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Abstract

The coplanar two-line room layout with two parallel
junction lines is often seen in an egocentric indoor vision
when facing a wall or walking in a corridor. However, cam-
era pose estimation from this kind of room layouts cannot
be handled by existing vanishing point-based algorithms or
PnL (Perspective-n-Line) methods due to the lack of line
correspondences. This includes a recently proposed PnL-
IOC approach that introduces image outer corners (IOCs),
i.e., the intersecting points between room layout boundaries
and image borders, to create more auxiliary lines. In this
paper, a new coplanar P3L (CP3L) method is proposed
to handle the coplanar two-line room layouts by embed-
ding a P3L (Perspective-three-Line) method into the NSGA-
II, a multi-objective optimization method. The proposed
CP3L algorithm jointly estimates the initial camera pose
and the 3D correspondences of four IOCs related to the two
junction lines, and optimizes the camera pose in the itera-
tive Gauss-Newton algorithm. We also study and compare
the robustness of CP3L solutions under different configura-
tions of auxiliary lines from estimated IOCs. Experiment
results on both simulated images and real ones from the
Matterport3D-Layout database demonstrate the accuracy
and robustness of the proposed method.

1. Introduction
In indoor egocentric vision, the spatial structure of a

room can be represented by certain 3D layouts defined by
a few junctions and boundary lines [13, 39, 43, 51, 53], and
deep learning for room layout estimation has shown great
promise recently [28, 38, 49]. On the other hand, cam-
era pose estimation from room layouts has some advan-
tages due to the fact that most indoor scenes conform to
the Manhattan world assumption [11]. A layout-oriented
PnL (Perspective-n-Line) method was recently proposed for
camera pose estimation from 2D room layouts, which in-
troduces image outer corners (IOCs) to provide sufficient
PnL conditions [9]. Generally, there are 11 room layouts
defined [28], among which there are two types of room lay-

Figure 1. The two coplanar two-line room layouts under study
where IOCs are connected by purple lines.

outs with two parallel and coplanar lines as shown in Fig.
1. These two layouts are popular in indoor egocentric vi-
sion when facing a wall or walking in a corridor. However,
since there are only two given 2D/3D line correspondences,
camera pose estimation becomes ill-posed and cannot be
handled by existing methods, including the one in [9].

In this work, we develop a new coplanar P3L (CP3L)
method to handle these two specific layouts by taking ad-
vantage of the idea of using IOCs in [9] to provide ad-
ditional line correspondences. However, the initial rota-
tion matrix cannot be obtained by only two given 2D/3D
line correspondences. Therefore, we embed the P3L in the
non-dominated sorting genetic algorithm II (NSGA-II) [15]
which is a fast multi-objective genetic algorithm that has
been widely used [4, 23, 33, 36, 42]. The proposed method
optimizes 3D correspondences of IOCs by evaluating the
fitness values based on their 3D correspondences, the ro-
tation matrix, and the translation vector. The rotation and
translation are then re-estimated from the given 2D/3D line
correspondences created from the optimized IOCs. There-
fore, the 3D correspondences of IOCs and the initial camera
pose can be optimized iteratively to reach a final solution.
To the best our knowledge, this work is the first attempt to
attack this kind of coplanar two-line layouts.

1549



2. Related work
A coplanar two-line layout provides two parallel lines in

the scene according to the room structure and dimension,
and the perspective projection of any set of parallel lines
which are not parallel to the image plane will converge to a
“vanishing point” [19]. Vanishing points can be determined
by line pair intersections from parallel lines in the scene
for most of the existing methods [1, 2, 8, 10, 21, 26, 32, 35].
Camera pose estimation from vanishing points is an effec-
tive approach [5, 6, 25, 46]. However, it needs at least two
orthogonal vanishing points to determine the camera pose
uniquely [20, 32, 55], and on the other hand, most coplanar
two-line layouts from real-world images can only provide
one vanishing point, as illustrated in Fig. 1.

The P3L (Perspective-3-Line) problem is the basis for
dealing with the general PnL problem [48] because there are
6 DoFs for a 3D camera pose and each line correspondence
offers two constraints. The P3L problem was addressed
with an analytical method by solving an eighth-order poly-
nomial in [18]. An algebraic P3L method was proposed
in [7] that may not be stable in the presence of noise. By in-
troducing two intermediate frames in [50], the P3L problem
formulation can be simplified. However, the P3L solution
usually cannot be uniquely determined [7]. In [9], a new
PnL method was proposed based on room layouts, which in-
troduced IOCs to change the P3L problem to a PnL (n > 3)
problem, but it cannot handle two-line layouts because of
only two given 2D/3D line correspondences.

Room layout estimation is a well studied topic in
decades [34], which was mainly solved with geometry-
based approaches in the early attempts [16, 17, 24, 40, 44].
With the advancement of deep learning, a wide range of
highly challenging scenes can be represented by a set of
well-defined layouts robustly and accurately [28,30,49,52].
Moreover, the high quality datasets [12, 53, 54] published
recently further promote the development of deep learning
methods for room layout estimation which supports camera
pose estimation for more location-aware vision tasks.

3. Problem Statement
3.1. PnL problem statement

The PnL problem is about recovering rotation matrix R
and translation vector t of a camera from n known 3D ref-
erence lines Li = (vw

i ,P
w
i ) (i = 1, ..., n) along with their

corresponding 2D projections on the image plane denoted
as li = (si, ei) [56], where vw

i ∈ R3 is the normalized
vector for Li, Pw

i ∈ R3 is any point on Li in the world
coordinate frame, and si and ei are the endpoints of li in
the image plane. The problem is illustrated in Fig. 2 and to
tackle with this problem, a new camera frame and a model
frame are introduced into the re-projection model as two in-
termediate frames. The rotation from the world frame to the

model frame is defined as Rm
w , and similarly Rn

m, Rc
n, and

Rc
w can be defined [9], where the new camera frame can be

determined by rotating the original camera frame with Rm
w ,

as Rc
n = (Rm

w )T . The relationship among those rotation
matrices can be defined as:

Rc
w = Rc

nR
n
mRm

w = (Rm
w )TRn

mRm
w . (1)

Figure 2. The PnL problem illustration.

A projection plane Πi can be formed with a given 2D
line li, the corresponding 3D line Li, and the projection
center O. The cross product of two points on li is calculated
as the normal of Πi, denoted by nc

i . With the geometrical
constraints [22], Pc

i = Rc
wP

w
i + t, the coordinate of Pw

i

in the camera coordinate frame, should be perpendicular to
the normal nc

i , then

(nc
i )

T (Rc
wP

w
i + t) = 0 i = 1, 2, ..., n, (2)

and an analytic solution of t can be obtained by Eq. (2) [48].

3.2. Coplanar P3L problem statement

If two 3D correspondences of IOCs are given which are
displayed as the purple points in Fig. 3, the problem can
be solved by a P3L method. Thus Camera pose estimation
from coplanar two-line room layouts can be converted to a
coplanar P3L (CP3L) problem. However, the unique cam-
era pose can be only determined for PnL (n > 3) problem,
and there are multiple P3L solutions [7, 31, 48]. To tackle
with this issue, the camera height (cH) is introduced to ob-
tain the unique camera pose. In egocentric vision, the cH
is directly related to the user’s height and is assumed to be
available. The camera origin in the world frame Ow

c can be
calculated based on Rc

w and t as

Ow
c = −(Rc

w)
T t. (3)

Because the world frame is based on the Manhattan room
layout structure, one coordinate of Oc

w is the camera height
that yields a constraint between Rc

w and t with regard to Eq.
(3). This constraint can be stacked with Eq. (2) to obtain
the unique camera pose.
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Figure 3. Different combinations for IOCs.

However, the range of 3D correspondences of IOCs is
the only known information because the two given copla-
nar lines are the boundaries of a room that can be well de-
fined by the room dimension and basic structure informa-
tion. The four unknowns for 3D correspondences of IOCs
are defined as uf = [uf1, uf2, uf3, uf4]

T , and those four
unknowns are in the same direction axis. The range of the
four unknowns can provide a good initial for uf . Thus a
NSGA-II embedded P3L method is introduced. After ini-
tialing the first generation for uf , two IOCs are consid-
ered as one group, and then different combinations for four
IOCs can generate 2 different situations for types 1 and 2
shown in Fig. 3. The reason why the four unknowns can-
not be used together as one group is that optimizing four
unknowns together will take a very long time to converge
or even not usually converge because four unknowns mean
so many possibilities and the result for camera pose estima-
tion is discontinuous. Meanwhile, the reason why we only
use two groups, instead of three or four, is that the informa-
tion provided by type 1B or 2B is limited because the two
IOCs are in the same line, which makes the optimization
more difficult. Besides, these more groups will reduce the
converged rate. Then, each group will be a CP3L problem.

4. Proposed Method
For the camera pose estimation of the two-line room

layout types shown in Fig. 1, the yellow line correspon-
dences can be easily defined. However, camera pose cannot
be estimated only by two line correspondences using any
PnL method, but if the purple lines can be defined, there
will be more line correspondences. Therefore, 3D corre-
spondence estimation of IOCs is the key for our proposed
method. NSGA-II embedded with P3L is introduced to de-
termine 3D correspondences of IOCs and the initial camera
pose, and Gaussian-Newton is adopted after reducing the
order for the cost function to optimize camera pose via IOC
refinement. The proposed method can be described as the
flow chart in Fig. 4 that is detailed in the following sections.

4.1. Camera pose estimation

Camera pose estimation is a vital step in the proposed
method, which is mainly used to determine the rotation and
translation after 3D correspondences of IOCs are generated

Figure 4. The proposed CP3L method.

in the initialization and iterative step as Fig. 4 shown. For
a P3L problem displayed in Fig. 2, the rotation matrix Rm

w

can be generated based on the line L0 = (vw
0 ,P

w
0 ) with

the longest projection length [9]. Therefore, Rn
m is the key

to calculate rotation matrix. According to the Euler Angle
definition [37], Rn

m can be expressed as

Rn
m = Rot(Y, β)Rot(Z, γ)Rot(X,α), (4)

where Rot(Y, β), Rot(Z, γ), and Rot(X,α) denote the ro-
tation and β, γ, and α denote the rotation angle around the
Y -axis, Z-axis, and X-axis in the model frame, respec-
tively [45]. Rot(X,α) can be easily obtained because α
is the angle between v

m

0 (v
m

0 = Rm
wvw

0 ) and Zm-axis. An
eighth-order polynomial called the P3L polynomial is built
by the 3-line subset {L0L1L2} formed from the remaining
lines L1 and L2 together with line L0 [48]. This polyno-
mial can be used to determine Rot(Z, γ) [45, 48], and at
most 8 minima can be chosen as the candidate solutions. β
can be retrieved via optimization method after γ is obtained,
and at most 2 minima for Rot(Y, β) will be determined [9].
Therefore, there will be up to 16 minima for Rot(Z, γ) and
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Rot(Y, β) combinations, and Rn
m candidates can be deter-

mined via Eq. (4) for each minima combination. The rota-
tion matrix Rc

w can be finally obtained with Eq. (1) .
Rotation matrix Rc

w can be polished through optimiza-
tion as follows. Firstly, let Rc

w be expressed using Cayley-
Gibbs-Rodriguez (CGR) parameter vector [41, 48], which
is related to three variables and defined as r. Then, a least-
squares problem can be reconstructed and solved by a single
Gauss-Newton step. The rotation and translation can be pa-
rameterized according to Eq. (2), and form the linear system
as [

A B
][ r

t

]
= 0. (5)

From Eq. (5), t can be represented by A, B, and r, and
resubstituting t into Eq. (5) for m known 3D points on the n
known lines in the world coordinate frame, the least-squares
problem is obtained as follows

ε =

m∑
i=1

||Eir||2, (6)

where Ei = Ai − (BT
i Bi)

−1BT
i Ai, a 1 × 10 vector, can

be calculated ahead. The traditional Gauss-Newton method
can be adopted to solve the problem. The optimized initial
Rc

w can be determined based on the refined r [45].
As mentioned before, we assume that the camera height

(cH) in the world frame is available that is related to the
user’s height in egocentric vision. Letting

t = [tx ty tz]
T and Rc

w =

r11 r12 r13
r21 r22 r23
r31 r32 r33

,
from Eq. (3) we have

r11tx + r21ty + r31tz + cH = 0,

r12tx + r22ty + r32tz + cH = 0,

or
r13tx + r23ty + r33tz + cH = 0. (7)

After the refined r is substituted into Eq. (5), a linear system
can be obtained by being stacked with Eq. (7) and Eq. (5),
which can solved by SVD, and translation vector t can be
determined uniquely. The camera origin in the world frame
Ow

c can be calculated by using Eq. (3), and Ow
c must be

inside the room according to the coordinate system setting,
which can be used to remove some incompatible solutions
from all the candidate camera pose solutions. For each re-
maining Rc

w candidate, its orthogonal error

Eor =

n∑
i=1

[(nc
i )

TRc
wv

w
i ]

2 (8)

can be evaluated, and the Rc
w with the smallest Eor and its

corresponding t are selected as the final initial camera pose
solution.

4.2. Fitness function determination

The performance of genetic algorithms depends to a
large degree on the fitness functions therefore the fitness
functions need to be carefully selected to match the specifics
of credit scoring [27]. Type 1A in Fig. 3 is set as an ex-
ample to discuss the process to determine fitness functions
for our proposed method. The IOC 1 and IOC 4 estima-
tion combination is set as group 1 and the IOC 2 and IOC
3 estimation combination is set as group 2. After the 3D
information of IOCs is generated by NSGA-II for group 1
or 2, three 2D/3D line correspondences can be determined,
which is cast as a P3L problem and camera pose can be
estimated with the steps described in 4.1. After the initial
rotation matrix Rg and translation vector tg are obtained,
the orthogonal error Oer can be evaluated according to Eq.
(2) and Eq. (8) as

Oer =

3∑
i=1

||(nc
i )

T (RgP
w
i + tg)||+ ||(nc

i )
TRgv

w
i ||, (9)

where Pw
i and vw

i are the known point and normalized vec-
tor for line Li. Eq. (9) for group 1 and 2 can be consid-
ered as two fitness functions, and the orthogonal errors for
group 1 and 2, Oer1 and Oer2, can be considered as two
fitness values. Meanwhile, the estimated rotation matrices
and translation vectors for group 1 and 2 are supposed to
be the same. Therefore, the functions about rotation matrix
difference OR and translation vector difference Ot between
two groups can be used as the other two fitness functions,
which are defined as

OR(deg) = max
k∈1,2,3

∠(Rg1(:, k),Rg2(:, k))×
180

π
,

Ot(%) =
||tg1 − tg2||

||tg2||
× 100, (10)

where Rg1 and tg1 are the estimated rotation matrix and
translation vector for group 1, and Rg2 and tg2 are for
group 2. Rg1(:, k) and Rg2(:, k) are the k-th column of
Rg1 and Rg2, respectively. ∠ represents the angle differ-
ence between Rg1(:, k) and Rg2(:, k). Then those four fit-
ness functions are optimized in every iterative by changing
the value for 3D correspondences of IOCs with NSGA-II.

4.3. Non-dominated sorting

For each genetic iteration, we calculate those aforemen-
tioned four fitness values for each individual that is a pos-
sible solution for the unknown vector uf of 3D correspon-
dences of IOCs [15]. The fitness values of each individ-
ual can be used to find the non-dominated set by compar-
ing four fitness values. If all four fitness values of one
individual are better than others, then this individual is a
non-dominated individual, and repeat this process to find all
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Figure 5. Non-dominated sorting.

the non-dominated individuals. After non-dominated deter-
mination [15], there will be several non-dominated fronts
shown in Fig. 5 and the individuals in different fronts have
a different rank value. The smaller rank value means that
the individual is dominated by fewer other individuals. Af-
terwards, the crowding distance can be calculated for the in-
dividuals in the same non-dominated front, and the crowd-
ing distance for the edged individuals of the non-dominated
fronts is defined as infinity to improve the diversity of the al-
gorithm. The crowding distance is the sum of the distances
between two adjacent individuals for four fitness functions,
and for the individual k the distance can be defined as dck

dck =

4∑
i=1

||fi(k + 1)− fi(k − 1)||
fmax
i − fmin

i

k = 2, 3, ..., n− 1,

(11)

where fmax
i and fmin

i are the maximum and minimum for
the specific fitness values fi in each genetic iteration, fi(k+
1) and fi(k − 1) are the two adjacent individuals of fi(k),
and n is the total individual number in one non-dominated
front. Then, a new sorted set can be obtained as the parents
after sorting by the non-dominated rank and the crowding
distance, and the better one has the smaller rank and the
bigger crowding distance [15].

4.4. Child individual generation

To obtain the better children in the iterative, the tradi-
tional steps of genetic algorithm, selection, crossover, and
mutation [47], are used to generate the child individuals.
For the selection step, the tournament selection is used,
which mainly selects two individuals randomly and then
saves the one with the bigger rank value. After this step,
the worse solutions will be saved and used for crossover
and mutation, which can make the worse one have the pos-
sibility to become a better solution.

4.4.1 Child generation using crossover

For the crossover step, a parameter called crossover possi-
bility (pc) needs to be set, and the crossover will only be

done when the random number is smaller than pc. The sim-
ulated binary crossover (SBX) operator [14] is mainly used
to generate the child individual. Suppose there are two par-
ent individuals p1 and p2, then the children c, can be gener-
ated as

c = α(p1 + p2) + αβ(p1 − p2), (12)

where

β =

{
(2r)1/(1+ηc) 0 < r <= 0.5,

(2(1− r))−(1+1/ηc)) 0.5 < r < 1,

α =
p2(rank)

p2(rank) + p1(rank)
,

where r is generated randomly from 0 to 1, and ηc is
crossover distribution index for crossover operators [15],
whose value is inversely proportional to the amount of per-
turbation in the design variables. ηc will be chosen accord-
ing to the specific situation and α can be determined by the
rank of p1 and p2.

4.4.2 Child generation using mutation

After we get the new generation by crossover, the polyno-
mial mutation can be adopted with a random probability to
improve the possibility to get the better solution [14], and
the new children cn, can be obtained by the following equa-
tions

cn = ||co + (cmax − cmin)δ||, (13)

where

δ =

{
(2r)1/(1+ηm) 0 < r < 0.5

(2(1− r))−(1+1/ηm)) 0.5 <= r < 1

where r is generated randomly from 0 to 1, and ηm is mu-
tation distribution index for mutation operators [15], whose
value is inversely proportional to the amount of perturbation
in the design variables. ηm will be chosen according to the
specific situation. co is the individual before mutation, and
cmax and cmin are the maximum and minimum in the range
possible values for uf , respectively.

Those new generated child individuals are merged with
the parents, and the merged ones are used to repeat the non-
dominated sorting steps mentioned in 4.3. After this, the
first N (population size) elements are selected to form the
new parents. All the above steps will be repeated as the
process displayed in Fig. 4 until we get the quite good re-
sult for the 3D correspondences of IOCs and initial camera
pose. The results will be represented as a Pareto front, and a
threshold is set for all the fitness functions to remove some
unreasonable solutions, and then choose the solution with
the smallest orthogonal error from the remaining solutions
as the result for the further refinement.

1553



4.5. Camera pose optimization via IOC refinement

After 3D correspondences of IOCs and initial camera
pose are obtained, they can be jointly refined together, and
the optimization problem is converted into a least-squares
problem with the unknown 3D correspondences of IOCs
and three variables related to the rotation matrix R. From
Eq. (2), we have

(nc
i )

TRPw
i = −(nc

i )
T t, (14)

where R can be represented with the Cayley parameteriza-
tion vector s = [s1 s2 s3]

T [45]. Then, Eq. (14) can be
represented as the following matrix form

Mr = Nt, (15)

where r is constructed by the variable vector about R and
the unknowns for 3D correspondences of IOCs. The un-
known coordinate might be on the X-axis, Y -axis, or Z-
axis because of the different definition for the world coor-
dinate frame. The common part of the variable vector r is
defined as cr = [1, s1, s2, s3, s

2
1, s1s2, s1s3, s

2
3, s2s3, s

2
3]

T ,
which is Cayley parameterization form for the rotation ma-
trix. According to three different situations, the added vari-
able vector can be defined as rx, ry , or rz , which can be
added to the common part vector and the variable vector
will be r = [crT rTx ]

T , [crT rTy ]
T , or [crT rTz ]

T , and M
can be represented according to different r [9]. Eq. (14) is
satisfied for n reference point, hence

M̃r = Ñt ⇐⇒ t = Cr, (16)

where

M̃ = [MT
1 ,M

T
2 , ...,M

T
n ]

T ,

N = −(nc)T , Ñ = [NT
1 ,N

T
2 , ...,N

T
n ]

T ,

C = (ÑTÑ)−1ÑTM̃,

and the least-squares problem can be obtained as follows

ε̂ =

n∑
i=1

||(M̃− ÑC)r||2 =

n∑
i=1

||Er||2. (17)

However, the traditional Gauss-Newton can be only adopted
when the cost function is the 2nd order [3], and this cost
function is the 3rd order, so the function order needs to be
reduced. This issue is solved by using a re-linearization
technique [29]. Let s4 = s21, s5 = s1s2, s6 = s1s3, s7 =
s22, s8 = s2s3, s9 = s23. Although five more variables are
introduced here, five more equations are also added, which
allow us to reduce the order successfully. Then, the tradi-
tional Gauss-Newton method can be used, which is similar
to the camera pose optimization part discussed in 4.1, to re-
fine R and 3D correspondences of IOCs. After this refine-
ment, the translation vector t can be determined according
to Eq. (16).

The whole proposed method, referred to as CP3L, is pre-
sented in Algorithm 1.

Algorithm 1: CP3L method.
Input : Two 2D/3D line correspondences
Output: Rotation matrix R and translation vector t

1 Initialize the population PGen for uf (Gen = 0)
2 Estimate initial R0 and t0 with camera height aware P3L method
3 Evaluate fitness values for each individual using Eq. (9) and (10)
4 PGen ← Non-dominated sorting
5 PGen ← Crowd distance calculation using Eq. (11)
6 PGen ← Sort by non-dominated rank and crowd distance
7 while Gen < Gmax do
8 Pc ← Selection by binary tournament
9 Pc ← Crossover and Mutation using Eq. (12) and (13)

10 RGen, tGen ← P3L method based on Pc

11 Pc ← Fitness assessment using Eq. (9) and (10)
12 Pm ←Merge PGen and Pc

13 Pm ← Find non-dominated set
14 Pm ← Calculate the crowding distance using Eq. (11)
15 Pm ← Sort by non-dominated rank and crowd distance
16 Gen← Gen +1
17 PGen ← Keep the first N (population size) elements
18 end while
19 Choose the result with the smallest orthogonal error from the

Pareto front results
20 Refine 3D correspondences of IOCs and R using Eq. (17)
21 Calculate translation vector t using Eq. (16)
22 return R, t

5. Experiment results
The proposed CP3L algorithm is tested and validated

thoroughly on both synthetic data and real-world images.
All the results are measured by the error metric defined the
same as in [9,48], and rotation error (ErrR) and translation
error (Errt) will be calculated as

ErrR(deg) = max
k∈1,2,3

∠(Rtrue(:, k),R(:, k))× 180

π
,

Errt(%) =
||t− ttrue||
||ttrue||

× 100, (18)

where Rtrue and ttrue denote the ground-truth for rotation
matrix and translation vector, and R and t denote the es-
timate results for rotation matrix and translation vector, re-
spectitively. The mean and median of rotation error and
translation error will be calculated. For the real images, in
addition to the rotation and translation error, the estimated
layout lines are drawn according to the estimated 2D point
coordinates of IOCs, and the reprojection errors Rer are
listed under the real image result shown in Fig. 8. For
types 1 and 2, NSGA-II is introduced and there are some
parameters needed to be determined, including population
size, archive size, iteration number, crossover probability,
and mutation probability [15]. After experiments, those pa-
rameters are confirmed as 100, 50, 100, 0.8, and 0.1, re-
spectively. All methods are implemented in MATLAB on a
MacPro with a 2.3 GHz CPU and 8GB of RAM.
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Figure 6. Some randomly generated room layout images.

5.1. Experiments with synthetic data

5.1.1 Synthetic data

A virtual perspective camera with image size of 320 × 640
pixels and focal length of 100 pixels for type 1, and 640 ×
320 pixels and focal length of 200 pixels for type 2 is used
to generate the 3D reference lines. The proper initial cam-
era origin in the camera frame, initial rotation angle, and
translation vector are fixed to generate a specific room lay-
out. Then the rotation angle is randomly changed in three
different angle directions in the range of [-4, 4] and trans-
lation vector is changed in three different directions in the
range of [-3, 3] to assure that the generated lines conform
to a specific room layout. Then these 3D lines are projected
onto the 2D image plane using Rtrue and ttrue. Some ran-
domly generated room layouts are shown in Fig. 6.

5.1.2 Different layout results with varying noise

This experiment tests the effects of noise levels on the two
different IOC combinations for the two room layouts. The
noise deviation level δ is varied from 1 to 10 pixels. At
each noise level, 30 independent tests are conducted, and
the mean and median errors of rotation and translation are
calculated, as shown in Fig. 7. As the noise increases, the
rotation errors are increased almost linearly, but the transla-
tion errors are less stable. The main reason is that the trans-
lation vector is determined from the 3D correspondences of
IOCs estimated by NSGA-II, whose errors could propagate
to the estimation of the translation vector. Furthermore, for
the different IOC combinations in Fig. 3, the results for us-
ing the auxiliary lines connecting two IOCs from different
layout boundaries are more stable than the other combina-
tion. In other words, the results of types 1A and 2A has
the better result than those of types 1B and 2B, respectively.
It is worth noting that the proposed method cannot handle
the case when the two layout boundaries are parallel in the
image plane, which is the same constraint in camera pose
estimation from vanishing points [5]. Therefore, we avoid
this situation when generating the simulated data.

5.1.3 Computational efficiency

The computational time for type 1A and type 2A is quite
similar, and the average time is 91 seconds. The computa-
tional time for type 1B and type 2B is quite similar, and the
average time is 157 seconds. This result means that Group
A has the advantage on the computational time, and there is
no other mathematical methods to estimate camera pose for
this situation. Therefore, our method is also competitive for
those room layout types.

5.2. Experiments with Real Images

We also applied the proposed CP3L method on a set
of room layout images with a known 3D line model from
Matterport3d-Layout Dataset [53]. Matterport3d-Layout
Dataset is a large scale dataset with 3D layout ground truth,
which has good layout diversity. It also provides depth in-
formation that can be used to recover 3D points ground truth
with rotation and translation ground truth together. How-
ever, the coordinate system for different images is set dif-
ferently, so we need to figure out the coordinate system set-
ting, then use different equations to estimate camera pose.
17 images for type 1 and 7 images for type 2 are collected.
Tab. 1 shows the rotation error and translation error for
different combinations listed in Fig. 3, and the proposed
method can give a quite accurate result. Moreover, the re-
sults with refinement and without refinement are compared,
which shows that the polishing step can improve the result.
Similar with the result from the synthetic data, the result

Type
Mean of the rotation error (deg)

With refinement Without refinement
type 1A (17) 0.6062 0.6093
type 1B (17) 1.6181 1.7894
type 2A (7) 0.2510 0.2612
type 2B (7) 2.1670 2.2984

Type
Mean of the translation error (%)

With refinement Without refinement
type 1A (17) 3.8215 3.8554
type 1B (17) 7.2583 7.5320
type 2A (7) 4.6976 4.7305
type 2B (7) 6.6223 6.8615

Table 1. The mean rotation and translation errors for types 1 and 2
layouts with two different IOC combinations (Fig. 3). The number
in () is the number of images in each case.

from combination A is better than it from B for different
types. Moreover, Fig. 8 demonstrates that the proposed
method can recover the camera pose quite well. From the
real image experiment, there is another situation. When
there is a short section of a long corridor or a long wall, the
range of the 3D correspondences of IOCs cannot be initial-
ized properly, and there will be multiple solutions for this
situation.
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Figure 7. Experimental results on the simulated data under different noise levels (δ = 1, ..., 10). From left to right: the mean/median
rotation errors and the mean/median translation errors. From top to bottom, the results for type 1, type 2.

Figure 8. Camera pose estimation from real-world images using our method. Rer is the reprojection error.

6. Conclusion

In this work, we study camera pose estimation from
coplanar two-line room layouts that are often-seen in ego-
centric vision applications. The proposed CP3L algorithm
is inspired and motivated by the recent PnL-IOC method [9]
that still cannot handle this kind of coplanar two-line lay-
outs due to the limited given information. The proposed
CP3L incorporates the multi-objective NSGA-II optimiza-
tion in the P3L method to estimate 3D correspondences of
IOCs from a two-line layout that yields two additional line
correspondences for a valid P3L solution. To the best of our
knowledge, this is the first attempt to estimate the camera

pose for this kind of challenging layouts. The capability
of camera pose estimation from common room layouts en-
ables and facilitates many location-aware egocentric vision
applications, such as indoor localization, way-finding, and
navigation. Nevertheless, generalization to non-Manhattan
room layouts is necessary to make the proposed research
applicable to different indoor structures and environments.
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