backbones for all kinds of visual tasks, such as im-
age classification, object detection, semantic segmentation.
They owe their success to their scale invariance property,
which allows them to be used for both high-level and dense
predictions. Their strength results from their shifted win-
dow approach: a window contains non-overlapping squared
patches, and self-attention is calculated locally, within each
window, before shiting. As a result, the computational com-
plexity is reduced compared to the standard transformer.
The backbone (encoder) is made up of 4 building blocks,
where each block is constructed by connecting a patch
merging layer and several Swin Transformer blocks. A
Swin Transformer block is composed of Multi-head Self-
Attention (MSA), followed by a 2-layer Multi-Layer Per-
ceptron (MLP). A Layer Norm (LN) is applied before each
MSA and MLP. The first Swin Transformer block uses a
standard window partitioning configuration to locally com-
pute self-attention from uniformly separated windows. The

next one adopts a window configuration shifted by a certain
pixel offset relative to the previous layer, and so on.
Regarding the classification task, we concatenate the two
representations coming out of the backbone (see Figure 2),
and feed them into a fully connected layer. We detail in the
next section the architecture used for the segmentation task.

3.2.1 SwinUNet

We use SwinUNet [4] as the basic framework for the seman-
tic segmentation task. The architecture is similar to a UNet
[23]; it consists of an encoder, bottleneck, decoder and skip
connections. While in a traditional UNet the encoder and
decoder are symmetric blocks of convolutional and max-
pooling layers, in the SwinUNet they are symmetric blocks
of Swin Transformer (see Section 3.2). To generate the hi-
erarchical representations of the features, the Swin Trans-
former blocks are preceded by a patch merging (downsam-
pling) step in the contracting path and a patch expanding
(upsampling) step in the expansive path. Features extracted
after blocks of the same spatial dimension are merged via
skip connections. Finally, to restore the initial resolution
(height and width) of the input, an upsampling operation if
performed on the last patch expansion layer.
Dual SwinUNet: We propose two separate SwinUNet net-
work streams with identical architectures (see previous de-
scription) to process pairs of Sentinel-1 and Sentinel-2 data
in parallel, in a dual stream concept (see Figure 2). The fea-
tures extracted after the last patch expansion layer of each
stream are concatenated along the channel dimension and
fed into the last pointwise convolution (1x1 kernel) to pro-
duce the segmentation predictions at the pixel-level. The
purpose of the dual SwinUNet is to capture the information
belonging to each of the two inputs first, before merging the
two representations for the final decision.

4. Data
This work applies SSL and vision Transformers on

paired satellite data from the Sentinel-1 and Sentinel-2 mis-
sions of the European Space Agency’s Copernicus program.
Sentinel-1 is a satellite mission for Earth observation with
Synthetic Aperture Radar (SAR) [33]. It provides medium
resolution (∼10m) C-band SAR measurements with dual
polarisation, which enables data acquisition during night or
through cloud cover. The two Sentinel-1 satellites are in
sun-synchronous orbits with a 12 day repeat cycle. This
work utilizes VV and VH polarized data from the main In-
terferometric Wide-swath mode.
Sentinel-2 is a constellation of two sun-synchronous satel-
lites for optical Earth observation at medium resolu-
tion [11]. The on-board instrument provides multi-spectral
observations in the visible, near- and short-wave infrared in
13 bands with up to 10m pixel resolution. The two Sentinel-
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Table 1. Results for single- and multi-label classification downstream tasks with ResNet50 and Swin Transformer backbones. S1 and S2
models are trained solely on data from Sentinel-1 or Sentinel-2 without data fusion. EarlyF. and LateF. perform Sentinel-1/2 data fusion at
the model input or embedding level. FT corresponds to fine-tuning the pre-trained self-supervised model for the downstream task, whereas
”Frozen” models only train task-specific heads. Accuracies are reported with their standard deviations from 5 runs. The best performing
model for each class is highlighted in bold. The frequency of each class in the training set is noted in parentheses in the Class column,
reflecting class imbalances.

ResNet50 Swin Transformer
Baselines SSL Baselines SSL

Class S1 S2 EarlyF. LateF. FT Frozen S1 S2 EarlyF. LateF. FT Frozen

Si
ng

le
-la

be
l(

A
cc

ur
ac

y
%

)

Forest (8%) 34± 4 13± 4 12± 3 15± 3 65± 8 34± 2 8± 1 19± 3 30± 2 30± 3 17± 6 35± 2
Shrubl. (4%) 24± 2 32± 5 31± 5 34± 1 56± 11 73± 1 9± 2 41± 4 42± 1 46± 2 47± 9 57± 2
Grassl. (10%) 10± 1 4± 2 7± 5 7± 3 9± 6 2± 1 1± 0 1± 0 0± 0 3± 1 7± 5 5± 1
Wetl. (18%) 35± 6 21± 5 21± 8 14± 3 15± 8 60± 2 44± 4 10± 3 2± 1 10± 3 22± 8 65± 4
Cropl. (16%) 47± 4 30± 3 35± 5 58± 3 45± 8 51± 0 20± 2 30± 1 33± 1 39± 4 55± 10 54± 2
Urban (6%) 82± 4 74± 7 88± 4 82± 3 95± 1 98± 0 85± 1 54± 2 89± 2 88± 2 94± 2 93± 1
Barren (2%) 29± 5 26± 4 26± 4 27± 4 39± 3 37± 2 33± 6 40± 4 35± 4 35± 2 48± 4 50± 2
Water (36%) 96± 2 91± 9 93± 7 96± 1 99± 1 95± 0 97± 0 78± 3 97± 0 97± 0 99± 0 98± 0
Overall 54± 2 42± 2 45± 1 52± 1 67± 2 60± 1 40± 1 40± 2 52± 1 53± 1 55± 3 60± 1

Average 43± 1 36± 2 39± 1 42± 1 53± 1 56± 1 37± 1 34± 1 41± 1 44± 0 49± 2 57± 1

M
ul

ti-
la

be
l(

F1
Sc

or
e

%
)

Forest (20%) 63± 2 59± 7 67± 6 73± 4 79± 2 65± 2 18± 2 55± 2 69± 2 48± 3 65± 7 69± 2
Shrubl. (8%) 24± 2 32± 3 35± 2 35± 1 40± 3 32± 1 13± 2 32± 2 32± 1 29± 1 38± 3 39± 0
Grassl. (27%) 33± 8 53± 5 49± 4 43± 4 47± 6 11± 3 14± 4 51± 2 39± 7 50± 2 18± 6 40± 3
Wetl. (35%) 18± 2 9± 2 10± 1 12± 2 24± 2 16± 2 18± 1 9± 1 9± 1 10± 1 23± 3 27± 1
Cropl. (23%) 63± 1 58± 3 60± 1 63± 1 70± 3 64± 1 46± 3 56± 1 56± 2 61± 1 69± 1 65± 1
Urban (10%) 70± 3 55± 3 61± 2 73± 1 80± 2 79± 1 69± 0 51± 1 65± 2 70± 1 77± 1 83± 1
Barren (6%) 27± 3 24± 2 22± 3 22± 2 34± 3 25± 0 14± 2 22± 2 25± 1 26± 2 33± 4 32± 2
Water (43%) 95± 0 89± 2 96± 3 96± 0 97± 0 93± 0 95± 0 72± 1 94± 0 95± 0 97± 0 96± 1
Overall 56± 2 56± 2 59± 2 61± 1 67± 1 60± 0 42± 1 51± 2 58± 1 56± 1 60± 1 62± 1

Average 49± 2 47± 2 50± 1 52± 1 59± 1 48± 1 36± 1 43± 0 49± 1 49± 0 53± 1 56± 1

Table 2. Results for segmentation downstream tasks with Swin Transformer backbone. S1 and S2 models are trained solely on data from
Sentinel-1 or Sentinel-2 without data fusion. EarlyF. and LateF. perform Sentinel-1/2 data fusion at the model input or embedding level. FT
corresponds to fine-tuning the pre-trained self-supervised model for the downstream task, whereas ”Frozen” models only train task-specific
heads. Per-class accuracies and mean Intersection over Union are reported with their standard deviations from 5 runs. The best performing
model for each class is highlighted in bold. Per-class pixel-wise distribution in our training set is mentioned next to each class.

Baselines SwinUNet SSL
UNet SwinUNet FT Frozen

Class S1 S2 EarlyF. LateF. S1 S2 EarlyF. LateF. S1 S2 LateF S1 S2 LateF.

Forest (9%) 78± 0 74± 2 80± 1 81± 1 68± 1 72± 1 78± 1 81± 0 78± 1 67± 0 62± 2 70± 2 74± 1 84± 2
Shrubl. (5%) 17± 1 24± 1 20± 1 22± 2 4± 1 22± 2 23± 1 27± 0 13± 2 40± 2 48± 1 14± 1 20± 2 24± 1
Grassl. (12%) 25± 2 28± 0 38± 3 34± 2 9± 1 19± 0 38± 0 14± 2 17± 0 6± 1 6± 0 18± 2 19± 1 23± 3
Wetl. (18%) 5± 0 4± 1 4± 0 6± 0 5± 0 6± 3 7± 3 3± 0 6± 2 11± 3 16± 1 8± 0 6± 0 8± 1
Cropl. (13%) 57± 4 47± 1 49± 2 50± 1 37± 2 39± 2 44± 2 48± 2 53± 0 60± 0 52± 2 51± 2 48± 2 47± 0
Urban (5%) 55± 1 47± 1 51± 2 48± 0 37± 0 46± 1 54± 1 57± 1 60± 1 74± 1 82± 0 65± 1 58± 1 62± 2
Barren (3%) 19± 1 23± 2 28± 1 27± 2 16± 2 20± 0 22± 0 18± 0 22± 2 19± 2 36± 1 36± 1 32± 0 39± 1
Water (35%) 97± 0 93± 2 98± 1 98± 0 96± 1 94± 2 98± 1 96± 2 98± 3 99± 0 99± 0 98± 0 96± 1 98± 2
Overall 57± 0 56± 1 57± 2 58± 1 47± 0 53± 2 59± 1 60± 1 52± 1 57± 2 63± 0 59± 0 59± 0 62± 2

Average 43± 1 43± 1 46± 1 45± 1 33± 2 39± 1 44± 2 43± 1 43± 2 46± 1 51± 1 44± 2 44± 0 48± 2

mIoU 32± 1 31± 2 32± 1 31± 3 24± 3 28± 2 32± 0 33± 1 29± 2 35± 0 37± 1 31± 2 32± 1 35± 1

2 satellites achieve a revisit rate of 5 days at the equator.
SEN12MS The SEN12MS dataset [26] is a large-scale col-
lection of spatially aligned observation pairs from Sentinel-
1 and Sentinel-2. The dataset contains 180,662 observations

and covers different geographical areas around the world.
All Sentinel-1/2 image pairs are obtained in the same season
and pre-processed to a harmonized resolution of 10m for
all bands. This work utilizes SEN12MS for self-supervised
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pre-training without access to any labels.
DFC2020 The DFC2020 dataset is an extension to
SEN12MS constructed for the IEEE GRSS Data Fusion
Contest 2020 [16]. This dataset consists of a valida-
tion and test sets with 986 and 5,128 paired Sentinel-
1/2 observations, respectively. In addition to the satel-
lite imagery, DFC2020 also provides dense (i.e., pixel-
level) land-cover annotations for the classes Forest,
Shrubland, Grassland, Wetland, Cropland,
Urban/Built-up, Barren and Water. We use the
DFC2020 dataset to evaluate the downstream tasks of
single- and multi-label classification and semantic segmen-
tation. In this work we use the validation split for training,
as in Track 2 of the Contest. We note that this data is highly
unbalanced (see Tables 1 and 2). Furthermore, we follow
a different objective than the Data Fusion Contest [16] by
utilizing its dataset to investigate the use of SSL and vision
Transformer models in the remote sensing domain.

5. Experiments and Results
We perform extensive experiments to assess the per-

formance of vision Transformers on three different down-
stream tasks based on the DFC2020 dataset. The Trans-
former architectures are compared against different base-
lines, including commonly used ResNet50 ConvNet mod-
els [15]. In particular, we focus on the benefits of SSL and
subsequent fine-tuning over training from scratch to lever-
age the large vision Transformer models on small labelled
remote sensing datasets.

5.1. Baselines

Classification Baselines: We use four different data set-
tings for each classification baseline model architecture:
Only Sentinel-1 input data, only Sentinel-2 input data, early
Sentinel-1/2 fusion through concatenation across channel
dimension at the data input stage, and late fusion by con-
catenating feature maps derived from Sentinel-1/2 inputs
with distinct model backbones before the final classifica-
tion layer. Besides Swin Transformers, we use ResNet50
as baseline model architecture as it comprises a comparable
number of parameters to the Transformer (Swin-t). These
models are trained from scratch on the validation split of
the DFC2020 dataset. Results evaluated on the test split are
reported in Table 1. Both architectures result in moderately
good performance for single-label classification despite the
small training dataset. The Swin Transformer achieves the
best average accuracy in the late-fusion setting (44±0 per-
centage points), while the ResNet50 slightly outperforms
the Transformer in early-fusion and uni-modal settings. For
multi-label classification (see Table 1 bottom half) the late
fusion approach yields the highest F1 Scores for both back-
bone architectures (52±1 and 49±0 percentage points for
ResNet50 and Swin Transformer, respectively).

Segmentation Baselines: We use two baseline models to
compare the self-supervised model we present for the se-
mantic segmentation task, i) a standard UNet architecture
[23] and ii) a SwinUNet (see Section 3.2.1). We train both
these baselines from scratch, following the same experi-
mental setup described above. Note that for the late fusion
experiment, we use a Dual SwinUNet model (see Section
3.2.1). Results are reported in terms of pixel-wise accu-
racy and mean Intersection over Union (mIoU) in Table 2.
We note that UNet achieves higher pixel accuracy than Swi-
nUNet in both uni-modal and multi-modal configurations,
with the best average accuracy reaching 46± 1.

5.2. SSL Pre-training with Fine-tuning

After self-supervised training of the respective model
backbone on the SEN12MS dataset (∼3 days on a NVIDIA
Tesla V100 GPU), all model parameters (backbone and
task-specific head) are fine-tuned for the downstream task
of interest. For single-label classification, we find that
self-supervised pre-training with subsequent fine-tuning
strongly outperforms all baseline models (see Table 1). The
average accuracy score increases by 10 and 5 percentage
points for ResNet50 and Swin Transformer, respectively.
This corresponds to a relative increase of 23.3% and 11.4%
over the best baselines. We find similar results in the
multi-label setting, with relative increases in F1 Scores of
13.5% and 8.2% over the best baselines with the fine-tuned
self-supervised ResNet50 and Swin Transformer models.
Segmentation results are shown in Table 2 for uni-modal
(Sentinel-1, Sentinel-2) and multi-modal (late-fusion, see
Figure 2) inputs. For the multi-modal case, we note that the
average pixel accuracy of our fine-tuned model increased
by 8 (+19% relative increase) and 6 (+13%) percentage
points, compared to the SwinUNet and the UNet trained
from scratch, respectively.

5.3. SSL Pre-training with Frozen Backbone

We investigate to what degree feature maps produced
by models trained in a self-supervised manner encode rele-
vant information for land-cover classification and segmen-
tation downstream tasks. To test this, we freeze all param-
eters of the model backbones and only train the parame-
ters of randomly initialized classification or segmentation
heads for each task. Evidently, our SSL strategy extracts
meaningful features for land-cover classification. Train-
ing a single-label classification head on top of the frozen
ResNet50 backbone yields strong performance, and even
surpasses the best ResNet50 baseline model by 13 percent-
age points average accuracy (+30.2%). The frozen Swin
Transformer model even yields the best single-label classifi-
cation performance of all approaches presented in this work
with an average accuracy of 57±1 (+29.5% over best Swin
Transformer baseline). The pre-trained and frozen Swin
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(a) Swin Transformer and ResNet50 models pre-trained with SSL strongly
outperform training from scratch on the classification downstream task.
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(b) SwinUNets with pre-training outperform training from scratch when
freezing or fine-tuning the backbone.

Figure 3. (a) Classification and (b) segmentation results for training on different fractions of labelled data.

Transformer yields similar performance on the multi-label
downstream task (+14% average F1 Score over best base-
line), even though the frozen ResNet50 fails to outperform
the best multi-label classification baseline (-7.7% average
F1 Score). This indicates that the self-supervised Trans-
former model learns more meaningful representations that
encode sufficient information to extract multiple class labels
with a small classification head.
We observe largely similar behavior for the segmentation
task; training only the segmentation head surpasses our two
baselines (UNet and SwinUNet) by 5 (+12%) and 3 (+7%)
percentage points, respectively, but performs no better than
fine-tuning.

5.4. Label Fraction Experiments

We investigate the degree to which SSL can offset the
problem of small labelled training datasets. To that end the
models are trained with subsets consisting of 50%, 10% and
1% of our training data (corresponding to ∼500, 100 and 10
observations). This results in strongly reduced performance
when using only 1% of data (see Figure 3). However, the
fine-tuned self-supervised models significantly outperform
both the self-supervised models with frozen backbone, and
the baseline models trained from random initializations (36
vs. 25 average accuracy points for the fine-tuned and base-
line Swin Transformer, respectively). With only 10% of the
labelled data, all self-supervised modles outperform the best
supervised baselines trained on the entire dataset. The per-
formance rapidly increases with the amount of available la-
belled training data for all models.

5.5. Implementation Details

We perform extensive experiments across different
model backbone architectures, data fusion strategies and
downstream tasks. To limit computational cost, hyperpa-
rameters of the task-specific fine-tuning experiments are

Table 3. Comparison of different methods for segmentation. All
models are trained using multi-modal input, SSL-ft means we are
fine-tuning the pre-trained model

UNet SwinUNet SwinUNet SSL-ft. Ensemble

Avg. Accuracy 0.45 0.43 0.51 0.53
Avg. IoU 0.31 0.33 0.37 0.39

fixed to sensible values a-priori, rather than tuned for ev-
ery individual experimental setting. The batch size is set
to 32, learning rate to 3 · 10−6 and the number of training
epochs to 200. This approach also makes it possible to uti-
lize the full DFC2020 validation set (986 observations with
dense land-cover labels) for training as we do not require a
validation set for hyperparameter tuning.

6. Discussion

Our work highlights the benefits of pre-training Swin
Transformer backbones with a contrastive learning ap-
proach and subsequently fine-tuning them for different
downstream tasks. Following this protocol we observe a
significant improvement in performance for each of our
downstream tasks over standard fully supervised training.

In the classification task, the self-supervised fine-tuned
ResNet outperforms the SSL-fine-tuned Swin Transformer
in average accuracy by a small margin. This could be ex-
plained by the comparatively higher maturity of the ResNet
architecture over Transformers in computer vision, lead-
ing to better default parameter configurations. Moreover,
we observe that the SSL-Swin Transformer with frozen
backbone performs better than the SSL-ResNet with frozen
backbone, indicating that the Transformer model man-
ages to learn more informative representations for our
downstream tasks. This advantage is particularly appar-
ent in multi-label classification, further illustrating that the
Swin Transformer manages to extract informative features
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Figure 4. Qualitative comparison of results for 3 different regions. Results from left to right: Sentinel-2 true color (RGB), DFC groundtruth,
UNet trained from scratch on fusion of both inputs, SwinUNet trained from scratch on both inputs, SwinUNet fine-tuned on both inputs,
and finally an ensemble model of both UNet and SwinUNet (see Section 6).

through self-supervised pre-training. For single label classi-
fication, the frozen backbone models performed better than
finetuning all parameters, which we attribute to the hyperpa-
rameter choice. For the segmentation task, we arrive at the
same conclusion as above: self-supervised pre-training con-
siderably boosts performances. Nevertheless, we note that
the SSL-Swin Transformer with frozen backbone does not
perform better than the SSL-fine-tuned one. This may be
a result of the segmentation head architecture, which uses
skip connections to merge the multi-scale characteristics of
the encoder with the upsampled characteristics of the de-
coder. Therefore, to achieve the best performance, encoder
and decoder parameters should be updated simultaneously.
The importance of our approach for data-efficient learn-
ing is further underlined by the results of the label fraction
experiment. Across all downstream tasks, our pre-trained
and fine-tuned models perform on par with models trained
from scratch with as little as 10% of the labelled data. This
SSL approach thus opens a path to learning based on very
small datasets (∼100 samples), enabling data-efficient ap-
plications. In a qualitative comparison, we show in Fig-
ure 4 some segmentation results. We first observe that the
UNet method produces smoother segmentation masks com-
pared to the SwinUNet. On the other hand, the segmen-
tation masks produced by the SwinUNet are much more
detailed and accurate. These observations motivated the
idea of trying an ensemble of these two methods where we
take the average of the predictions of the two models, be-
fore computing the final prediction (see Figure 4). Across

all our downstream tasks, we note that classes like Grass-
land or Wetland are commonly misclassified on some im-
ages. This is most likely due to our limited and very un-
balanced training set (see Tables 1 and 2). Overall, the en-
semble model works best, both visually, giving smooth and
detailed results, and numerically (see Table 3). This pushes
us to explore this direction in future works, with the aim of
improving land cover segmentation, taking into account the
advantages of each of these methods.

7. Conclusion

This work introduced a self-supervised pre-trained Swin
Transformer for land cover classification and segmentation
using a contrastive learning approach as illustrated in Figure
2. The training is done in two stages; first, self-supervised
training of one unique backbone is performed on a large un-
labeled dataset, second, supervised fine-tuning of this back-
bone is performed on a small, labeled dataset, for two sepa-
rate downstream tasks. Experimental results on the test set
validate our proposed method over training various different
baseline models trained from scratch. Our self-supervised
approach yields consistently higher performance across dif-
ferent downstream tasks, with particularly strong improve-
ments in the low-data regime. Furthermore, our work illus-
trates the utility of Transformer models for Earth observa-
tion without the need for large labelled datasets.
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