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Abstract
In our paper, we propose a novel strategy to learn distor-

tion invariant latent representation from painting pictures for
visual attention modelling downstream task. In further detail,
we design an unsupervised framework that jointly maximises
the mutual information over different painting styles. To
show the effectiveness of our approach, we firstly propose a
lightweight scanpath baseline model and compare its perfor-
mance to some state-of-the-art methods. Secondly, we train
the encoder of our baseline model on large-scale painting
images to study the efficiency of the proposed self-supervised
strategy. The lightweight decoder proves effective in learning
from the self-supervised pre-trained encoder with better per-
formances than the end-to-end fine-tuned supervised baseline
on two painting datasets, including a proposed new visual at-
tention modelling dataset. 1 2

1. Introduction
Visual attention represents one of the most advanced and

efficient perceptual mechanisms in human beings. It refers to
the process used by the Human Visual System (HVS) to filter
the 1010bits received by the eye receptors each second. This
enormous amount of detailed data needs to be filtered and
reduced before reaching the visual cortex, where the signal
is processed further to pass the relevant information to other
regions [29]. Visual attention induces the observer to select
specific regions from any visual stimuli to focus on.

Visual attention can be categorized according to the pro-
cessing path: Bottom-Up attention and Top-down attention.
The former is stimulus-driven and highly related to low-level
image features such as colour, intensity, texture and so forth
[46] [45]. The latter relates to higher-level semantic image
features such as faces, text or objects. It refers to intentional,
voluntary and task-dependent processes. A lot of works have
tackled both attention types under different perspectives. In
our paper, we focus on the task-agnostic Bottom-Up attention
carried out during free-viewing experimental sessions. The

*Equal contribution; the order of first authors was randomly selected.
1Code and dataset will be availble here : https://github.com/

kmamine/SSLArtScanpath
2Funded by the TIC-ART project, Regional fund (Region Centre-Val de

Loire)

modelling and prediction of saliency and scanpaths became a
cornerstone task that improves the efficiency of many other
computer vision applications like indoor localization [19],
image quality [1], image watermarking [25], image compres-
sion [39],image search and retrieval [49] or image enhance-
ment for people with CVD (Colour Vision Deficiency) [9].

An increasing interest in developing accurate attention
prediction systems has been noticed as perception mech-
anisms have demonstrated effective in laying out intelli-
gent systems. However, using supervised learning meth-
ods proved limits due to the unavailability of publicly avail-
able and manually annotated data. Self-Supervised Learning
(SSL) allows to leverage the underlying data structure to ex-
tract supervisory signals by enabling the model to learn more
relevant information from observing data structure. SSL
methods can be divided into several categories: Generative,
Discriminative and Generative-Discriminative (Adversarial).
Generative approaches try to infer a lower-dimensional infor-
mative representation from learning a probability distribution
that is similar to the distribution of the real data (e.g. Au-
toencoder [4]). Discriminative approaches use a more condi-
tional representation method, as they use an intermediate step
where they create a proxy discriminative task that learns from
the embedded relationships in the data distribution. In this
case, the acquired knowledge from the proxy task cloud be
leveraged to any new downstream task. Finally, unlike gen-
erative models, Generative-Discriminative approaches use a
discriminative model jointly with the generative one. For in-
stance, GANs (Generative Adversarial Networks) use a gen-
erator to model by playing a Min-Max game with the dis-
criminator working out a realistic representation of the data
distribution [21].

Self-supervised discriminative methods can also be cat-
egorized according to their objective into Similarity max-
imization approaches (SM-SSL) and Redundancy Reduc-
tion approaches (RR-SSL). SM-SS uses multiple strategies
as learning in contrastive (e.g., mutual information maxi-
mization, instance discrimination) [30] (SimCLR [13], and
MoCo [26]), Clustering (SwAV [10]), and knowledge distil-
lation (BYOL [22] and SimSiam [15]) with similarity mea-
suring between the representation of the inputs replacing the
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Figure 1. Baseline model architecture.

intermediate tasks. RR-SSL reduces redundant information
inside the representation while maximizing the mutual infor-
mation with the models generated from augmented views of
the pristine input. In our context, we use an RR-SSL ap-
proach to train our model while exploiting various techniques
and strategies introduced by multiple SM-SSL methods. Our
method extends the recent advances on SSL that adopt infor-
mation bottleneck inductive bias in further detail. As a result,
we maximize the learning of different painting movements
of the same artistic image while reducing the information re-
lated to the induced distortions. In other words, we set out
a trade-off between two crucial points: having our model as
informative as possible on different augmentation of stimuli
semantic features and forcing the learned representation to be
effectively invariant to style transformations.

To sum up, the contributions of this work are summarized
as follows:

1. We propose a new self-supervised framework adapted to
the characteristics of painting images.

2. We introduce a new publicly available dataset for art vi-
sual attention modelling, including saliency maps and
scanpath sequences for paintings images from multiple
artistic movements.

3. We present quantitative results on painting benchmarks
to show the relevance of the proposed self-supervised
representation learning for the related visual attention
modelling downstream task.

The rest of the paper is organized as follows: In section 2,
we review a part of the scientific literature concerning scan-
path and previous contrastive learning approaches. In section
3, we detail the proposed SSL method to improve our model.
Section 4 describes our new dataset and the protocols adopted
to acquire and analyse the data. We present the evaluation re-
sults and protocols of our model in section 5. Finally, section
6 ends the paper.

2. Related Work
Scanpath prediction: Scanpath prediction is an impor-

tant task that has gained popularity lately. For instance,
the winner-take-all (WTA) module presented in [28] predicts

scanpaths out of saliency maps peaks. In [37], a stochastic
approach was proposed to generate scanpaths using a pre-
dicted saliency map and modelling the probabilities of several
biases (i.e. saccade amplitudes and saccade orientations). In
[50], the authors conceived the saliency map as a 2D gravita-
tional field affecting the trajectory of a mass representing the
gaze. In [44], the authors proposed a model that uses high-
level features from CNN and Memory Bias, including short-
term and long-term memory for scanpath prediction. In [3],
the authors presented a deep model where saliency volumes
are predicted, then sampled to generate scanpaths. The same
authors introduced later PathGan [2] that uses a Long Short
Term Memory (LSTM) network working together with a con-
ditional GAN architecture to predict the scanpath of a stim-
ulus. The so-called DCSM (Deep Convolutional Saccadic
Model) [5] predicts the foveal saliency maps and temporal
duration while modelling the Inhibition of Return (IoR). An
end-to-end model which simultaneously predicts the scan-
path and saliency map of an image was introduced in [33]. A
similar approach was successively generalized for 360◦ im-
ages [34].

Self-Supervised learning: Self-supervised learning ap-
proaches aim to learn the underlying feature representation
from unlabelled data. Nowadays, increasingly more complex
scenarios demand accuracy and the ability to generalise infor-
mation from multiple tasks. Restricted Boltzman Machines
(RBMs) introduced in [42] represented an essential precursor
to SSL. They were successively improved in [12]. Denois-
ing Autoencoders [48] aim to decrease the distance between
data points outside and inside the manifold. SSL can also
trace its history to autoregressive models [6] where individ-
ual data point distributions are more accessible to the model
than the data as a whole. In computer vision, the employment
of Siamese Networks [8] for representation improvement
started in the ’90s with Self Organising Nets [7]. Several
SSL approaches rely on Siamese networks as a fundamental
structural architecture. At the same time, new loss objectives
such as contrastive loss [16], triplet loss [43], NCE loss [24]
and so forth were proposed. Most modern approaches use an
augment view method to create positive pairs. For instance,
SimCLR [14] employs two identical networks trained on a
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contrastive loss. Moreover, they used large batches in their
training to sample the negative instances. On the other side,
in MoCo [26], the authors exploit a dynamic memory bank
of representations as a FIFO queue for negative sampling.
SwAV [11] introduced a non-contrastive method using the
Sinkhorn-Knopp algorithm [17] to cluster the features and
reduce the distance between distributions. BYOL [23] uses
an augmented view to learn the similarity without using a
contrastive approach. It does not employ negative samples
for comparison. It minimises the L2 loss between the online
and target features like MoCo. Yet the momentum encoder
parameters are optimised using an Exponential Moving Av-
erage (EMA). Barlow Twins [51] aim to decorrelate the fea-
tures while reducing the distance between the representations
of the same images. They first calculate an empirical cross-
entropy matrix between the elements of the two parallel net-
works. They then minimise it by comparing it to an identity
matrix.

3. Proposed Method
3.1. Baseline Model

This section provides our baseline model, a lightweight
deep neural network for image scanpath prediction. The
baseline model is a lightweight architecture and predicts a
variable-length scanpath. In fig 1 the main architecture com-
ponents are shown, respectively, a pre-trained MobileNet
network encoding an image into a different representational
space, learnable domain prior bias maps concatenated to
the output of the feature extractor, representing the visual
attention-related bias, a merging convolutional layer, which
combines two concatenated features distributions. The 2D
feature maps’ output is flattened onto a 1D vector and merged
with a positional encoding vector. Then, the encoded features
feed two branches for predicting the feature extractor’s ver-
tical and horizontal coordinates. CNNs are labour intensive
and applied pixel-wise, which makes the dimensional com-
plexity of the visual stimuli high. MobileNet [27] was in-
troduced for mobile and embedded platform operations. The
employment of point-wise and depth-wise separable convo-
lution makes the network lightweight. Here, we employ Mo-
bileNet as a feature extractor that successfully finds semantic
information relevant to our task with a way far shorter train-
ing time than in [2] and a much lower data size than Ima-
geNet’s [18].

Experiments and findings [47] reveal that viewers tend to
focus their attention on the central regions of a given scene
in the visual field (centre bias). It also relates to standard
photography practices, such as taking pictures by placing the
cameras’ field of view over subjects of interest. The lat-
ter aspect impacts observers’ gazes towards the central re-
gions, which empirically stand out from the spatial distribu-
tion of fixation points gathered with eye-tracking sessions.
We also formulate ”Central bias” [38] with a spatially Gaus-

sian distribution having mean position in the image centre
(µxy = (imagew/2, imageh/2)), and the standard deviation (σ)
adaptive of datasets. The dataset biases are represented with
a set of Gaussian distributions with different means and stan-
dard deviations 2. Each distribution is expressed by Eq.1 and
represented by a 2D heatmap, namely a ”Prior map”:

G(x, y) =
1

2πσxσy
exp−(( x−µx

2σx
)+( y−µy

2σy
))

(1)

S = {G1(x, y),G2(x, y), ...,G16(x, y)} (2)

where S is the set of Gaussian distributions, (x, y) represent
the spatial coordinates of a point in the map. (µx, µy) and
(σx, σy) are the corresponding mean and standard deviation
of the distribution, respectively.

Here, the model learns 16 prior map distributions to em-
body them with the features extracted out of the encoder. The
step generates features, including domain-specific and image
attributes. The method frees the encoder from the bias mod-
elling task to focus its performance on stimuli-specific prop-
erties. The two branches of our baseline model are inspired
by PointNet [41]. As a result, an inductive bias for effec-
tive vector-wise features extraction is introduced, and by ex-
tension, the generated fixation coordinates become invariant
against permutations. However, this property presents a hy-
pothetical unsound argument related to scanpaths being of a
sequential nature. Therefore, we tackle it by adding a posi-
tional encoding module to our architecture.

3.2. Training

At first, the model was trained on 9000 natural scene im-
ages from Salicon [31] dataset and validated on 1000 im-
ages. The coordinates of the scanpath were normalized be-
fore training, following the image’s respective dimensions.
Short scanpaths are padded to a specific shape of 16 fixations
since 97.34% of the pictures does not surpass this number of
points. We trained our model using the following loss func-
tion:

L(y, ŷ) =
1
N

N∑
i=0

√
yx

2 − ŷx
2 +

1
N

N∑
i=0

√
yy

2 − ŷy
2 (3)

where N represents the number of fixation points of the scan-
path, yx and yy represent the coordinates of the ground truth
scanpath, while ŷx and ŷy are the coordinates of the predicted
scanpath.

Then, to test the model on our proposed dataset in Sec-
tion 4, we further fine-tune it on the dataset in a supervised
manner using Adam’s optimizer with a learning rate of 10−4

and a batch size of 1. The model converged after 175 epochs.
Finally, to further improve the results, and due to the par-
ticular nature of painting images, we retrained the encoder
in a self-supervised manner, as shown in Section 3.3. After

1541



that, we trained our model to conduct the same testing while
freezing the encoder ensued from the Self-Supervised train-
ing, well-known as a linear evaluation of the model. Again,
we used the same hyper-parameters for training as supervised
learning. As a result, the SSL model converged in 65 epochs,
while the supervised model converged after more than 175
epochs.

3.3. Self-Supervised Learning

Paintings images are different by nature from natural scene
images. The diversity of styles and movements alongside
techniques variate images’ colors and textures compared to
pictures taken by cameras. While these low-level features
might be influential for the first few fixations, semantic fea-
tures have a more significant influence in guiding the user’s
gaze as long as recognizable objects are depicted. That means
that artistic low-level features influence should be decorre-
lated to high-level features influences for our encoders’ repre-
sentation. Thus, we tried reducing the variance related to the
painting style. To this end, we propose a new self-supervised
learning approach inspired by several past approaches [51]
[23], and introduce the use of a new transformation primarily
related to the painting images domain (see Fig. 2).

Neural Style Transfer is a technique used to merge two
images: a content image containing semantic information
and a style image providing visual features information like
color and texture. The resulting image would be a composite
that retains the content semantics while obtaining the same
visual style as the other image, first introduced in [20]. That
is usually done by extracting mid-level features from both im-
ages in a neural network and then aligning those features to
obtain a better representation. The first loss introduced was
the following equation:

L = αMS E(RC ,RX) + βMS E(RGS ,R′GX) (4)

Where Rc and Rx are representations extracted from a mid-
level layer of the neural network for the content and stylized
image. While RGS and R′GX are gram matrices constructed
from features extracted multiple levels from the neural net-
work for the style and stylized image, respectively. The first
term is called content loss, and the second one is style loss.
In our work, we used the model proposed in [20] for data
augmentation described below.

General Description: As depicted in Fig 2, our method is
a compound algorithm relying on two primary steps for train-
ing during each batch. The first step leverages the Barlow
Twins method by training on several neural styles. The fol-
lowing step leverages the representations obtained during the
previous one to reduce the distance between the augmented
distributions and the original one.

Data augmentation: Like other approaches, our method
relies on the joint embedding of distorted images. We use
several image transformation techniques for this purpose. As

above mentioned, the first transformation technique used is
NST. We chose a group of paintings belonging to several
art movements to construct the embedding styles transforma-
tions set S and a context image group of 50000 images C
scrapped from several web sources ( i.e. Wikiarts dataset,
Wikipedia Communes, etc. ). The latter represents the
training set of our encoder. Several image augmentations
(� = S 1, S 2, ..., S N) are obtained after applying the transfor-
mations S. On top of these changes, we used another set
of image distortion operations T where we overlay common
modifications like cropping, grayscale conversion, blurring
and others.

At each time-step of our algorithm, two style augmenta-
tions are randomly selected and applied to the input x before
employing the random transform T then forwarding the re-
sults xa, xb to the following mechanisms as in the equation
below:

xa, xb = T (Rand pair(S(x|�))) (5)

Modified Barlow Twins: The augmented batches xa and
xb are then fed to function f which corresponds here to the
untrained encoder network (i.e. MobileNet), which we want
to optimize utilizing unlabeled data. The resulting represen-
tations RS a and RS b are in accordance with the original Bar-
low Twins (BT) algorithm. An empirical cross-correlation
matrix Cr is calculated between the two aforementioned rep-
resentations. A loss is calculated according to the following
loss [51] :

where Ci j ≜
∑

b zA
b,iz

B
b, j√∑

b (zA
b,i)

2
√∑

b (zB
b, j)

2
(6)

This loss pushes the obtained cross-correlation matrix to
match an identity matrix of the exact dimensions. It en-
sures the two representations’ features are aligned indepen-
dently from the transformations applied to the input x. At the
same time, this pushes the function f to decorrelate the non-
corresponding features. That stems from information theory,
where we are trying to reduce redundancy and, by extension,
maximize the mutual information between the semantic ele-
ments. So this step iterates N times, with N being the number
of styles belonging to the set �. As the encoder switches be-
tween different styles, we introduced another parameter up-
date operation using the exponential moving average across
time to stabilize it further. The procedure is described as fol-
lows:

θT := (1 − γ)θT + θT−1 (7)

where θT are the parameters weights at the step T .θT−1 are the
weights of the previous step and γ represents a weight decay
term as such as γ ∈ [0, 1].

In each step, we also preserve a representation of one style
to a style bankM for the second major step of our algorithm.

Global Style Update: After executing N iterations of the
modified Barlow Twins, the algorithm executes another step
update before passing to the next batch iteration. In this step,
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Figure 2. Flowchart demonstrating the proposed Self-supervised learning algorithm.

we use the style bank M where representations of different
styles during different time steps are saved. In a fashion sim-
ilar to [23], we use the L2 loss (Eq. 8) to reduce the distance
between the distribution of the original image and the distri-
butions of other styles. This is done by forcing the function f
to predict a representation ROrg similar to RS i , where S i ∈ �.
This further helps stabilize the training moving ROrg closer to
the style distributions’ centroid.

L = || f̄θ(ROrg) − R̄S i ||
2 = 2 − 2 ·

⟨ fθ(ROrg),RS i⟩

|| fθ(ROrg)|| · ||RS i ||
· (8)

Optimization: We follow the optimization method de-
scribed above; we use the Adam optimizer for 450 epochs
with a batch size of 128 on 50000 painting images, which
are augmented to 5 neural styles. We use a learning rate of
5×10−4 with a reduction on plateau scheduler with ten epochs
waiting time. We used a search for the parameter λ of the loss
function and found λ = 0.5. The training was performed us-
ing an Nvidia Quadro RTX 8000.

4. Dataset
Building up a painting dataset is usually conditioned by

copyright and intellectual property laws. Constructing a large
painting dataset is a laborious and not trivial task, especially
for the personal visual attention and perception tasks where
the need to conduct experiments with human participants is
essential. We constructed a new dataset consisting of 170
artistic paintings images and the corresponding eye-tracking
data. The dataset is subject to expansion at several levels,
including the number of images, subjects, tasks, etc. In this
section, we provide detail and properties of the dataset.

Images: We collected 170 copyright-free painting images
from Wikiart. The paintings belong to 16 different art move-
ments and art schools. The dataset consists of landscape and
portrait images. During the experimental campaign, it is nec-
essary to consistently show participants the presented paint-
ings. As such, we centred the paintings on a uniform grey
image having 16/9 ratio (1600px x 900px). The paintings

Algorithm 1 pseudocode .

dataloader = []
dataS =[]
StyleBank = []
for data in dataloader :

dataS = StyleTrasferTrasform(data)
# Datastyles list of size N
for i in range(N):

i, j = rand(0,N)
# Select 2 Styles at random
S1 = RandomTrasform(data[i])
S2 = RandomTrasform(data[j])
z_a = f(S1) # passing S1
z_b = f(S2) # passing S2
z_a_norm = (z_a - z_a.mean(0)) / z_a.std(0) # NxD
z_b_norm = (z_b - z_b.mean(0)) / z_b.std(0) # NxD
# Saving params temporally
f_temp.params = f.params
# Saving representation to Stylebank
StyleBank.append(z_a_norm)
# Barlow Twins optimization
loss = BTLoss( z_a_norm , z_b_norm)
loss.backward()
optimizer.step()
# EMA
f.params = gamma * f.params + \

(1-gamma) * f_temp.params
loss = []
Sorg = f(data)
# calc. L2 loss for each repesent.
for i in range(len(StyleBank)) :

loss.append( L2Loss(Sorg,StyleBank[i]))
# Global Style Update optimization
loss = loss.mean()
loss.backward()
optimizer.step()

underwent resizing to fit the images while persevering their
aspect ratio. The prominence of the grey stripes depends on
the image’s original aspect ratio.

Participants: There were 30 participants, from university
undergraduates to university staff and faculty in an engineer-
ing school. All the participants are not experts in art subjects
and have reported no previous experience or formal training.
The cohort added up to 10 female and 20 male participants.
Their age ranged from 18 and 62 years old. The mean age
was 28 years old with a standard deviation of 11.5 years (

1543



Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
PathGan [2] 0.9608 0.5698 0.9530 0.8172 0.8252 -0.2904 0.0825

Le Meur [37] 0.9505 0.6231 0.9488 0.8605 0.8457 0.8780 0.4784
G-Eymol [50] 0.9338 0.6271 0.9521 0.8967 0,8524 0.8727 0.3449

SALYPATH [33] 0.9659 0.6275 0.9521 0.8965 0,8605 0.3472 0.4572
Our model 0.9552 0.6466 0.9509 0.8873 0.8600 1.0062 0.5170

Table 1. Results of scanpath prediction on Salicon.

Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
PathGan [2] 0.9237 0.5630 0.8929 0.8124 0.7561 -0.2750 0.0209

DCSM (VGG) [5] 0.8720 0.6420 0.8730 0.8160 0,8007 - -
DCSM (ResNet) [5] 0.8780 0.5890 0.8580 0.8220 0,7868 - -

Le Meur [37] 0.9241 0.6378 0.9171 0.7749 0,8135 0.8508 0.1974
G-Eymol [50] 0.8885 0.5954 0.8580 0.7800 0,7805 0.8700 0.1105

SALYPATH [33] 0.9363 0.6507 0.9046 0.7983 0,8225 0.1595 0.0916
our model 0.9201 0.6759 0.9099 0.8351 0.8352 0.8186 0.1926

Table 2. Results of scanpath prediction on MIT1003.

Model NSS Congruency
Our model SSL 0.9987 0.2673
Our model SL 0.8554 0.2641

Table 3. Results of scanpath prediction on Le Meur paintings with
and without SSL.

28±11.5). All participants reported a normal or corrected vi-
sion and passed a sample Ishihara test with the three images
representing 12,74, and 42 to check out any CVDs (Colour
Vision Deficiencies). No participant exhibited any symptoms
during the short examination.

Hardware and Experimental protocol: Participants
were asked to watch the painting in the most natural manner
possible for a free-viewing session, and no visual task was
assigned. The experiments were held in compliance with the
declaration of Helsinki, and all participants signed off a writ-
ten consent. Observers sat down in front of a 25” screen at
a distance of 55 cm. The screen covered 52◦ horizontally
and 38◦ vertically. The screen resolution was 1920 x 1080
pixels, the visual stimulus size was 1600 x 900 pixels and
covered 43◦ horizontally and 32◦ vertically. Each degree of
visual angle corresponded to 37 pixels. A fixed Tobii X2-30
eye-tracker was used for the experiments with a frequency of
30Hz. Though the sampling frequency is low, it was enough
to gather fixation points throughout the experimental cam-
paign. Each image was shown to 15 participants for 15 sec-
onds, with a 3-second blank grey screen being displayed be-
tween two consecutive pictures to refresh the viewers’ retina
and avoid any bias impacting the new upcoming visual stim-
ulus perception. Afterwards, a further analysis step was car-
ried out on the first 4 seconds of each image and the corre-
sponding eye-tracking data. Fixation points related to later
than the fourth second of observation will be used for other
purposes. Each experimental session lasted for 15 minutes.
Dataset Analysis After gathering eye-tracking sessions data,
we aggregated fixation maps from all participants’ data for
each image shown. We generated saliency maps out of fixa-

tion maps using a common smoothing filtering technique: a
Gaussian kernel with the size of 1◦ of visual angle, which is
formulated by the following equation:

with Fixmapi(x, y) =

1, if (x, y) in (X,Y)i

0, otherwise
(9)

where x, y are the coordinates in the 2D space. Gσ repre-
sents the Gaussian kernel with a standard deviation σ. (X,Y)
are the set of fixation point coordinates for all viewers of the
image i.

The distribution of the fixation durations follows a skewed
long-tailed distribution, as shown in Fig 3 (a). While the dis-
tribution of the number of fixation points follows a near sym-
metric bell curve distribution, as shown in Fig.3 (b). Fig 4
(a) shows a polar distribution histogram of the relative sac-
cadic angles direction. The polar axis represents the angles
of the distribution, and the radial axis is the statistical density.
Fig. 4 (c) represents a saccade length distribution. Again,
an asymmetric skewed heavy-tailed distribution is noticeable,
with most of the saccades being short. That is also confirmed
in Fig.4(b), which depicts the joint distribution of saccadic
lengths and directions. The polar axis represents the saccade
relative angles as the radial axis counts the saccades’ lengths
and distribution by color as detailed in the sidebar.

5. Experimental Protocol

We follow standard practices by evaluating our baseline
architecture on natural scene images to ensure a fair compar-
ison protocol for our model with others. For instance, we use
5000 images from Salicon [31] dataset, and then in a cross-
dataset evaluation manner, we run a comparison without fine-
tuning our model on MIT1003 [32] dataset. To that end, we
use two hybrid metrics (i.e. NSS [40], Congruency [35])
to compare the predicted scanpaths with the ground-truth
saliency maps. Furthermore, we adopted a vector-based met-
ric (i.e. Multimatch) to match the predicted scanpath with
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Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
Our model SSL 0.9454 0.7019 0.9423 0.8196 0.8523 0.8083 0.1641
our model SL 0.9231 0.6952 0.9083 0.7800 0.8266 0.4179 0.1247

Table 4. Results of scanpath prediction on our paintings with and without SSL.

Figure 3. (a) Distributions of fixations duration. (b) Distributions of
number of fixations per scanpath.
the ground-truths based on 5 characteristics (Shape, Direc-
tion, Length, Position and Duration). We use the first 4 for
comparison here as our model does not predict the duration.

For fairness, we did not compare our model with other
models because of the difficulty of fine-tuning them on our
dataset. However, as our model shows competitiveness with
other models on natural scene images benchmarks, we eval-
uated it after fine-tuning it on our proposed painting dataset.
To assess our SSL method on the painting dataset, we com-
pare the model resulting from SSL with the fine-tuned SL
model.

5.1. Results on natural scene datasets
The results of the comparison of our baseline model on

natural scene images are described in Tables 1 and 2. The re-
sults on Salicon [31] dataset show that our baseline model
scored the highest outcomes for the hybrid metrics NSS
and congruency. Especially on NSS, where it surpasses the
runner-up by a wide margin. The results for the MultiMatch
metric were very competitive as our baseline model was over-
come by SALYPATH [33] with a very negligible margin on
the mean score while demonstrating abilities in learning the
distribution of the directions. On MIT1003, Our baseline
model achieved competitive results on the NSS while being
surpassed by a very negligible margin on congruency. It also
proved a better ability to generalize the MultiMatch mean
(MM Mean) score while maintaining the highest direction
score and achieving the same position score.

5.2. Results on paintings
As the comparing models cannot be fine-tuned on our pro-

posed dataset, we present the results of our proposed model
and the model ensuing from the linear evaluation of the SSL
training. We tested the model on our proposed and Le Meur
datasets using only hybrid metrics since only aggregated

saliency maps are provided (i.e. there are no scanpaths).
Table 3 shows results obtained from testing our fine-tuned

model denoted by ”Our model SL” and the model resulting
from the self-supervised training as ”Our model SSL”. Our
models showed very high performance on the NSS metric. It
is mainly due to the content of the chosen paintings in the
Le Meur painting dataset, which was in a cross-dataset vali-
dation fashion. Furthermore, most images and styles depict
semantics close to reality; this realistic art style shows slight
deviation from natural scene images, thus explaining the high
score. The same consideration goes for the congruency where
the SSL model surpasses the fine-tuned one. The testing on
our dataset was done using 50 images. In addition to com-
paring the hybrid metrics, we also assessed the vector-based
metric of MultiMatch. Table 4 clearly shows that the SSL
method surpasses the fine-tuned model on all metrics.

Finally, Fig. 5 presents some visualization examples of
predicted scanpaths from both the supervised model and the
self-supervised model. We notice clearly that the supervised
model fixations occupy a centric location in the image with
mostly a long tail afterwards towards the upper left corner of
the image. As for self-supervised model prediction, we can
notice that they spread evenly over the salient regions present
in the ground truth.

5.3. Discussion
The presented model proved its effectiveness and competi-

tiveness compared to other similar state-of-the-art models for
natural scene images. We extended then the model to paint-
ing images. The results obtained from fine-tuning showed
room for improvement. Predicting scanpaths is mainly a su-
pervised task, which calls for the use of large amounts of
data. Our dataset is the only public one that presents scan-
path ground-truths for painting images domain to the best of
our knowledge. We proposed a new SSL training method
to improve the results that capitalize on previous state-of-
the-art methods. Our approach is the first to employ Neural
Style Transfer as a data augmentation strategy and the first
that uses SSL for visual scanpath prediction. The results in-
dicate that SSL methods suit well our visual attention tasks.
Free-viewing is basically a bottom-up attention task, mean-
ing visual attention lies in intrinsic image features. It seems
to resonate well with the redundancy reduction SSL methods.
The goal is to limit the representation to diminish the amount
of information to a minimal size. At the same time represent
the most critical information from the scene.

Our SSL method also showed a high ability to converge
faster compared to other methods trained for more than 1000
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Figure 4. (a) Distributions relative angles of scanpaths. (b) Joint Distributions of relative angles and saccades lengths. (c) Distributions
lengths of saccades.

Figure 5. Visualization of predicted scanpaths on painting images overlaid with Ground-Truth saliency maps.

epochs. It also seems to inherit the characteristic of the no
need for extensive data from Barlow Twins. The fast con-
vergence is due to the stabilizing parameter weight updates
using an exponential moving average at the end of each Bar-
low Twins update to smooth the transaction between different
Styles. The ”Global Style Update” step optimizes weights at
the end of each batch also proves beneficial to reduce the dis-
tance between the styles representations. The use of 128 as a
batch size is mainly due to hardware limitations. We also no-
ticed a particular disparity between the results of our dataset
and Le Meur paintings [36]. The model’s performance in-
deed has dropped. That is due to the greater diversity in
schools, movements and techniques depicted by our dataset,
which contains many hard-to-predict images belonging to ab-
stract paintings, oriental ink paintings and cubism. Neverthe-
less, the competitively empirical and qualitative results show
the efficiency of our self-supervised method in extracting rel-
evant features from the paintings.

6. Conclusion
We introduced in this paper a baseline scanpath predic-

tion model that proved competitive against state-of-the-art
methods and overcame them in many instances over multi-
ple datasets and metrics. We also introduced a visual atten-
tion dataset for painting images. Our dataset is the first pub-
licly available that provides aggregated saliency maps and
scanpaths of individual observers. However, the dataset is
more diverse in terms of images and thus harder to predict.
We also proposed a novel self-supervised learning approach
that builds over previous methods. We adopted Neural Style
Transfer as a data augmentation technique for self-supervised
learning in our work. Furthermore, its performance turned
out very well in learning adequate representations for paint-
ings. The above-depicted scenario opens a long way to SSL
methods in visual perception tasks related to art and other
use cases like painting style, era identification, and aesthetics
quality assessment.
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