
A. Dataset

Figure 1. Fixation length density plot.

A.1. Artistic Styles

Style Number of paintings
Abstract art 15

Baroque 12
China ink 10
classicism 7

cubism 14
Early Renaissance 10

Expressionism 9
High Renaissance 11

Impressionism 12
Luminism 11

Neo-Impressionism 10
Realism 10

Romanticism 10
Surrealism 5
Tonalism 11
Ukio-e 13
Total 168

Table 1. List of artistic styles and the number for paintings for
each style.

Figure 2. Duration density plot.

Our dataset is comprised of 168 painting images
scrapped from online sources. They come from different
artistic styles and movements. Some are new movements
like Surrealism, Cubism and Tonalism which emerged in
20th century. Others are older and belong to the 19th like
Romanticism Impressionism and Luminism. Older styles
go back to the 15th − 16th century like Baroque, Early and
High Renaissance. We also incorporated oriental painting
styles like the Chinese ink style and the Japanese Ukio-e.
Some paintings represent the world with high detail and
fidelity, while others represent distorted views like in Cu-
bism or completely abstract art. This diversity gives our
dataset a better distributional representation of the artistic
world compared to [1]. The dataset has an average of 10.5
painting per style. For some new styles like surrealism, it is
harder to find non copyrighted images, while others like the
ancient Ukio-e are majorly placed in the public domain.

A.2. Analysis of dataset

We present a further analysis of our proposed dataset in
this section. Fig 1 and Fig. 2 present a clearer representation
of Fig.3 in the paper and represent the density plots of the



length of fixation saccades and the duration of fixations as
detailed in the paper. Due to Covid-19 restrictions, we were
not able to use a chin-rest for our tests. This leads to slight
variations of the head position of test subjects during the
experiments. Fig 3 represents the distribution density plot
of the aforementioned variation. We observe a distribution
with a mean distance of 55cm, yet the distances range from
45− 65cm while ignoring some outliers.

Fig 8 shows the density distribution of left and right eye
pupil diameter. Both take a bell curve shape with mean
close to 3mm and vary from 0.75mm to 5mm. Fig 6 also
shows a joint distribution of the pupils diameters through
a scatter plot. While we see a moderate amount of varia-
tion, we can clearly see a linear correlation between the two
pupils diameter changes.

Fig 7 shows the distribution of fixation points from the
whole dataset. We clearly observe the centrality of the dis-
tribution over both spatial axes. The histogram in red shows
the Gaussian like distribution on the horizontal axis. The
same observation can be made for the blue histogram rep-
resenting the vertical space axis. These distributions can
modeled through the central bias map represented in Fig. 4
as a saliency map and in Fig 5 as colored heatmap.

Figure 3. Distance from eye tracker distribution density plot.

Figure 4. Central bias saliency map.

Figure 5. Central bias heatmap.

Figure 6. Left and right eye pupil diameter joint distribution.

B. Baseline Model

B.1. Gaussian priors

In order to free our model for modeling task related bi-
ases, we trained a module to learn biases from the datasets
separately. The module represented the biases in a 16 fea-
ture maps representing 2D Gaussian distributions. In fig 9,
we present the obtained feature maps. Some biases a locally
distributed and represent a limit region of the image while
others represent bias over only one of the two spatial axis.



Figure 7. Central distribution of fixations.

B.2. Positional Encoding

Because of inductive bias of permutation invariance that
the baseline model branches introduce, we used positional
encoding to correct the inductive bias.

As transformers [2] face a similar issue, we set up our
positional encoding in a similar manner as represented by
the following equation:

PE(pos,2i) = sin(pos/100002i/dmodel) (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2)

where pos is the position, i is the dimension and dmodel

represents the dimensionality of the encoded vectors.
The positional encoding function for each dimension

is represented by a sinusoidal function of a different fre-
quency. The frequency is relative to the size i. These func-
tions permit the encoding values to stay normalised with a
range small enough to not override the semantic information
contained in the feature vector. We combine the positional
embedding and semantic vectors by applying the following
function:

EV = PE + SV (3)

where PE is the vector containing the positional embed-
ding values. SV is the semantic vector resulting from the
flattening process after the merging convolution, while EV
represents the embedded vector passed to both branches.

C. Visualizations
Fig 10 represents samples from the dataset where we

present different images accompanied by their saliency
maps at the bottom of each stimuli and Fig 11 presents fur-
ther results of the predictions of our self-supervised model.
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Figure 8. Density plot for (a) Left and (b) Right pupil diameter.

Figure 9. Learnable Gaussian distribution biases.



Figure 10. Visualization of our dataset.



Figure 11. Visualization of scanpaths predicted by our model on our dataset.


