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Abstract

Videos are more well-organized curated data sources
for visual concept learning than images. Unlike the 2-
dimensional images which only involve the spatial informa-
tion, the additional temporal dimension bridges and syn-
chronizes multiple modalities. However, in most video de-
tection benchmarks, these additional modalities are not
fully utilized. For example, EPIC Kitchens is the largest
dataset in first-person (egocentric) vision, yet it still relies
on crowdsourced information to refine the action bound-
aries to provide instance-level action annotations.

We explored how to eliminate the expensive annotations
in video detection data which provide refined boundaries.
We propose a model to learn from the narration supervi-
sion and utilize multimodal features, including RGB, motion
flow, and ambient sound. Our model learns to attend to the
frames related to the narration label while suppressing the
irrelevant frames from being used. Our experiments show
that noisy audio narration suffices to learn a good action
detection model, thus reducing annotation expenses.

1. Introduction

Inexpensive and informative side information such as
soundtracks and closed captions widely exist in videos. In
addition, videos involve a temporal dimension, which syn-
chronizes this side information with the video frames. Both
the side information and the synchronization nature provide
a good chance for self-learning. However, it is still chal-
lenging to achieve the goal of localizing specific actions us-
ing self-learning. On the one hand, which side information
to use as supervision is unclear. On the other hand, the mul-
tiple modalities in videos such as RGB frames, motion fea-
tures, and ambient sound need to be explored. Due to these
complex factors, the idea of adopting the abundant side in-
formation to predict instance-level action detection results
did not gather enough attention.
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Figure 1. Demonstration of the instance-level, video-level, and
audio narration supervisions. The audio narration supervision in
the EPIC Kitchens dataset only includes an imprecise start time,
while we use this cheap to annotate data to learn a video action
detection model.

This paper will explore audio narrations in the
untrimmed video action detection task. As the audio
narrations roughly match the video frames, they provide
a good signal for localizing actions in the temporal do-
main. We first distinguish the narration annotations from
the instance-level or video-level annotations. We show
in Fig. 1 an example video clip from the EPIC Kitchens
dataset [12], as well as the different forms of supervision.
The instance-level annotations are defined by triplets (start
time, end time, action class). Models trained under the
fully-supervised setting can use this form of supervision to
generate temporal action proposals [32, 33], or perform ac-
tion detection [14, 18,34,45,46,59,61]. The major benefit
of instance-level data is that the resulting models are usually
boundary-sensitive, thus the foreground and background are
clearly distinguished by the detection scores, resulting in
high average precision.

However, fully annotating a video dataset with instance-
level labels is time-consuming. Thus, methods [27,39, 40,

,44,53] focus on the weakly supervised action detection
(WSAD), which only requires video-level labels. These
methods assume the video to be a bag of actions and use
multi-label cross-entropy loss to optimize. One disadvan-
tage of WSAD is that it assumes only a few classes per
video (e.g., < 5, see Tab. 1). Hence, it is not applicable
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Dataset Avg. video Avg. classes Avg. actions
length (secs) per video per video
THUMOS 14 209 1.08 15.01
EPIC Kitchens 477 34.87 89.36

Table 1. Datasets information. Most WSAD methods use THU-
MOS 14 [21], in which there is only 1 action class per video.
We explore single-timestamp audio narration annotations in EPIC
Kichens [7].

in real cases. In an extreme scenario, a 2-hour untrimmed
video may consist of all the action classes, thus the video-
level label is too coarse to learn a good detector.

This paper explores the audio narration supervision in
the EPIC Kitchens [12] dataset. In addition to the ambi-
ent soundtrack in the dataset, videos in EPIC Kitchens were
narrated by the annotators. The resulting audio narration
track is later transcribed into texts and then parsed into ac-
tion classes (verb + noun) using a dependency parser, re-
sulting in the forms we use (see Fig. | bottom). Our goal is
to learn action detectors utilizing this form of cheap anno-
tations, and we expect the performance to be comparable to
the models learned using instance-level supervision.

The major challenge of using audio narrations is that the
annotations are noisy. Unlike the instance-level annota-
tion: (1) narration annotations’ start timestamps are not pre-
cise in that they may overlap with the previous action, and
(2) the end time is unknown since the narrators provide no
hints about it. One can assume the end time to be before
the start time of the following action, but the frames in be-
tween are a gray area, and their membership is uncertain.
Therefore, narrations provide a trade-off between accurate
instance-level annotation and cheap and fast video-level an-
notation. One needs to model the uncertainty to use them.

To use the narrations to learn the action detection model,
we first cut the untrimmed videos into clips using the sin-
gle timestamp (start time) of the audio narration annotations
(see Fig. 1). Thus, each clip can be treated as a mixture of
actions, given that the boundaries are imprecise. Then, the
association between the frames in the clip and the clip-level
action class could be solved as a Multiple Instance Learning
(MIL) problem. Compared to the common WSAD methods
such as [39,40] which only distinguish between foreground
and background (see statistics of THUMOS 14 in Tab. 1),
the background in our clip may involve other semanti-
cally meaningful actions. So, we design a class-aware at-
tention mechanism to assign higher scores to the frames in
the clip that are more related to the narrated class. Mean-
while, we extract multimodal video features from RGB
frames, motion flow, and ambient sound. We apply a sim-
ple early fusion architecture to the problem and ablate the
contributions of each modality.

To summarize, our contributions are as follows:

* We propose to use the audio narrations to learn the
video action detection model. To the best of our
knowledge, this is a brand new task that has not been
explored. In EPIC Kitchen tasks C1-C5, only CI-
weakly is marginally related. However, C1-weakly is
still different from ours because Cl-weakly requires
only to classify trimmed video at test time, while ours
requires to localize actions in untrimmed videos.

e We provide a solution to the proposed task, in which
we use a class-aware attention mechanism to rule out
video frames that are not related to the narration la-
bel. Also, our solution considers multimodal features,
including RGB frames, motion flow, and audio.

* We ablate our method on the EPIC Kitchens dataset
and analyze the contributions of each model compo-
nent and feature modality. The experiments provide
insights for weakly supervised action detection meth-
ods in noisy untrimmed videos.

2. Related Work

Weakly Supervised Learning in Images. There is
a large number of works aiming to harvest image mod-
els using weak supervision. Some use image-level labels
[6,13,25,47,48,52,54] or captions [9,58,60] to learn object
detection models. There are also works that learn semantic
segmentation models [20,49,51] or scene graph generation
models [57,62]. However, weakly supervised video mod-
els differ from all these prior image modeling approaches
in that videos have the synchronized audio tracks, closed
captions, and other information to be matched to the visual
frames. Utilizing the additional synchronized modalities
can potentially improve video models and is an important
direction of learning video models using weak supervision.

Weakly Supervised Learning in Videos. Since videos
naturally involve multiple modalities, many approaches use
unsupervised or weakly supervised training to learn better
video representations. For example, [5, 8, 38, 41] explore
the cross-modal relations and leverage large amounts of un-
labeled video for training. The basic idea behind this is that
vision and sound are naturally synchronized so that models
can utilize the synchronization as weak signals instead of
ground truth labels. However, these methods are more of-
ten used in pre-training to improve the initialization of the
visual-sound models. In comparison, our focus is on us-
ing additional modalities (e.g., audio narrations) to localize
visual objects or actions in the temporal domain.

Also related is the co-localization or audio-visual corre-
spondence [2—4, 16, 19,43]. Similar to learning the joint
representations, these works also rely on the synchroniza-
tion of different modalities. However, they further learn to
localize the sounds or visual objects given the information
from other modalities. Our work differs from them in that
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(1) these works did not quantify their results on detection
tasks while only providing qualitative results; (2) our model
requires no supervised signals at testing time.

Weakly Supervised Video Detection Tasks. In videos,
there are various tasks of weakly supervised detection. For
example, [27,30,31,36,37,39,53] only learn to detect the
starting and ending time of particular actions, while entirely
ignoring the spatial layouts of the instances. [50] use au-
dio amplitude from the video to predict the occurrence of
“climax” in an advertisement video. To track the spatio-
temporal localization, methods such as [10, 55] rely on
the video/image proposal frameworks such as [22-24, 50]
which provide high-quality region proposals. Their ap-
proaches are counterparts to weakly supervised object de-
tection in the image domain, with the key difference be-
ing in the types of proposals. Finally, there are also meth-
ods [28,29, 35] attempting to only utilize cues from videos
(e.g., motion, subtitle, tight boxes) to potentially benefit the
training of image detectors.

We study how to learn action detection models (predict-
ing starting/ending time and action labels) in videos. How-
ever, compared to fully-supervised methods [14, 18,34, 45,

,59,61], the supervised signals we used are the audio nar-
rations, which are noisy in nature hence are much weaker
than instance-level annotations. As for the weakly super-
vised action detection models [27, 39,40, 42, 44, 53], their
data in most cases only involves a single action per video.
Thus video-level supervision satisfies their requirements. In
comparison, our target task is a novel task, requiring non-
trivial efforts to deal with the noisy annotations to improve
the model’s quality.

3. Approach

We first formulate the weakly supervised action detec-
tion (WSAD) task guided by audio narration, and overview
the model training pipeline. Then, we introduce the details
regarding the multimodal features in Sec. 3.1, discuss the
design of the proposed class-aware attention in Sec. 3.2, and
provide a post-processing algorithm which turns the frame-
level into instance-level prediction (required by evaluation),
in Sec. 3.3.

Task formulation: We conduct our experiments on
the EPIC Kitchens dataset [12]. At training time, the
video and paired {time;,verb;,noun;}¥ ; as N anno-
tated actions are provided, where time; is the narration
start time, and verb; and noun; are the narrated verb and
noun classes respectively. The underlying assumption is
that time; is not precise to represent the narration start-
ing time since there may be overlap between consecutive
actions. At test time, models have to predict four tuples
{time_s;, time_e;, verb;, noun;} given the video, where
time_s;, time_e; are the start and end time respectively.

Training pipeline overview (Fig. 2): Given
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Figure 2. Model overview. We first cut the video into clips us-
ing the single timestamp denoted in the audio narration. Then,
each video clip can be treated as a bag of a few actions. Next,
we extract multimodal features and use early fusion to combine
them (Sec. 3.1). We use a class-aware attention mechanism to
produce the frame-level detection score (Sec. 3.2). Finally, we
use a class-aware, intensity-sensitive post-processing (Sec. 3.3) to
turn the frame-level into instance-level prediction (not shown), for
evaluation purposes.

a video and the paired audio narration annota-
tion {time;,verb;,noun;}¥ , we first split the
video into training clips. Given a specific action
(time;, verb;,noun;),i € {1...N}, we cut the video
from time,; to time;1, resulting in a video clip (/V clips in
total) paired with verb; and noun;. We denote the frames
in the i-th clip as { f; }f;l where L; is the total number of
frames in the ¢-th video clip.

Then (Fig. 2 (middle)), we proceed with the feature
extraction process, which will be explained in detail in
Sec. 3.1. Briefly, we extract the visual CNN features of the
RGB and flow frames and the semantic embedding of the
ambient soundtrack. After feature extraction, we use early
fusion to aggregate these multiple modalities.

Finally, we use an attention mechanism guided by au-
dio narrations, to filter out irrelevant classes in the clip,
given that the i-th clip should be all regarding the verb;
and noun;. In Fig. 2 (top), we show an example clip re-
lated to the “pick-up plate” action, and the figure demon-
strates how to predict the verb “pick-up”. Because of the
nature of the noisy narration supervision, it is common
that the last few frames in the clip mix with the next action
(e.g., “put-down plate”). So given the clip level supervi-
sion “pick-up”, how can we rule out the impacts of the next
action “put-down”? Our solution is to predict different at-
tention distributions for different verbs (in Fig. 2 (top), blue
for “pick-up” and “green” for “put-down”). Then, within
a clip, we use the attention distribution bound to the action
class (e.g., verb “pick-up” is the supervision for the clip in
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Fig. 2 (top)) to help with the predictions. The selected at-
tention distribution will highlight the frames for predicting
the clip-level action.

3.1. Multimodal Video Features

We consider features from the following sources.
Though using them is common in video recognition, we are
working on a novel task of learning action detection mod-
els from narration supervision, in which the contributions
of RGB/flow/audio features are unclear.

¢ RGB and flow frames. We use the standard RGB and
flow features provided in the EPIC Kitchens dataset,
i.e., the 1024-D RGB and 1024-D Flow CNN features
generated by a TSN model [15] pre-trained on [12].

* Ambient sound. Since the EPIC Kitchens dataset pro-
vides the soundtrack of the ambient audio, we also
model them because the sound may imply some ac-
tions. We use VGGish [17] to produce a 128-D seman-
tically meaningful embedding for every second. The
VGGish method was first used in the AudioSet [17]
classification task, and it was pre-trained on a large
YouTube dataset (which later became YouTube-8M).

Early fusion of the multimodal video features. We
linearly interpolate the ambient sound semantic embed-
dings to convert its sequence lengths to be the same as
the RGB and flow features. We denote the concatena-
tion of these multimodal features as the video frame fea-
ture {fi’j}fgl, fij € R2176x1 (RGB 1024-D, flow 1024-
D, ambient sound 128-D, L; - number of frames). Let
F, = [,fi,l ‘fz‘}Q “ee fi,Li]T € RLix2176 pe the video se-
quence feature, we apply a Conv1D layer (with kernel size
3, ReLu activation) to further extract the frame feature
Fi=[f1f2fi,]7 € Rlixd (d = 100 is the num-
ber of neuron units):

3.2. Class-Aware Attention for Weakly Supervised
Action Detection

After getting the multimodal video features, we design a
class-aware attention mechanism to localize the actions in
the sequences. Our model selects relevant frames that best
represent the action in the video clip and uses their aggre-
gated features to represent it. Take Fig. 2 as an example, the
verb class for the video clip is “pick-up” (i.e., clip-level la-
bel), so we use the embedding of “pick-up” to multiply (dot-
product) each frame feature f; to measure the frame-label
similarity, resulting in a sequence of scores. After normal-
ization, this score array represents the likelihood that the as-
sociated frames involve the action “pick-up”. We compute
the weighted sum of the sequence features (weighed by the

normalized scores). Then, we add a classification layer to
predict the action and use cross-entropy loss to optimize.
Formally, we define action label embedding weights

Wl e ROwenxd W) € ROwownxd where Chenp
and C), oy, are the number of verb and noun classes, respec-
tively. Since the verb detection and noun detection follow
the same pipeline and only differ in the number of classes,
we use W) = ijle)rb or W%lo)un as an abstract notation
to denote either label embedding, C = Cyerp O Chroun to
denote the number of classes, and ¢; = verb; or noun; to
denote the clip-level label. Then, the following procedure
applies to both verb and noun detection parallel tasks.

We first compute the dot-product between the label em-
bedding and the frame feature, then, we use the sigmoid
function to turn the score into a probability A € R¢*Li
(see Eq. 2; Fig. 2 (top) shows A’ using the color matrix).
Since we are aware of the class that is narrated in the video
clip, we select the specific ¢;-th row in A/ (¢; = verb; or
noun;), resulting in A; € R'*%i. This class-aware row
selection process is shown in Fig. 2 (top) using the blue
dashed box.

A’ = sigmoid( W) FT), A, =Alle,:] 2

Meanwhile, we use a fully connected layer W) ¢
RIXC to estimate the per-frame detection score D; €
RE*C In Eq. 3, j € {1---L;} denotes frame id and
k € {1---C} is the class index.

> =1 exp (Di[j, k'])
3)
Directly optimizing the per-frame detection score D; =
Dyery i of Dyoun 18 hard since we only have the clip-level
label ¢; = verb; or noun;. Thus, we apply the class-aware
attention weighting A; to aggregate frame-level informa-
tion into F; € R'*? (Eq. 4), which is a clip-level fea-
ture. Then, the clip-level prediction is given by P; € R¢*!
(Eq. 5), which shares the W) with Eq. 3.

= AF;
S N @
2521 A;lj]
P = (F‘L W(Q))T PL[k'} _ exXp (P;[k’])
’ S0 exp (PIW])

)

Finally, we use cross-entropy to optimize the model,

where y; is the one-hot representation of ¢; (y;[k] =
Liff k = ¢;).

c
L=— Z Z yi[k] log P; k] ©)

i
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Figure 3. Intensity-sensitive post-processing. For each of the ac-
tion classes, we use a set of thresholds (e.g., {0.1, 0.2}) and re-
trieve all segments (consecutive frames) that meet the different
threshold conditions. The retrieval results are a set of action seg-
ments with different intensities. Next, we score each segment
and apply Non-Maximum Suppression (NMS) to remove highly
overlapped detections. We show the action clips detected using a
threshold of 0.1 using green color and the clips detected by thresh-
old 0.2 using blue. Assuming the IoU threshold of 0.6, segment
(5) will be removed because it overlapped with (2).

3.3. Class-Aware Intensity-Sensitive Post Process-
ing

To get the detections in the form of
{time_s;, time_e;, verb;, noun; } from the frame-level pre-
diction D; (Eq. 3), we use a class-aware intensity-sensitive
post process. Specifically, we consider each action class
separately. Given the detection score of a specific class
(e.g., the k-th class in verb detection Dyerp i[:, k]), we
first use different intensities (thresholds) to retrieve the
segments, which are defined to be the longest sequence
of consecutive frames that have detection scores past the
threshold. The result is a set of potential action segments
detected by different intensity scores (thresholds). We
then assign a score to each segment, denoting the average
detection intensity within the segment. In Fig. 3, we show
the segments detected by threshold 0.1 and 0.2 using
green and blue colors, respectively. In the next step, we
use Non-Maximum Suppression (NMS) to remove highly
overlapped (measured by IoU) detections and retain only
those with higher intensity. Finally, we aggregate the
NMS-ed detections from all action classes and sort them by
intensity, resulting in our final detection results.

4. Experiments

We provide the details regarding our model in Sec. 4.1.
Then, we provide experimental results in Sec. 4.2, including
analysis regarding both the contributions of our model com-
ponents and the benefits of multimodal features. To better
understand our model, we also provide qualitative results in
Sec. 4.3.

4.1. Implementation Details

Before training the detector, we extract the multimodal
features offline. The CNN features of the RGB and flow
frames are from [ 2], while we pre-processed the audio fea-

tures. We use FFMpeg to extract audios from MP4 videos
and feed the Mel spectrogram to the VGGish [17] model
pre-trained on the large Youtube dataset (latter Youtube-
8M) to produce semantic audio embeddings. After getting
the above features, we interpolate the audio features to make
them the same lengths as the RGB and flow features.

We concatenate the multimodal features as the model in-
put and add a Conv1D layer (with d = 100 filters, kernel
size 3, ReLu activation) to further finetune. During training,
we use a dropout probability of 0.5 for the Conv1D layer,
and a dropout probability of 0.5 for the learned attention
(A;). We use the Tensorflow framework [1], Adam opti-
mizer [26], a learning rate of 1e-5, and a batch size of 8 (8
clips). All models in our experimental sections are trained
for 300K steps on the EPIC Kitchens dataset, using a vali-
dation set to pick the best model.

For the post-processing, we first apply uniform filtering
(filter size 3) on each class’s detection scores (e.g., Dyerp i[:
, k]) to make the detection scores less fluctuating. Then,
we vary the detection threshold from 0.01 to 0.4 to retrieve
all segments and use NMS with an IoU threshold of 0.4 to
remove highly overlapped segments.

4.2. Results on the EPIC Kitchens Dataset

Metrics. Although our training process does not rely on
instance-level annotations, we can use the EPIC Kitchens’
C2 task’s (Action Detection) evaluation protocol, which
measures the performance of the action detections. The pro-
tocol computes the average of the Average Precision (AP)
values for each class, a.k.a. mean AP. A predicted segment
is considered correct if its Intersection over Union (IoU)
with a ground truth segment is greater than or equal to a
given threshold (0.1 to 0.5). Besides the verb and noun de-
tection, the EPIC Kitchens’ C2 task also involves an action
detection evaluation which requires the verb and noun de-
tections to be correct at the same time.

Contributions of Proposed Components. We verify
the effectiveness of the proposed model and compare it to
the fully- and weakly-supervised action detection methods.
All methods listed below use the same features.

e FUL. [11] is a fully supervised model trained by the
EPIC Kitchens challenge organizer, using a two-stage
approach to solve the action detection (action pro-
posal [32] + action classification [14]).

* OUR FUL. is a one-stage fully supervised method
trained by us, in which we predict the frame-level ac-
tions then post-process (Sec. 3.3). We treat OUR FUL.
as a proper upper bound baseline in that all of our
weakly supervised methods depend on similar frame-
level prediction + post-processing.

e NARR. BAS. is the baseline method of using narra-
tion supervision. In NARR. BAS., we treat the single
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Action Detection Verb Detection Noun Detection
@0.1 @0.2 @0.3 @04 @0.5 Avg. |@0.1 @0.2 @0.3 @0.4 @0.5 Avg. |@0.1 @0.2 @0.3 @0.4 @0.5 Avg.
FuL.[11] [6.95 6.10 522 436 3.43 521|108 9.84 8.43 7.11 558 836|10.3 8.33 6.17 447 3.35 6.53
OUR FUL. | 6.40 5.69 459 3.34 239 448|129 114 9.04 6.62 503 9.00|11.4 9.61 7.17 470 2.98 7.17
NARR. BAs.[4.42 3.62 291 2.06 1.47 290(9.39 745 568 3.99 2.85 587|843 6.92 524 3.50 2.37 5.29
CLS. AGNO.|4.57 3.78 3.10 2.28 1.70 3.09|10.0 8.53 7.03 4.79 3.40 6.75|8.49 6.82 4.96 3.22 2.04 5.11
Ours 4.68 4.01 3.27 233 1.65 3.19|9.64 7.96 6.31 4.70 3.56 6.43|8.51 6.88 5.09 3.36 2.25 522

Table 2. Contributions of proposed components. We show the Average Precision (%) at certain IoU thresholds (@0.1-@0.5) and the mean
Average Precision (Avg.). Higher numbers are better. The best weakly supervised model learned using narration annotations is shown in

bold and the second best is in italic.

Action Detection
@0.1 @0.2 @0.3 @04 @0.5 Avg.

Verb Detection
@0.1 @0.2 @0.3 @04 @0.5 Avg.

Noun Detection
@0.1 @0.2 @0.3 @04 @0.5 Avg.

RGB | 449 376 294 225 1.67 3.02|8.72 7.07 543 438 3.15 5.75

Flow | 2.32 198 1.47
Audio| 0.34 0.27 0.23 0.09 0.05 0.20 | 1.71

870 7.13 5.29 3.71 2.56 5.48

1.10 0.84 1.54|6.59 558 429 295 2.10 430|433 347 249 1.68 1.11 2.61
1.37 1.07 0.61 0.39 1.03

094 0.68 051 023 0.16 0.50

All | 4.68 4.01 3.27 233 1.65 3.19|9.64 796 6.31 4.70 3.56 6.43

851 6.88 5.09 336 225 5.22

Table 3. Contributions of multimodal features. We show the Average Precision (%) at certain IoU thresholds (@0.1-@0.5) and the mean
Average Precision (Avg.). Higher numbers are better. The best model is shown in bold.

timestamp in the narration annotations as the bound-
aries and use the cut result as instance-level annota-
tions to directly train a fully supervised model.

¢ CLS. AGNO. is an alternative method, in which we use
a class-agnostic attention instead of class-aware atten-
tion (Sec. 3.2).

Tab. 2 shows the results. We found OUR FUL., though
a one-stage method, is very competitive to FUL. [1 1] (ac-
tion detection mAP 4.48% v.s. 5.21%). The only weakness
is that it is not that good at boundary refinement. Hence
its verb and noun detection AP@0.1,0.2,0.3 are higher, but
its AP@0.4,0.5 are lower. Then, NARR. BAS., which uses
the same fully supervised method (but changes to use the
narration supervision), inevitably hurts the action detection
performance (action mAP 2.90% v.s. 4.48%). This perfor-
mance drop is due to the unclear boundary definition. We
conclude that our method with uncertainty modeling (class-
aware attention) helps to improve the use of narration super-
vision (action mAP 3.19% v.s. 2.90%). Also, we show that
our modeling of class-aware attention is better than the al-
ternative of class-agnostic attention (action mAP 3.19% v.s.
3.09%). The reason, we argue, is that the class-agnostic at-
tention is only able to distinguish the dynamic actions from
the background frames (e.g., solving the task in THUMOS
14 as shown in Tab. 1). It fails if the mixed actions are all
semantically meaningful video frames.

Contributions of Multimodal Features. We analyze
the contributions of multimodal features by building our
models on different subsets of features. We first build our

models using single modalities, then present our model con-
sidering all types of features.

Tab. 3 shows the results. Among the single modal-
ity models, the RGB model provides the best performance
on Action Detection (mAP 3.02%). It achieves both high
verb detection (mAP 5.75%) and high noun detection (mAP
5.48%) performance. The flow model (action mAP 1.54%)
is worse than the RGB model but is better than the Audio
model. We can see that the flow feature provides more in-
formation for the dynamic actions (verb mAP 4.30%), while
it is not that good at localizing static objects temporally
(noun mAP 2.61%). The audio model (action mAP 0.20%)
is the worst among the three single modal models, but it
still provides useful information, especially in verb detec-
tion (mAP 1.03%).

Our final model takes advantage of all features and
achieves the best performance in terms of action detection
mAP (3.19%). Compared to the RGB model, it utilizes the
flow and audio information to better detect the dynamic ac-
tions (verb mAP 6.43% v.s. 5.75%). Furthermore, com-
pared to the flow and audio models, it combines the ap-
pearance feature (RGB) to better recognize objects in the
temporal domain (noun mAP 5.22% v.s. 2.61%, 0.50%). In
sum, we conclude that our modeling of the videos’ multi-
modal nature helps improve the weakly supervised action
detection task.

We show in Tab. 4 and Fig. 4 the verb and noun classes
best detected by the three modalities. For the verb detection
(Fig. 4 (left)), action “wash” can be easily detected by all
three modalities, while “fold” only makes a slight sound, so
it is hard to recognize by audio. In comparison, “season”
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Verb Detection

Noun Detection

RGB Flow Audio RGB Flow Audio
Name AP(%) Name AP(%) Name AP(%) | Name AP(%) Name AP(%) Name AP(%)
wash 39.59 wash 37.14 wash 17.47 corn 33.21 yoghurt 28.50  microwave  18.33
filter 31.33 hang 29.69  season  11.81 raisin 33.17 tray 21.81 salt 11.79
rip 30.55 fold 2332 measure 8.12 | yoghurt 33.17 lid 21.14  oatmeal 5.63
season  30.11 dry 19.88  unscrew  6.65 olive 29.34 cloth 20.72 carrot 5.27
fold 25.51 throw 17.75 squeeze  5.11 lid 28.16 oven 18.67  cupboard 4.31

Table 4. Top-5 classes detected by the RGB, Flow, and Audio features.

measure
unscrew
squeeze

Audio

Verb Detection

RGB
corn yoghurt
.. lid
raisin
olive

Noun Detection

Figure 4. Venn diagrams - The easily detected top-5 classes by different modalities.

sounds loud, but the dynamic action is nuanced; thus, the
audio can detect it but not the motion flow. The noun de-
tection results are also interesting (Fig. 4 (right)). We found
the “tray” and “cloth” to be more dynamic, and we notice
that “microwave” makes a sound. So, we conclude that dif-
ferent modalities help localize different objects and actions
temporally.

4.3. Qualitative Examples

We provide a qualitative example visualizing the re-
sults of our model. Fig. 5 shows it confidently and cor-
rectly localizes the actions “wash pan”, “wash spatula”, and
“wash plate”. For actions such as “pour liquid:washing”
and “wash sponge”, our model’s estimations of the start-
ing and ending time are not precise, thus causing the IoU
with the ground truth to be smaller than 0.5. We can hardly
find mistakes regarding classification issues in the top-20.
Hence we conclude that localization and refining the action
boundaries are still challenging for weakly supervised ac-
tion detection and should gather more attention.

5. Conclusion

We explored audio narration as a form of supervision in
this paper. We developed a model to learn from the narra-

tion supervision and utilize multimodal features, including
RGB, motion flow, and ambient sound. In our design, the
model learns to attend to the frames related to the narra-
tion label while suppressing the irrelevant frames from be-
ing used. In the experiments, we show that the proposed
method outperformed alternative designs. Also, we proved
that the different modalities contribute to the detections of
different actions and objects in the temporal domain.

The insights of our paper are interesting. Throughout the
EPIC Kitchen tasks C1-C5, none of them directly uses the
cheap audio narration supervision to learn action detectors,
while we proved such a task of using narration to be pos-
sible. Our experiments have shown that it is plausible to
eliminate the expensive stages of refining action boundaries
during video detection data annotation. Further, the refined
instance-level annotations did not contribute too much to
the detector’s performance. We expect weakly-, semi-, and
self-supervised methods to gather more attention in future
video detection tasks.
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Figure 5. Qualitative example of our model’s action detection results. We show the demo of the video, the ground-truth annotations, and
our model’s top-20 predictions. We show the correct predictions using green and incorrect ones using red. The correctness is determined

by IoU@0.5.
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