
Single-Shot End-to-end Road Graph Extraction
Supplementary Material

Gaetan Bahl1,3 Mehdi Bahri2 Florent Lafarge3

1IRT Saint Exupéry 2Imperial College London 3Université Côte d’Azur - Inria
{gaetan.bahl,florent.lafarge}@inria.fr, m.bahri@imperial.ac.uk

1. Inference on large images
We found that the output of the link prediction branch

is tied to the training image size. Thus, we did not obtain
good results by directly inferring on larger images when the
network was trained on small images. To circumvent this is-
sue, we apply our network on the large images of the Road-
Tracer test set using a sliding window of the same size as
the training patches, and accumulate the detected edges.

2. Impact of choosing a smaller backbone
Feature extractors (backbones) come in different sizes to

suit different kinds of performance targets. For example,
some applications like edge computing might accept a re-
duction on accuracy in favor of faster inference time and
higher throughput. In order to evaluate the impact of choos-
ing a smaller backbone on our method, we take the network
presented in the main text and replace the ResNet-50 back-
bone with ResNet-18.

Method APLS Single image time (s)
Ours (R18) 38.80 19.6
Ours (R50) 40.45 20.9

Table 1. Run-time in seconds on the RoadTracer Dataset. The
single image score is averaged over the whole test set. Using a
smaller backbone (R18) is slightly faster but causes a small drop
in APLS.

The results of this experiment are presented in Table 1.
We observe that using a ResNet-18 backbone is slightly
faster but results in a slightly lower APLS score. This means
that our method works with smaller backbones and thus can
be used on a variety of low power devices, especially ones
that have a low amount of memory, such as the Nvidia Jet-
son family of devices.

3. Impact of edge detection threshold
In this section, we study the impact of the edge detec-

tion threshold, which can be freely chosen between 0 and

1. To do this, we compute the three main accuracy met-
rics for a range of thresholds varying between 0 and 0.5,
using our main model. Setting a high detection threshold
favors the Precision of edges, while setting a low threshold
favors the Recall. Figure 1 shows the results of this exper-
iment. We observe that the P-F1 (pixel metric) and APLS
are better when detecting more edges, while the J-F1 (junc-
tion metric) is slightly better when detecting fewer edges.
This makes sense as the J-F1 is based on having the correct
number of edges for each junction, while the APLS should
benefit from more path options. The P-F1 may be higher
at low thresholds simply because we find more road pixels.
This experiment shows that finding and setting an appropri-
ate edge threshold for each model is important in order to
obtain the best accuracy and the best compromise between
the three metrics.

Figure 1. J-F1, P-F1 and APLS scores for our main model, at a
range of edge detection thresholds.

4. On the J-F1 metric
As previously said in the Method and Limitations sec-

tions of our main text, our method is only able to find a
single point-of-interest per output cell, which can lead to

1

merged junctions in the output graph. In addition, as seen
in the Experiments section of the main text, our method will
inherently find a lower number of junctions since it is tai-
lored towards the extraction of a sparse graph. Since the J-
F1 score is based on a matching of junctions within a certain
radius, we believe that these design choices significantly af-
fect this metric, which leads to our method scoring lower
than some other approaches.

5. GNN model choices and ablation study
In this section, we perform a comparative study of dif-

ferent design decisions for the GNN portion of the model.
We compare the following choices for the construction

of the road graph:

1. Using the complete graph as the supporting graph for
each GNN layer and treating the problem as a pure
edge classification task

2. Initializing the road graph by k-NN search (k = 4) on
the output of the node feature branch (dim = 256) to
which we concatenate the Cartesian coordinates of the
junctions (dim = 2)

3. Dynamic construction of the graph at each layer by
k-NN search (k = 4) on the layer’s input (i.e., as de-
scribed in point 2 for the first layer, and on the output
features of the previous layer for subsequent layers)

We also compare two choices of edge scoring function:

1. A 2-layer MLP (FC(256) → FC(256) where FC(N)
denotes a fully-connected layer with N output fea-
tures)

2. A 256× 256× 1 bilinear layer

We use a three-layer graph neural network based on the
EdgeConv operator with BatchNormalization and ReLU ac-
tivations. We parameterize the EdgeConv operators each
with a linear layer with 256 output features. We also report
the results of baseline models trained without graph convo-
lutions.

Finally, we compare the 3-layer EdgeConv networks
with DeepGCNs [6, 7] using the Generalized Graph Con-
volution (GENConv) operator [7], layer normalization [2]
and ReLU activations. We apply the DeepGCN layers se-
quentially on:

1. The raw image features produced by the backbone
(DeepGCN)

2. The output of one convolutional layer in the node fea-
ture branch (1 Conv + DeepGCN)

3. The output of 4 convolutional layers in the node feature
branch (4 Conv + DeepGCN) as for the EdgeConv-
based models

In case (1) we used 7 layers of (GENConv → Layer-
Norm → ReLU), in case (2) we used 6 layers, and in case
(3) we used 3 layers, so as to keep model capacity compa-
rable with the EdgeConv models applied on the full node
feature branch. We applied the DeepGCNs on the complete
graphs only.

For each of these experiments, we report the J-F1, P-
F1 and APLS metrics at the edge threshold that maximizes
their sum. Table 2 shows the results of these experiments.
To enable faster experimentation, we initialized some of the
models using the pre-trained weights of a ”Baseline MLP”
model trained on the complete graph, such models are de-
noted by a checkmark in the ”Pre-trained” columns of Table
2.

We can draw the following conclusions from the experi-
mental results shown:

• The baseline with the bilinear classifier outperforms
the baseline with a 2-layer MLP, which is expected
since it has a much larger number of parameters. While
the improvement is noticeable, the model loses com-
pactness and efficiency.

• All three constructions of the graph (complete, static
k-NN and fully dynamic) are able to perform well and
to outperform the MLP and the Bilinear baseline. No-
tably, the models that combine a GNN with an MLP
classifier outperformed the ones with the same GNNs
but a bilinear classifier (scoring function). The entire
GNN adds fewer parameter than changing the MLP for
a bilinear layer, and yet can bring larger performance
deltas, which further motivates our choice of using an
MLP scoring function.

• The best performing GNN with the EdgeConv oper-
ator used a fixed 4-NN graph support for message
passing (but still scored all possible edges for the fi-
nal graph). However, choosing the right value of k
adds another element to hyperparameter tuning of the
model and comes at the disadvantage of reduced ro-
bustness to cases where images have no junctions to
detect (e.g. satellite images of large bodies of water
such as lakes). We therefore chose to report the per-
formance of the simpler model in the main text, while
showcasing that sparse graph priors may indeed lead
to better road graph reconstructions.

• Getting rid of the node features branch reduces the
number of trainable parameters but appears to be detri-
mental to the performance in most cases. Experiments
with deeper GNNs applied directly on the output of the
backbone showed increased performance compared to
shallower GNNs, although the graph construction dif-
fers (l. 14, 17)

Pre-trained Init Graph GNN Classifier Raw feat Wait Train jthr J-F1 P-F1 APLS Sum
1 ✓ Baseline ✗ Bilinear 40.33 55.93 43.95 140.21
2 Baseline ✗ Bilinear 36.03 53.87 41.64 131.54
3 Baseline ✗ Bilin small 32.24 50.4 36.11 118.75
4 ✓ Baseline ✗ MLP 36.92 53.43 41.17 131.53
5 Baseline ✗ MLP 35.46 56.03 45.35 136.84
6 ✓ Complete EdgeConv Bilinear 37.69 56.04 45.39 139.13

7* ✓ Complete EdgeConv MLP 39.23 57.2 46.93 143.36
8 ✓ Dynamic EdgeConv Bilinear 35.63 56.29 46.04 137.96
9 ✓ Dynamic EdgeConv Bilinear 0.3 37.90 55.5 43.68 137.08

10 ✓ Dynamic EdgeConv Bilinear ✓ 37.32 52.07 38.51 127.91
11 ✓ Dynamic EdgeConv Bilinear ✓ 0.3 37.92 52.37 40.27 130.55
12 ✓ Dynamic EdgeConv MLP 38.44 56.7 46.21 141.35
13 ✓ Dynamic EdgeConv MLP ✓ 34.95 53.75 41.57 130.27
14 ✓ Dynamic EdgeConv MLP ✓ 0.3 35.54 56.5 45.91 137.95
15 ✓ kNN-4 EdgeConv Bilinear 37.30 54.25 42.28 133.83
16 ✓ kNN-4 EdgeConv MLP 37.41 57.54 48.71 143.66
17 ✓ Complete DeepGCN MLP ✓ 37.17 55.43 42.59 135.19
18 ✓ Complete 1 Conv + DeepGCN MLP 38.35 57.11 47.12 142.58
19 ✓ Complete 4 Conv + DeepGCN MLP 37.89 57.71 48.84 144.44
20 Dynamic EdgeConv Bilinear 34.52 50.74 35.52 120.78
21 Dynamic EdgeConv Bilinear ✓ 30 33.23 46.26 30.71 110.20
22 Dynamic EdgeConv Bilinear 30 32.03 50.94 37.31 120.28
23 Dynamic EdgeConv Bilinear ✓ 30 0.3 36.89 49.02 32.13 118.04
24 Dynamic EdgeConv MLP 36.35 56.31 45.55 138.21
25 Dynamic EdgeConv MLP 30 36.54 55.72 43.97 136.22
26 Dynamic EdgeConv MLP 30 0.3 34.32 55.41 45.65 135.38
27 Dynamic EdgeConv MLP 10 0.3 35.36 54.96 44.44 134.76
28 Dynamic EdgeConv MLP ✓ 30 0.3 34.48 55.02 42.15 131.65
29 Dynamic EdgeConv MLP ✓ 30 35.73 54.9 41.91 132.54
30 Dynamic EdgeConv MLP ✓ 10 0.3 34.90 56.03 44.60 135.54

Table 2. Variations on our model. Pre-trained = use of pre-trained ResNet and junctionness/offset branches for faster training. Raw feat =
GNN applied directly to ResNet features (no node feature convolutions). Wait = Number of epochs where only the junction-ness and offset
branches are trained before training the edge branch (default: 0). Train jthr = junction-ness threshold used during training (default: 0.5).
Sum = J-F1 + P-F1 + APLS. *variation presented in the main text

• Compared to 3-layer EdgeConv networks on the com-
plete graphs, 3-layer DeepGCNs applied following ei-
ther a 1-layer or 4-layer node feature branch performed
better. These models also outperformed the dynamic
graph models and the 3-layer EdgeConv applied on a
sparse 4-NN graph (by a slimmer margin in the latter
case). The DeepGCNs applied on raw features outper-
formed some of the shallower models trained with a
node feature branch, but did not match the best per-
forming models.

• All DeepGCNs outperformed the MLP baseline,
which indicates that, keeping the edge scoring function
the same, replacing all (DeepGCN, l. 17)or most (1
Conv + DeepGCN, l. 18)2D convolutions with graph
convolutions leads to increased performance compared

to a model that only uses 2D convolutions.

Deep Graph Convolutional Networks We suspect the
last two points are due to two effects: first, 2D convolutions
can be seen as special cases of graph convolutions applied
to the 2D lattice graph while enforcing translation equiv-
ariance; their inductive bias is well suited to the processing
of images. In contrast, we applied the GNNs (EdgeConv
or DeepGCN) on the (dynamic or complete) graphs of de-
tected junctions, which means the GNNs do not have access
to the neighboring pixel’s context whereas the 2D Euclidean
convolutions do. We believe this contributes to the reduced
performance of all graph-convolutional models compared
to models that combine 2D convolutions and graph convo-
lutions. Additionally, the higher performance of the graph
convolution models compared to only using 2D convolu-

tions - especially on the APLS metric - show the contribu-
tion of the graph-based models.

Regarding the relative performance of DeepGCNs com-
pared to shallower EdgeConv models, the graphs extracted
from the images are small: they have at most 16×16 = 256
nodes and (256) ∗ (256 − 1)/2 = 32640 edges. The in-
crease in receptive field that comes with deeper models will
lose effectiveness once the entire graph is covered at a given
layer. Furthermore, the experiments we report with Deep-
GCNs in Table 2 are done using the complete graph as sup-
port. Messages from each node reach all other nodes in a
single iteration, which reduces the benefits one can glean
from using deeper models, and makes the GNNs more sus-
ceptible to the smoothing problem [9]. We therefore de-
cided to report results using shallow GNNs using the Edge-
Conv operator which is well suited to learning edge features
and to learning on dynamic graphs. Further work will in-
vestigate using DeepGCNs on sparse graphs as well as on
graphs built on larger images.

Junctionness threshold In addition to the ablation study,
we evaluated the impact of the junction-ness threshold jthr
used during training. Lowering this threshold seems to have
a positive impact on the three metrics. Our intuition is that
when the junction-ness threshold is lower, the subsequent
GNN is presented with more nodes and a larger number of
possible edges for each image, and is thus trained better and
faster.

6. Other uses of our method

Our method is generic in the sense that it could be used
for applications other than road extraction. In fact, it could
be suitable for any image to 2D graph application. For ex-
ample, our method could be used for blood vessel extraction
as done in [13]. Another example is the polygonal extrac-
tion of buildings in aerial images. For this task, just like for
road extraction, existing methods either rely on an iterative
process [10] or on post-processing of a pixel-based segmen-
tation [8]. Thus, for this task, our method is able to provide
the same advantages as for road extraction. Figure 2 shows
an example of building extraction using our method.

7. Qualitative results

Figures 3 and 4 show more qualitative results on cities
from the RoadTracer test set. Our method is able to
find more roads than RoadTracer [3] and DeepRoadMap-
per [11]. Some roads and highways that cannot be accessed
easily by iterative approaches are found by our method. Our
graphs also seem to have a better connectivity than the ones
found by the segmentation-based method.

Figure 2. Our method can be used for other tasks, such as build-
ing extraction. This example is taken from the CrowdAI Mapping
Challenge dataset [12]

8. Environmental impact statement

While the focus of our work is to create efficient neural
networks that are able to run on very low power devices, we
cannot help but notice that these networks are still created
and trained using power-hungry multi-GPU machines and
wonder about the environmental impact. For this paper, we
tracked the number of GPU hours used and use that to es-
timate its global environmental footprint and publish these
estimations, as recommended in [1, 4, 5].

In order to run the experiments required for our main
results and ablation study, we have used 1572 GPU hours
on Nvidia Tesla V100 GPUs, which are rated for a power
consumption of 300W. This, not counting CPUs, cooling,
PSU efficiency, storage of datasets and results, as well as
different trials or hyper-parameter searches on workstations,
amounts to 471,6kWh. Since the carbon intensity of our
electricity grid is 10 gCO2/kWh, we estimate an emission
of 4716 gCO2, which is equivalent to 39.17 km traveled by
car according to [1].

References

[1] Lasse F Wolff Anthony, Benjamin Kanding, and Raghaven-
dra Selvan. Carbontracker: Tracking and predicting
the carbon footprint of training deep learning models.
arXiv:2007.03051, 2020. 4

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 2

[3] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Al-
izadeh, Hari Balakrishnan, Sanjay Chawla, Sam Madden,
and David DeWitt. Roadtracer: Automatic extraction of road
networks from aerial images. In CVPR, 2018. 4, 6, 7

[4] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill,
Dan Jurafsky, and Joelle Pineau. Towards the systematic re-
porting of the energy and carbon footprints of machine learn-
ing. Journal of Machine Learning Research, 21(248), 2020.
4

[5] Loı̈c Lannelongue, Jason Grealey, and Michael Inouye.
Green algorithms: Quantifying the carbon emissions of com-
putation. arXiv:2007.07610, 2020. 4

[6] Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Deepgcns: Can gcns go as deep as cnns? In ICCV,
2019. 2

[7] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard
Ghanem. Deepergcn: All you need to train deeper gcns.
arXiv preprint arXiv:2006.07739, 2020. 2

[8] Muxingzi Li, Florent Lafarge, and Renaud Marlet. Approx-
imating shapes in images with low-complexity polygons. In
CVPR, 2020. 4

[9] Qimai Li, Zhichao Han, and Xiao Ming Wu. Deeper in-
sights into graph convolutional networks for semi-supervised
learning. In 32nd AAAI Conference on Artificial Intelligence,
AAAI 2018, 2018. 4

[10] Zuoyue Li, Jan Dirk Wegner, and Aurélien Lucchi. Topolog-
ical map extraction from overhead images. In ICCV, 2019.
4

[11] Gellert Mattyus, Wenjie Luo, and Raquel Urtasun. Deep-
roadmapper: Extracting road topology from aerial images.
ICCV, 2017. 4, 6, 7

[12] Sharada Prasanna Mohanty, Jakub Czakon, Kamil A Kacz-
marek, Andrzej Pyskir, Piotr Tarasiewicz, Saket Kunwar,
Janick Rohrbach, Dave Luo, Manjunath Prasad, Sascha
Fleer, et al. Deep learning for understanding satellite im-
agery: An experimental survey. Frontiers in Artificial Intel-
ligence, 3, 2020. 4

[13] Carles Ventura, Jordi Pont-Tuset, Sergi Caelles, Kevis Kok-
itsi Maninis, and Luc Van Gool. Iterative deep learning for
road topology extraction. BMVC, 2018. 4

Figure 3. More qualitative results of our method (left) compared to RoadTracer [3] (middle) and DeepRoadMapper [11] (right), on the
RoadTracer test set.

Figure 4. More qualitative results of our method (left) compared to RoadTracer [3] (middle) and DeepRoadMapper [11] (right), on the
RoadTracer test set.

