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Abstract

Despite the surge of deep learning in the past decade,
some users are skeptical to deploy these models in practice
due to their black-box nature. Specifically, in the medical
space where there are severe potential repercussions, we
need to develop methods to gain confidence in the models’
decisions. To this end, we propose a novel medical imag-
ing generative adversarial framework, medXGAN (medical
eXplanation GAN), to visually explain what a medical clas-
sifier focuses on in its binary predictions. By encoding do-
main knowledge of medical images, we are able to disen-
tangle anatomical structure and pathology, leading to fine-
grained visualization through latent interpolation. Fur-
thermore, we optimize the latent space such that interpo-
lation explains how the features contribute to the classi-
fier’s output. Our method outperforms baselines such as
Gradient-Weighted Class Activation Mapping (Grad-CAM)
and Integrated Gradients in localization and explanatory
ability. Additionally, a combination of the medXGAN with
Integrated Gradients can yield explanations more robust
to noise. The project page with code is available at:
https://avdravid. github.io/medXGAN _page/.

1. Introduction

Convolutional neural networks (CNNSs) have enabled ex-
tremely accurate classification on large, complex datasets.
The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [41] kickstarted an era of massive efforts in tun-
ing and finding new CNN architectures to beat classification
benchmarks, among other tasks.

Despite their performance, neural networks are largely
considered to be black boxes by the machine learning com-
munity [3]. As the size of these networks scale up with over
millions of parameters [17], the black box becomes even
more complex. Although they demonstrate strong perfor-
mance on artificially set-up tasks on datasets such as Im-
ageNet [41], neural networks have been found to be ex-
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Figure 1. Overview. We propose a GAN framework medX-
GAN that takes in two latent vectors (z1, z2) to encode anatom-
ical structure and classifier-specific pathology, respectively. After
training with a fixed classifier providing feedback, the generator
can be used to explain the classifier’s decision. Given a ground
truth positive image, the latent code can be found via an optimiza-
tion scheme. The positive image then can be turned into a negative
realization by relying on the medXGAN’s latent sampling scheme.
The classifier-specific features can be visualized via a pixel-wise
difference between the negative and positive images or by integrat-
ing the gradients (IG) by traversing the latent space (LIG).

tremely sensitive. For instance, they perform poorly on
data that is out-of-distribution with respect to their train-
ing set [40,55]. Additionally, they break during inference
on adversarial examples [15]. Adversarial examples are im-
ages from the distribution that have visually imperceptible
perturbations but drastically change the classifier’s output.
These sensitivities drive the skepticism for deploying these
models in actual practice.

Particularly, there are tremendous consequences in the
medical domain. For example, with the onset of the
COVID-19 pandemic, a slew of CNN models were created
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for COVID classification [4]. However, it has been found
that many of them are trained on biased datasets, leading
to a significant drop in performance on differently sourced
datasets [9]. These models were misled by visualization and
validation techniques such as Gradient-Weighted Class Ac-
tivation Mapping (Grad-CAM) [44]. Following the surge
of deep learning, the community has greatly increased ef-
forts in explaining CNNss through various methods that we
will explore later. However, many lack the ability to lo-
calize with fine detail [6] or have even been found to be
model-agnostic and fail to key in on the most important fea-
tures [1].

Generative Adversarial Networks (GANSs) [14], a class
of generative models, show promise in this task due to
their ability to learn features and generate high fidelity
images [22]. Additionally, incorporating domain knowl-
edge of the underlying data into the visualization shows
promise in creating higher quality explanations [18]. As
such, we propose a novel GAN framework, medXGAN
(medical eXplanation GAN), to visually explain what a
medical image-based CNN classifier has learned. This sub-
stantially builds upon our prior work [11]. Our scheme re-
lies on encoding domain knowledge of medical images into
the generator’s latent sampling scheme while incorporating
a pretrained classifier into the original GAN formulation.
Given an image of the target class, we can find the latent
representation and interpolate with the image’s negative re-
alization to visualize changing class features according to
the CNN.

Our contributions are as follows:

* We propose the medXGAN framework that uses a
classifier to explicitly disentangle the latent code into
anatomical structure and classifier-specific features.
There is no need to search in the latent space for these
corresponding factors.

* We encode domain knowledge of medical images into
the latent sampling scheme using a continuous class
code to obtain desirable latent interpolation properties.

* We propose using the negative realization of an image
of the target class as a baseline for Integrated Gradi-
ents. We can then interpolate in the latent space, rather
than pixel space, to obtain more localized and explana-
tory features.

* We demonstrate the promise of our method over base-
lines such as Grad-CAM and Integrated Gradients in
localization ability and explanatory power using both
quantitative and qualitative experiments.

2. Background

Generative Adversarial Networks (GANSs) are a class of
models that can generate new data from a target distribution
[14]. A GAN consists of a generator network (G) and a dis-
criminator network (D) that are typically parameterized as

neural networks. Their training scheme is analogous to an
art forger trying to fool an art appraiser. The generator takes
in a latent or noise vector z drawn from a random prior dis-
tribution p,, such as a spherical normal distribution. From
this, it tries to create images G(z) in order to fool the dis-
criminator into classifying them as real. The discriminator
takes turns looking at real images (x) from the true distribu-
tion (pgqtq) and generated images G(z) and tries to classify
them as real or fake correctly.

The GAN objective is grounded in game theory through
a minimax game with :

min mazx E [log D(x)]

X~pa

+ E [log(1 - D(G(2)))]

zrvp. ()

ey

The generator seeks to minimize the Jensen-Shannon
(JS) divergence between its estimated distribution p, and
the true distribution pg.¢,. The generator is an implicit
density estimator. It learns to sample from a distribution
rather than explicitly parameterizing it. The discriminator
tries to minimize the divergence between its distribution py
and pg4qt, and maximize the divergence of its estimated dis-
tribution for p, with pgas, [13]. Equilibrium occurs when
Dg = Ddata and the discriminator’s output is 0.5 for all im-
ages.

The conditional GAN (C-GAN) [32] is a natural exten-
sion, concatenating a discrete class code to the latent vec-
tor z to control the generator’s ability to synthesize im-
ages from different categories. The Auxiliary-Classifier
GAN (AC-GAN) builds upon this by formulating the dis-
criminator to output an auxiliary classification for input im-
ages [35]. Works such as [27, 39] incorporate a separate
classifier into the mix. Our work differs in that we in-
clude the classifier for the explicit objective of visualizing
the classifier’s learned attributes.

2.1. The GAN’s Latent Space

The latent space refers to a low dimensional space that
captures factors of variation of the data, such as angle, pose,
lighting, etc [25]. The generator learns to sample from this
manifold and produce high fidelity images. This is done by
sampling a latent vector z drawn from some prior distribu-
tion. It has been found that interpolation and manipulation
in this space can yield meaningful semantic results [38,49].

Finding interpretable directions and learning represen-
tations that can separate informative factors of variations
in the latent space is a highly active research topic [51].
The task of finding a latent space consisting of linear sub-
spaces controlling factors of variation is known as disentan-
glement [22]. Various GAN-based approaches have found
success in unsupervised, supervised, and semi-supervised
regimes [7,22,28,29,33]. However, the corresponding fac-
tor for each subspace in these methods are arbitrary, and
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requires searching through them to find the factor of inter-
est.

2.2. Visualization Methods

The two most common traditional visualization meth-
ods in medical image include Gradient-Weighted Class
Activation Mapping (Grad-CAM) and Integrated Gradi-
ents [42,44,48]. As such, we will focus on these two.

Gradient-Weighted Class Activation Mapping
(Grad-CAM). Gradient-weighted Class Activation Map-
ping (Grad-CAM) relies on the gradients of a target concept
flowing into the final convolutional layer, resulting in a
coarse localization map. This highlights the regions that
maximally activate the CNN for a particular class [44].
This map is known as a saliency map.

First, through backpropagation, the gradient of the score
y¢ for class c is calculated before the softmax with respect
to feature maps A* of a convolutional layer k: g%;.

Next, these gradients are globally-averaged pooled to ob-
tain o, which are neuron importance weights describing
the importance of feature map k for a target class c. Lastly,
a ReLU function is applied to a weighted combination of
feature maps and their corresponding neuron importance
weights to obtain a positive-influence saliency map:

Lra.cam = ReLU < > aiA’“) 2)
k

A drawback of this method is its localization ability [6].
Furthermore, it depends on the size of the convolutions. So,
it tends to be biased towards larger models. In the medi-
cal domain, the lack of fine-grained detail can inadvertently
capture a disease feature by the nature of “casting a wide
net,” leading to false confidence [50]. Additionally, this
saliency map cannot tell the ”whole story” and explain how
the predicted features contribute to the prediction [43].

Integrated Gradients (IG). Integrated Gradients (IG)
relies on attributing the prediction of a deep network to the
pixels of its input image [48]. Given a target image x to
visualize, a baseline image x’ is also established. There
are many choices, but a completely black image is com-
mon [30]. However, choosing an appropriate baseline im-
age is an open problem [47]. From there, a pixel-wise inter-
polation between these two images is fed into the classifier
f. The gradient is then taken with respect to the input pix-
els. The parameter o governs the scale of interpolation.

As the interpolation from the black image approaches
the target image, the gradients are accumulated and aver-
aged. This leads to a map that highlights pixels that contain
negative or positive attribution to the target class. This is
formulated as:

[t A tale—a)
IG = ( )/o_o =

da 3)

although it is discretized with summations in practice.

Despite its ability to attribute importance at the pixel
level rather than patch level as Grad-CAM does, Integrated
Gradients is highly dependent on the chosen baseline [47].
Additionally, it can pick up noise and amount to an edge
detector [1, 10].

Generative-Based Visualization. Generative models
have been proposed to visualize classifiers [26, 31, 36,43].
The work in [36] relies on Variational Autoencoders [24],
but is limited by experiments on artificial toy datasets. The
methods in [26,43] rely on StyleGAN [22] that generate
high quality explanations, but lack substantial quantitative
experiments on common baselines, and rely on search algo-
rithms to find the relevant latent codes.

Our work is able to explicitly disentangle the latent code
in a highly structured manner. Additionally, we show qual-
itative and quantitative experiments over the common base-
lines such as Grad-CAM and Integrated Gradients. The la-
tent space in medXGAN is also optimized for meaningful
latent interpolation that leads to the extension of Integrated
Gradients in the latent space.

3. Methods

Utilitizing the medXGAN for feature visualization con-
sists of three steps. First the classifier must be pretrained,
and then incorporated into the training of the medXGAN.
Then, given a ground truth positive image, a reconstruction
task enables discovery of the latent vectors. Lastly, the la-
tent code can be used to generate a negative realization of
the positive image. This yields powerful visualization capa-
bility as we can traverse the latent space to observe chang-
ing features, among other visualization methods.

3.1. medXGAN Overview

In order to visualize a CNN, we incorporate the pre-
trained network (C) into the original GAN framework (see
Fig. 2). The weights of the generator (G) and discrimina-
tor (D) are trained, playing the typical minimax game with
real samples x and generated samples G(-). The weights for
the classifier are fixed, thus this network provides feedback
to the generator on the class (y) according to the CNN’s
learned distribution p. . The overall objective is:

min mazx E [log D(x)]

APz

- ZlNPzI?vyNZDy llog(1 = D(G1y))] - (4
- E  [log(pe(y|G(21,9)))]

Z1~Pz1,Y~Py

where the first two terms correspond to the original GAN
formulation, and the third term relates to incorporating class
features according to the CNN. The generator takes in two
latent vectors that are concatenated. z; is drawn from a
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Figure 2. medXGAN training scheme. A pretrained classi-
fier provides class feedback to the generator’s synthesized image
while the discriminator and generator play their typical adversarial
game. The latent vector consists of z; which encodes anatomical
structure and z2 which corresponds to a continuous class code for
pathology features according to the classifier.

Label: 0 Label: 1 Label: 1
[1.,0.] [0, 1.] [0., 1.]

Figure 3. Example of disentangled lungs and classifier features.
The classifier’s softmax outputs are above along with label pro-
vided to generator. We can see that the lung and skeletal structure
is intact, but features within the anatomy change, leading to dif-
ferent classifier outputs. The largest changes are highlighted by an
arrow.

spherical normal distribution and corresponds to anatomi-
cal structure. z5 corresponds to pathology features accord-
ing to the classifier. If the image to be generated is negative
(absent pathology) then z5 is assumed to be 0. Otherwise,
it is drawn from a spherical normal distribution.

After training the GAN, we can now visualize the CNN.
Given a real positive image, we can find its latent represen-
tation via stochastic gradient descent (SGD):

arg min MSE(G(z1, 22), ) + BCE(C(G(#1, 22)), C(x))

21,22

4)
where we are trying to match the pixels of the true im-
age and reconstruction via a pixel-wise mean-squared er-
ror (MSE). We also match the classifier’s output for both
images with a binary cross-entropy loss(BCE). After we
find 2z; and 25, we can rely on the sampling scheme for 25,
changing it to O in order to convert the positive image to
a negative realization with high confidence while retaining
the same anatomical structure.

Finally, we can interpolate in the latent space between
the negative and positive images to visualize how the clas-
sifier’s output changes with the interior pathology. We inter-
polate through the latent vector zo with steps n at a rate of A
while keeping the anatomical structure constant with z; by
looking at the outputs of G(z1,0 4+ nAzg), forn =1,2, ...

3.2. A Disentanglement Perspective

Mutual information describes the amount of informa-
tion obtained about one random variable by observing the
other random variable. Given two random variables, (z, y),
mutual information [ is related to entropy H: I(z;y) =
H(z) — H(z|y) = H(y) — H(y|x). It has been found that
maximizing mutual information between some feature code
y and image x can lead to disentangled representations [7].
We can find a variational lower bound [2] for the mutual in-
formation I (y; G(#1,y)). This method relies on the fact that
the KL divergence between the posterior of the classifier’s
learned distribution and the true posterior is non-negative.

I(y; G(21,y)) = H(y) — H(y|G(21,y))
>H(y)— E  [log(pe(y|G(21,9)))]

21~Pzy Y~ Dy
(6)

H(y) can considered a constant term, so maximizing the
mutual information between the class code and the gener-
ated image amounts to minimizing E[log(p.(y|G(z1,¥)))]
which corresponds exactly to the third term of Eq. 4, thus
leading to disentangled representations. We can see an ex-
ample of this in Fig. 3.

3.3. A Manifold Perspective

According to the manifold hypothesis, high dimensional
data lies on lower dimensional manifolds in this space [12].
However, natural data lies on a union of disjoint manifolds,
and GANSs struggle to model a distribution supported on dis-
connected manifolds [23]. Interpolating between samples
on disjoint manifolds may result in off-manifold or unnat-
ural samples. The Conditional-GAN induces disconnected-
ness by using a discrete code. In our case, we want “se-
mantically smooth” interpolation in the latent space, with
the classifier’s output monotonically increasing as we inter-
polate from a negative and positive realization of a medical
image. This lends itself to a smooth Integrated Gradients
visualization that does not pick up on spurious features. As
such we propose a continuous code that encodes domain
knowledge of medical images. Typically there is an un-
derlying anatomical structure that is fixed, but the disease
pathology is not deterministic, and can manifest in multiple
ways within the anatomy. As such, there is one realization
of the negative image with zo = 0, and multiple realizations
of a positive image with zo ~ A(0,T).
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Figure 4. Reconstructing a COVID positive image and turning it negative. Given a real positive class image, the latent code (z1, z2)
can be found via SGD with the generator to match pixel-wise and through the classifier’s output. The positive reconstruction can be turned
into a negative realization by setting z2 = 0. The classifier softmax outputs are below the respective images. Here, we visualize the
pixel-wise difference between the realizations. Compared to Grad-CAM, we see more localization ability.
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Figure 5. Example of latent interpolation Because z; and z2 are disentangled latent codes, we can traverse the latent space by fixing
z1 and stepping through z2. We observe fixed anatomical structure and changing pathology according to the classifier. The classifier’s
softmax outputs shown above each respective image. Additionally, we visualize the accumulating absolute value pixel-wise difference
through the interpolation, which illustrates how the changing features contribute to the classifier’s output.

Class 1

Class 0

Figure 6. Disconnected manifolds. Interpolating between dis-
connected manifolds can lead to off-manifold intermediate results,
which does not lend itself to a smooth and meaningful latent in-
terpolation. For instance, the intermediate result for interpolating
between 0 and 1 does not make natural sense. With medical im-
ages, we want a smooth transition with clinically plausible images.

4. Experiments

We present qualitative analysis as well as quantitative ex-
periments of our medXGAN method against the most pop-

ular explanatory techniques of Grad-CAM and Integrated
Gradients. To begin, we first measure how well the gener-
ator captures the classifier’s distribution. We first trained a
VGG-16 network [46] to classify COVID-19 on an in-house
dataset of COVID chest X-rays resized to 128 x 128 [54].
This network achieves roughly 75.0% £ 0.9 accuracy on the
dataset, which was upsampled to become class balanced.
Additionally, we trained an off-the-shelf CNN for binary
classification of the presence of various brain tumor types
on 64 x 64 MRIs [5], achieving 85.20% =+ 1.3 accuracy.
The area under the receiver-operator (AUC) score for these
is roughly of the same magnitude as the accuracy.

We generated 4 images using the same anatomical struc-
ture by keeping z; fixed, with 1 negative and 3 positive
realizations using the zo sampling scheme. This was re-
peated 1000 times to generate 4000 total images which
were fed into the respective classifier for classification. For
the MRI dataset, the classifier correctly predicts the class
given to the generator with accuracy 99.2% =+ 0.2. For
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Data Accuracy AUC

MRI Generated 99.2% +0.2 0.995 + 0.001
Real 85.2% +1.3  0.975 £ 0.005
X-Ray Generated 93.7% +0.3 0.980 + 0.003
Real 75.0% +0.9 0.763 £ 0.008

Table 1. Accuracy and AUC of classifier for tumor and

COVID-19 classification on true validation images and gen-
erated data. The high accuracy on the generated data suggests
that the medXGAN generator is fitting strongly to the classifier’s
learned distribution based on its training data.

the COVID dataset, the accuracy is 93.7% =+ 0.3. Thus,
there is a strong correspondence between the generator and
classifier’s distributions as the generator is incorporating
classifier-specific features.

4.1. Grad-CAM Experiment

Many experiments in the explainable Al space rely
on counterfactual reasoning: “what would happen if we
changed this feature?” Along these lines, we use Grad-
CAM to create saliency maps for both brain MRIs and chest
X-rays. Additionally, we use medXGAN to reconstruct
negative and positive realization of the images, and take
a pixel-wise difference to highlight the important changing
features. After localizing the features through the two meth-
ods, we perturb the salient features and observe the change
in the classifier’s output on these new images, a commonly
employed metric [36, 37]. Although we can use perturba-
tions such as Gaussian noise, or black or white pixels, we
opt to replace the salient pixels with the average intensity of
the image, and observe the average drop in the classifier’s
”positive” softmax output for multiple images. Given the
grayscale images, black or white pixels may bias the deci-
sion of the model towards a particular class. Additionally,
the output would be sensitive to the particular instance of
random noise. For a fair evaluation with Grad-CAM, we do
the “averaging perturbation” for the medXGAN features as
well instead of taking the negative realization of the positive
image. The results of the counterfactual experiments are
summarized in Tab. 2, which indicates that the medXGAN
is able to identify features with more explanatory power due
to the greater drop in the classifier’s output.

4.2. Integrated Gradients Experiment

As visualizing brain tumors is more interpretable to non-
experts, we opt to use Integrated Gradients with just the
brain MRI dataset. For this experiment, we measure the
degree of localization. We apply the standard Integrated
Gradients to MRIs with tumors by interpolating in the pixel
space between a black image and the target image as is stan-
dard practice. Additionally, we propose to use our medX-

Original Positive

Colorized Map

Difference Map Grad-CAM

Figure 7. Example of Grad-CAM and medXGAN methods on
Brain MRIs for feature visualization. In this example, despite
lacking a perfect reconstruction, the medXGAN method localizes
two tumors, while Grad-CAM focuses on one tumor and an eye.
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(a) Perturb Features.

medXGAN
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Grad-CAM
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Output: [0.04,0.96]

Qutput: [0.15,0.85] Output: [0.99,0.01]

(b) Input into classifier.

Figure 8. Example of counterfactual perturbations. We first
feed a positive image from the validation set into a classifier and
observe the classifier’s output. Then, given the features high-
lighted from medXGAN and GradCAM, we perturb them to the
mean intensity value of the original image. We then feed them
into the classifier to observe the drop in confidence for the positive
class. In this example, we see a larger drop in the classifier’s out-
put from the medXGAN method.

GAN to interpolate in the latent space between the negative
and positive realizations of the image, which is one of our
novel contributions. We refer to this as Latent Integrated
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(b) Reconstruction

(a) Original

(c) Negative
Realization Map

(d) Difference  (e) Colorized Map  (f) Grad-CAM

(g) LIG (h) IG

Figure 9. Example of visualizations on the brain MRI dataset. Both difference maps and integrating gradients through the latent space
(LIG) localize important classifier-specific features much finer than Grad-CAM and standard pixel-wise Integrated Gradients (IG).

| MRI X-Ray
medXGAN | 0.97 £0.03 0.91 +0.08
Grad-CAM | 0.89£0.10 0.83+0.15

Table 2. Results for counterfactual experiments. We perturb
features identified by medXGAN and Grad-CAM by changing
them to the average intensity of the image. After feeding the im-
age into the classifier, we observe the average drop in softmax
output for positive. The medXGAN sees a larger drop in classifier
confidence, suggesting that its identified features correspond more
strongly to the classifier’s decisions.

Gradients (LIG). This can be formulated as:

LIG =

(G2, 22) — G(21,0)] /

a=0

1 8f(G(zl, 0+ OZZQ)) d (7)
Ox @

where were are taking the gradient with respect to the input
2 to the model f(z) as we interpolate in the latent space.
Afterwards, we find the ratio of pixels with some non-zero
attribution value through latent vs. pixel interpolation. The
averaged ratio over multiple images was 0.21 + .09, in-
dicating that our method is able to localize the salient fea-
tures with much finer detail. Essentially, it is using one-fifth
the number of pixels that standard Integrated Gradients at-
tributes. Our method does not capture as much noise or as
many spurious edges as the baseline does (Fig. 9).

4.3. Qualitative Analysis

In both the brain tumor and COVID dataset, we see that
the medXGAN is able to attribute classifier-specific fea-
tures that are more fine-grained compared to Grad-CAM or
Integrated Gradients. For instance, medXGAN is able to
completely capture the brain tumor in Fig. 9 while Grad-
CAM misses it. Although the reconstructed images are not
of the highest fidelity compared to the ground truth, they

still capture the important anatomical structure and patho-
logical features, lending to successful visualization. Ad-
ditionally, we notice that through latent interpolation, the
classifier’s output for positive is monotonically increasing,
a result based on connecting two disconnected class man-
ifolds through a continuous class code. While traditional
visualization methods will give a single map highlighting
salient regions, our method can be employed to study how
the features contribute to the classifier’s output through la-
tent interpolation. Additionally, we implicitly get access to
the classifier’s decision boundary as we can observe when
the classifier changes predictions based on the latent inter-
polation (Fig. 5).

5. Convergence Experiments

As visualization with the medXGAN relies on finding
the latent code of ground truth images, we quantitatively
examine how visualizations can change depending on dif-
ferent runs of the optimization scheme. We randomly ini-
tialize the latent vectors with values from a standard normal
distribution. For the medxGAN trained on the brain MRIs,
the latent vectors are z; € R1090X! and 2z, € R100%1 For
the GAN trained on chest X-rays, they are z; € R!00x1
and zp € R19%! On various positive class images from
the MRI and X-ray datasets, we run stochastic gradient de-
scent on (z1,zz) multiple times for a fixed 10,000 epochs.
We then compute two metrics. First, we find the pairwise
cosine similarity between the latent vectors found between
the multiple runs. This measures the similarity in the la-
tent space. We then run the vectors through the genera-
tor and measure the perceptual similarity via the Structural
Similarity Index Measure (SSIM) [52]. These results are
summarized in Tab. 3. As these scores all tend towards
1, we see that despite the nonconvex optimization scheme,
we are converging to very similar regions in the image and
latent space. As the cosine similarity and SSIM are both
approaching one, it appears that convergence in the latent
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Figure 10. Example of converging reconstructions. Given ran-
dom initial seeds for the latent vectors, the reconstructions appear
to converge to extremely similar images among each other.

space correlates to convergence in the image space. How-
ever, this can be further studied.

‘ Cosine Similarity SSIM
MRI 0.965 £ 0.008 0.970 £ 0.020
X-Ray | 0.994 £ 0.005 0.968 £ 0.015

Table 3. Convergence results. Based on random initial seeds, we
optimize over the latent vectors for 10,000 epochs to reconstruct
various images. We compute the SSIM between the respective im-
ages as well as the cosine similarity between the latent vectors.
With the metrics approaching 1, the reconstructions seem to con-
verge in the image and latent space.

6. Limitations and Discussion

Despite the promising results of medXGAN, we recog-
nize some limitations of our method. One is based on train-
ing data. It is well-known that GANs require a significant
amount of training data in order to faithfully “learn” the
training distribution [34]. In our experiments, the genera-
tion of chest x-rays are much higher fidelity than the brain
MRIs due to the dataset sizes: ~ 15000 vs. ~ 2000 im-
ages. Nevertheless, even with the brain MRIs, we are able to
capture important classifier-specific features. To extend the
generator’s capacity given limited data, we suggest employ-
ing a data augmentation scheme such as [21] or a transfer
learning approach like [56]. Additionally, faithful image re-
construction relies on the GAN learning a rich latent space.
If the generator becomes too adapted to the training distri-
bution, examples out-of-distribution or "off-manifold” may
result in poor reconstructions [20, 53]. In Fig. 11, we see
examples of poor reconstructions as the ground truth im-
ages are not well-represented in the distribution. We plan to
scale up the medXGAN to higher resolution and more opti-
mized frameworks for the highest fidelity image synthesis.
However, we have seen that even rough approximations of

Original X-Ray = Reconstruction

Original MRI  Reconstruction

Figure 11. Failed reconstructions. These original images can be
considered anomalies as some of the characteristics they present
are not well represented in the dataset. For instance both the X-
ray and MRI are heavily zoomed in. Although the reconstruction
captures some structure, it misses many details within.

the ground truth images can be very powerful. Additionally,
given the restriction to binary classification, our next steps
include extending to multi-class classification.

Despite the growing field of explainable Al, quantita-
tive benchmarking and comparison is still an open prob-
lem [8]. Evaluation can largely be ad hoc. For instance,
we determined that using the mean intensity of the image,
would serve as the fairest perturbation without inducing
bias [19]. We could also use an image inpainting technique
instead [16]. We can also further validate our method by
measuring its reliance on the classifier’s weights as well as
the dataset labels through methods proposed in [1].

Despite the computational overhead of training a GAN
for visualization, the generator can also provide meaning-
ful data augmentation to further optimize the classifier [45].
With the disentangled latent codes, users have more control
over the generated images. Additionally, the latent space
is optimized so that interpolation leads to a monotonic in-
crease in the classifier’s output. As such, this can be lever-
aged to create samples near the classifier’s decision bound-
ary.

7. Conclusion

In this work, we presented medXGAN, a novel GAN
framework that encodes domain knowledge of medical im-
ages into its latent sampling scheme through a continuous
class code. This allows for explicit disentanglement of
anatomical structure and classifier-specific pathology fea-
tures. Additionally, we proposed using a negative realiza-
tion of a positive class image as a baseline along with latent
interpolation for Integrated Gradients. We establish this as
Latent Integrated Gradients (LIG). We also demonstrated
medXGAN’s promising explanatory and localization power
through quantitative and qualitative analysis over the base-
lines of Grad-CAM, Integrated Gradients. It is impor-
tant to note that the visualizations are not what the ac-
tual class features should be, but rather what the classifier
thinks. So the visualizations are subject to the biases and
errors of the classifier. Ultimately, we hope our method in-
spires further efforts to open the black box of neural net-
works.
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