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Abstract

We consider the problem of detecting Out-of-
Distribution (OoD) input data when using deep neural
networks, and we propose a simple yet effective way to
improve the robustness of several popular OoD detection
methods against label shift. Our work is motivated by the
observation that most existing OoD detection algorithms
consider all training/test data as a whole, regardless of
which class entry each input activates (inter-class differ-
ences). Through extensive experimentation, we have found
that such practice leads to a detector whose performance
is sensitive and vulnerable to label shift. To address this
issue, we propose a class-wise thresholding scheme that
can apply to most existing OoD detection algorithms and
can maintain similar OoD detection performance even in
the presence of label shift in the test distribution.

1. Introduction

With the recent advancement in deep learning, image
classification has shown great performance improvement
under well-controlled settings where the test data are clean
and sampled from the same distribution as the training data.
However, the deployment of deep learning models in the
real world is still full of unknowns. More often than not,
well-trained models can come across Out-of-Distribution
(OoD) data that are sampled from a different distribution
than the one used for training. For example, objects that
do not belong to any of the classes in the training data
(i.e., OoD inputs) can appear at test time. Faced with
OoD inputs, deep learning-based classifiers may render un-
predictable behaviors and often tend to make overly con-
fident decisions [27]. To address this issue, many previ-

Figure 1. Class-wise True Positive Rate (TPR) variations
(CIFAR10-WideResNet model, max-logit detector) in simulated
scenarios under label shift. Narrower histograms in the proposed
thresholding scheme (bottom panel), compared to the state-of-the-
art (top panel), suggests that our approach is able to guarantee
higher robustness through almost constant false alarm rate (5%
in this case).

ous works [11, 12, 20, 22, 25] have been dedicated to detect
such OoDs inputs. Therefore, in safety-critical applications
such as healthcare and autonomous driving [17], the classi-
fier should have the ability to yield control to humans upon
coming across such inputs, instead of making incorrect pre-
dictions silently.

Among the plethora of works on OoD detection, almost
all previous literature focuses on improving the detection
performance on various OoD test sets. Their experiment
setups implicitly assume that the training and the test In-
Distribution (ID) data follow the same distribution (no dis-
tribution shift), so that the false alarm rates at test time will
stay at the same level observed at training. However, it is
often not the case in real-world settings, and the distribu-
tion shift may result in an increased or decreased number of
false alarms on the ID data, which can lead to errors incur-
ring into economic losses (additional costs to address these
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false alarms). Worse still, malicious attackers can exploit
this weakness to launch attacks that may cause an overflow
of false alarms for certain classes, thus eventually lowering
the sensitivity of the detection system against actual OoD
inputs (due to the excessive number of false alarms injected
by attackers). The above-mentioned issues are indeed vital
for real-world deployment of such systems.

In this paper, we specifically target OoD detection algo-
rithms built upon supervised multi-class classifiers, and ad-
dress the above-mentioned challenges in the context of la-
bel shift, a special type of distribution shift, by using a novel
thresholding scheme. Our approach is applicable even for
black-box models, where the internal structure and parame-
ters of the classifier are invisible. The contributions of this
paper are three-fold:

• We identify a problem that makes many existing OoD
detection algorithms vulnerable to test-time label shift.

• We propose a simple yet effective thresholding scheme
to address the challenge, and show empirically that our
solution can be used as a plugin amendment to any ex-
isting OoD system with a class-wise score function.

• Using our novel thresholding scheme, we also assess
the performance limit of several learning-based OoD
detectors, and compare them with non-learning-based
ones. The study provides some guidance on how to
navigate the design space of OoD detection systems.

2. Proposed Approach
2.1. Problem formulation

We consider the OoD detection problem in supervised
multi-class classification settings; our goal is to identify
whether a data point (image) x comes from the distribution
Din-dist which the development set data are sampled from.
Let us denote a given trained classifier by a function fθ
whose parameters θ are learned through a training proce-
dure using data sampled from Din-dist.

The training dataset Dtrain = {(xi, yi)} is a collec-
tion of image and (categorical) label pairs sampled from
Din-dist, where label yi for image xi takes integer values
from set {1, 2, . . . ,K}, each corresponding to one of the
K ID classes. The trained classifier fθ learns to map an im-
age xi to a logit vector ℓ ∈ RK that eventually produces a
probability vector p after softmax transformation. Through
the training procedure, the classifier parameters θ are up-
dated so as to minimize a given loss function for Dtrain, e.g.,
the cross-entropy loss.

Non-learning-based detectors To detect OoDs, we need
to define an OoD score function S for each input x given
classifier fθ to indicate how likely the given input is OoD.
Ideally, an OoD detector will always assign higher OoD

scores to OoD data than to ID data. In one setup, it is as-
sumed that the OoD detector can only observe the output
logit vector ℓ of classifier fθ(x) but not its internal struc-
ture [9, 11, 14, 22, 25]; in other words, the model is viewed
as a black box. This assumption allows OoD detection al-
gorithms to be applicable on almost all classifiers. In an
alternative setup [20], the OoD detector also has access to
the internal structures or the hidden feature mappings of a
classification model, which can serve as additional informa-
tion that is potentially useful for OoD detection.

For the former setup where only the logit vector ℓ is
available for OoD detection, two categories of simple statis-
tics on the logit vector ℓ, the max-logit score (or the very
similar max-softmax confidence score) [9, 11] and the en-
ergy score [25], are commonly used in literature as the OoD
score function. For the latter setup, Lee et al. [20] utilized
the Mahalanobis distance for defining the OoD score.

The max-logit and max-softmax approaches are based on
the intuition that OoD data will result in lower softmax con-
fidence scores maxj p(y = j |x) as well as the correspond-
ing jth logit entry ℓj . Depending on which specific statistic
to use, we can define two very related detection methods:

• the max-logit approach that uses Smax-logit(x; fθ) =
−maxj ℓj as the OoD score, and

• the max-softmax approach that uses Smax-softmax(x; fθ) =
−maxj p(y = j |x) as the OoD score.

Less confident inputs will receive higher OoD scores. The
two approaches have demonstrated good detection perfor-
mance in several empirical studies [9–12], and have been
widely used as a baseline method due to their simplicity.

The energy-based approach [25] as an alternative to
max-logit has also shown good performance in prior liter-
ature. Instead of using only the maximum logit entry, the
energy-based approach defines the energy function (energy-
based OoD score)

Senergy(x; fθ) = −T · log
K∑
j=1

exp(ℓj/T ) (1)

as the OoD score. Here, ℓj represents the jth entry of the
logit vector of x and T represents the temperature parame-
ter. It can be proven that the (negative) energy function is
a smooth approximation of the maximum logit entry, justi-
fying the similarities among the two statistics for OoD de-
tection. Mathematically, we have the following relation be-
tween the max-logit score and the energy score,

max
1≤j≤K

ℓj < −Senergy(x; fθ, T ) ≤ max
1≤j≤K

ℓj + T · log(K).

(2)
Because the above-mentioned statistics for calculat-

ing the OoD score are pre-defined and no further learn-
ing/tuning is needed, we will hereinafter refer to these meth-
ods above as non-learning-based.
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Figure 2. For the pre-trained CIFAR10-WideResNet (top panel)
and CIFAR100-WideResNet (bottom panel) networks, we display
the activated logit entry values (i.e., one that becomes the max-
imum logit), and also the corresponding ONE (in orange) and
MULTI (in green) threshold values determined by TPR-95.

Learning-based detectors As already demonstrated by
the energy-based approach [25], more OoD examples can
be detected by considering all logit entries, instead of only
the maximum one as in max-logit. One may wonder if we
can find another candidate function that performs better. In
learning-based approaches, the OoD score function S is
learned or fine-tuned from data with known ID and (option-
ally) OoD labels. With Machine Learning (ML), the design
space for detectors is hugely expanded, which can produce
improved results. Different from non-learning-based meth-
ods, learning-based methods infer the decision rule by us-
ing the data (i.e., the network’s responses) instead of a pre-
defined rule.

The actual choice of learning algorithms relies on the
availability of labeling information. If only positive-label
(i.e., ID) data are available, semi-supervised anomaly de-
tection algorithms can be employed to capture the distri-
bution of ID data and differentiate them from OoD data.
Common choices include anomaly/outlier detection mod-
els, such as One Class-Support Vector Machine (OC-SVM)
and autoencoders. If some negative-label (i.e., OoD) data
are available, then not only can they serve as validation data
for tuning the hyperparameters of semi-supervised models
such as OC-SVM, but they also enable the use of super-
vised classification models such as fully-connected neural
networks for differentiating between ID and OoD data.

Constant false alarm rate scheme for threshold setting
Since OoD detection is essentially a binary classification
problem, a threshold τ on the OoD score S(x) is needed to
dichotomize between ID and OoD. In mathematical form,
we have

x is

{
out-of-distribution, if S(x) ≥ τ

in-distribution, otherwise.
(3)

Since there is a natural trade-off between false positives
(i.e., OoD misclassified as ID) and false negatives (i.e.,

ID misclassified as OoD) when we modulate the detection
threshold τ , a commonly used method for setting τ is the
“TPR-β” thresholding scheme, where 1 − β% is a preset
false alarm rate. In practice, τ is usually determined on a
separate validation set Dvalid (different from Dtrain but also
sampled from Din-dist) to meet the pre-defined false alarm
rate level 1 − β%. Although the TPR-β method seems to
ensure a constant false alarm rate on Din-dist, it still suffers
from two subtle problems as to be elaborated below.

Non-uniform false alarm rates across in-distribution
classes Under the above scheme, the false alarm rate for
each class may deviate much from the preset level 1− β%,
due to the misalignment among the distributions of each
logit entry. To visually illustrate this issue, we repeated
the experiments reported in Liu et al. [25] with the same
pre-trained network therein, and plotted in Figure 2 the dis-
tribution of the (test-time) logit values for each output node.
As we can see, the distributions of the output scores (i.e., the
maximum logit values) on each output node are not aligned.
A single, unified cutoff threshold (shown in orange) for all
the logit entries will result in very different false alarm rates
(i.e., the ratios of data points above the set threshold) across
the classes.

Sensitivity to label shift In addition to the above issue,
the “constant” overall false alarm rate can still be fragile,
i.e. not robust, under distribution shift. Particularly, let us
take label shift [24], a common type of distribution shift, for
example. In the presence of label shift, the label marginal
p(y) changes but the conditional p(x | y) does not. If the
label distribution p(y) changes for the test data, the over-
all false alarm rate can easily fluctuate under the single-
threshold approach, due to the varying false alarm rate for
each class. To illustrate the issue, we did another exper-
iment on top of the one reported above, again using the
outputs of a pre-trained network, to simulate the effect of
label shift. Let us denote by ptrain(y) the label marginal of
the Din-dist and by ptest(y) the label marginal of the Din-dist,
where both ptrain(y) and ptest(y) are K-dimension probabil-
ity vectors with elements summing up to 1. In the pres-
ence of label shift, ptrain(y) ̸= ptest(y), which as explained
above will cause varying false alarm rates under the single-
threshold scheme at test time. We performed a simulation
study with 10000 pairs of randomly picked ptrain(y) and
ptest(y) and plotted the resulting false alarm rates against
∆p

.
= ∥ptrain(y)− ptest(y)∥2 (Fig. 3). As can be seen, the

spread of resulting false alarm rates at test time becomes
larger with increasing ∆p (i.e., worsening label shift phe-
nomenon), even though we select the threshold hoping to
control the false alarm rates to be around 0.05 (a pre-defined
level).

The above observations of fluctuating false alarm rates
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Figure 3. False alarm rate variation under simulated label shift
for the pre-trained CIFAR10-WideResNet model. We ran 100000
simulations and each green point represents one trial.

are concerning, since controlling the number of false alarms
is highly important for almost all anomaly/outlier/OoD de-
tection tasks. Although the false alarm rate deviation at test
time may be small (say about 1% in the above example), the
actual increase in the number of false alarms can be signifi-
cant since ID data (inliers) typically account for the majority
of the test data. Worse still, malicious attackers may tam-
per with the false alarm rates and thereby influence the nor-
mal operation of such detection systems. To the best of our
knowledge, the above-mentioned issues with existing OoD
detection algorithms have never been addressed before in
OoD detection literature. In the upcoming section, we will
present a simple yet effective solution to this problem.

2.2. MULTI: Class-wise thresholding scheme

In the multi-class classification setting, the ID data con-
sist of images of multiple classes. Therefore, we can treat
Din-dist as a compound distribution of multiple generating
processes {gj}Kj=1, one for each class. When sampling an
image x from Din-dist, we are actually sampling from the
jth generating process gj at probability p(j), i.e., the label
marginal for class j.

A common assumption in OoD literature is that the train-
ing data Dtrain and the ID test data Dtest come from the
same distribution Din-dist, so that we would expect to get
similar false alarm rates on both Dtrain and Dtest. As we
have explained earlier, this assumption may not hold when
we deploy the classifier and the OoD detector in real-world
settings due to issues such as label shift. In the pres-
ence of label shift, the label marginals {p(j)}Kj=1 change
but the underlying generating processes {gj}Kj=1 stay the
same. This suggest us to devise a way to break down the
complexity of Din-dist by taking the class label information
into account when detecting OoDs. By considering class-
dependent scores, we are designing a dedicated decision

rule for the case where the jth logit becomes the maximum
(i.e., the activated logit). We are dividing the entire K-
dimensional space into K disjoint (non-overlapping) sub-
spaces {RK

i }Ki=1, and designing a dedicated decision rule
for each subspace. Mathematically, let us denote by x(j) an
input of class j, and ℓ(j) the corresponding logit vector. If
fθ can correctly classify x(j) as class j, we have

ℓ(j) = fθ(x
(j)) ⇒ ℓ(j) ∈ RK

j ⊂ RK , (4)

where RK
j = {argmaxk ℓk = j}, j = 1, 2, . . . ,K. Here,

the argmax operator finds the first occurrence of the max-
imum entry (in case of multiple occurrences of the same
maximum value).

To consider each subspace separately, we can design a
separate detection model (OoD score function) Sj for each
logit subspace RK

j , or to share the same OoD score function
S but use different thresholds. By setting a different thresh-
old τj for each class, we can treat each predicted class and
its subspace as a separate entity. Essentially, we are enjoy-
ing the benefit of having K models, one for each class, in a
much less expensive way.

Based on the above analysis, we can easily extend the
single-threshold approach (3) by using a dedicated thresh-
old τj for each class j; this can apply to every detection al-
gorithm that produces a class-dependent score, i.e., where
each class j is generated by a given pj(x). In general, sup-
pose S(x) is the OoD score given by a detection algorithm
for input x, the decision rule under the class-wise thresh-
olding scheme can be written as follows.

x is

{
out-of-distribution, if S(x) ≥ τj

in-distribution, otherwise
j = argmax

k
lk.

(5)

Applying the class-wise thresholding scheme to existing
OoD detection algorithms Both non-learning-based and
learning-based detectors can easily be extended to apply the
class-wise thresholding scheme. To be specific, we sim-
ply need to replace the single threshold τ for cutting off
the OoD score S(x; fθ) with class-wise thresholds τj , one
for each activated logit entry (i.e., the maximum one). The
same TPR-β scheme can be used to find the τj for each
logit entry. In contrast to the previous practice that uses a
single, unified cutoff threshold for all logit entries (later re-
ferred to as ONE for brevity), our approach (later referred
to as MULTI) is analogous to a “switch-case” statement that
uses different thresholds for different activated logits. In our
empirical study to be described next, we will compare the
performance of ONE and MULTI on several popular detec-
tion algorithms.
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3. Experiment Results

We conducted extensive experiments to compare the per-
formance of MULTI to that of ONE. To achieve a fair and
comprehensive comparison between the two thresholding
schemes, we performed our experiments using the same or
similar settings as in several previous papers. The software
implementation can be found as part of the supplementary
material.

Datasets We used the same ID and OoD datasets as in
[20, 25] as benchmarks. In addition, to get a more compre-
hensive view of the performance of the algorithms, we also
included another two popular image databases as ID, the
German Traffic Sign Recognition Benchmark (GTSRB) [13]
and ImageNet [8].

For OoD benchmarks, we included the ones used in prior
works [20,25] in our experiments, including Places365 [43]
and SVHN [26]. In addition, we added a few more from
Kaggle and from other works in the literature [21,37] to our
evaluation to cover a larger variety of subjects: Animals [1],
Anime Faces [6], Fishes [2], Fruits [16], iSUN [38], Jig-
saw Training [33], LSUN [39], Office [37], PACS [21] and
Texture [7].

To reduce the overlap between ID and OoD datasets, we
removed images from OoD datasets that share the same
class labels as those in ID datasets. For example, classes
dog, horse, and cat were removed from the Animals Dataset
since they already existed in CIFAR10, an ID dataset in our
evaluation.

Pre-trained classification models We tested the OoD
detection algorithms on pre-trained deep learning models
of three network architectures: DenseNet [15], WideRes-
Net [40], and AlexNet [19]. The seven resulting pre-trained
models used in our experiments are listed in Table 1. The
pre-trained WideResNet models were the same as those
used in Liu et al. [25]; the DenseNet models were from
Liang et al. [22]. We used the ImageNet-Densenet model
from torchvision [28], and trained an AlexNet model
on the GTSRB dataset.

Setup of OoD detectors We set up the non-learning-
based detectors, max-logit, energy-based and Mahalanobis,
using the same methods as described in literature. Then we
evaluated the two discussed thresholding schemes, ONE and
MULTI, by using TPR-95 to determine the respective detec-
tion thresholds.

To compare ONE and MULTI, we evaluated two anomaly
detection models, k-NN and OC-SVM for learning-based
OoD detection. In addition, we also tested ODIN [22]
where an optimal temperature parameter T needs to be

Figure 4. True Positive Rate (TPR) variations (as histograms)
of each activated logit entry (shown in different colors) of the
CIFAR100-WideResNet model under ONE (top panel) and MULTI

(bottom panel) for the max-logit detector.

learned. As mentioned earlier, learning-based OoD detec-
tors have the potential to perform better because of their
expressiveness in capturing the density distribution of ID
data. However, we also noticed the unsatisfactory outcomes
from learning-based approaches reported by several previ-
ous works. We believe the reported results do not reflect
the true potential of learning-based detectors, as it is well-
known that hyperparameter settings have profound impacts
on the performance of ML models. To gauge the full po-
tential of learning-based methods, in our experiments we
assessed the the performance limits of learning-based de-
tectors by conducting a best-case analysis to measure their
maximum achievable performance. To do so, we assumed
that we have access to a validation set drawn i.i.d. from the
test ID and OoD distribution for tuning the hyperparame-
ters of learning-based detectors. For each detector, a grid-
search was performed over the tunable hyperparameters to
select the model instance that achieved the best performance
on the test set. This analysis helped us understand the per-
formance limits and the potential room for improvement of
learning-based OoD detectors.

3.1. False Alarms (Type-1 Errors/False Negatives)

As described earlier, the single-threshold approach ONE
can result in unevenly distributed false alarms. In our em-
pirical evaluation, we tested both ONE and MULTI, and re-
ported in Table 1 the TPR (one minus the false alarm rate)
variation across ID classes for all seven pre-trained models.
As we can see from the statistics, the baseline scheme ONE
resulted in large performance variation. In several cases, the
TPR can be as low as 70% under ONE. On the other hand,
MULTI does not suffer from such problem. The results sug-
gest that, compared to ONE, MULTI is much more desirable
and robust due to its stable TPR performance.

Figure 1 and Figure 4 highlight the problem associated
with ONE from a different perspective. Here, we modified
the number of test-set ID data samples for each class by
oversampling class i with a random factor γi ∈ [1, 10], and
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Table 1. TPR (unit: %) of OoD Detectors under ONE and MULTI.

Max-logit Detector
(ONE | MULTI)

Energy-based Detector
(ONE | MULTI)

k-NN Detector
(ONE | MULTI)

OC-SVM Detector
(ONE | MULTI)

Classifier K Min. TPR (↑) Max. TPR (↓) Std. TPR (↓) Min. TPR (↑) Max. TPR (↓) Std. TPR (↓) Min. TPR (↑) Max. TPR (↓) Std. TPR (↓) Min. TPR (↑) Max. TPR (↓) Std. TPR (↓)

CIFAR10 - WideResNet 10 91.2 | 94.9 97.5 | 95.0 1.89 | 0.03 91.2 | 94.9 97.6 | 95.0 1.92 | 0.03 88.4 | 94.9 98.8 | 95.0 2.72 | 0.03 90.6 | 94.9 97.8 | 95.0 2.04 | 0.03
CIFAR10 - DenseNet 10 88.9 | 94.9 98.3 | 95.0 2.52 | 0.03 89.2 | 94.9 98.2 | 95.0 2.45 | 0.03 91.0 | 94.9 98.1 | 95.0 1.85 | 0.03 91.8 | 94.9 97.2 | 95.0 1.49 | 0.03
SVHN - WideResNet 10 91.0 | 94.9 96.7 | 95.0 1.61 | 0.03 90.8 | 94.9 96.8 | 95.0 1.72 | 0.03 92.4 | 94.9 97.0 | 95.0 1.18 | 0.03 83.4 | 94.9 99.2 | 95.0 4.46 | 0.03

GTSRB - AlexNet 43 75.9 | 93.3 100.0 | 95.0 5.52 | 0.39 75.0 | 93.3 100.0 | 95.0 5.58 | 0.39 32.5 | 93.3 100.0 | 95.0 13.51 | 0.39 0.8 | 93.3 100.0 | 95.0 22.25 | 0.39
CIFAR100 - WideResNet 100 83.8 | 93.9 100.0 | 95.0 3.01 | 0.31 83.8 | 93.9 100.0 | 95.0 3.10 | 0.31 72.3 | 93.9 100.0 | 95.0 4.61 | 0.31 84.2 | 93.9 100.0 | 95.0 3.35 | 0.31

CIFAR100 - DenseNet 100 82.5 | 93.8 100.0 | 95.0 3.43 | 0.31 81.6 | 93.8 100.0 | 95.0 3.41 | 0.31 76.7 | 93.8 100.0 | 95.0 4.90 | 0.31 78.1 | 93.8 100.0 | 95.0 3.86 | 0.31
ImageNet-DenseNet 1000 72.9 | 90.0 100.0 | 94.9 4.82 | 0.63 69.7 | 90.0 100.0 | 94.9 4.85 | 0.63 - - - - - -

(a) OC-SVM

(b) k-NN

Figure 5. TPR variations of each each activated logit entry of
CIFAR10-WideResNet model under ONE for OC-SVM (top) and
k-NN (bottom) detectors.

repeated the same experiment for 1000 times. The figures
show that ONE not only leads to huge inter-class discrep-
ancies but also induces large intra-class variations among
these repeated experiments that simulate different label dis-
tribution for the test data. In contrast, MULTI avoids this
problem and gives an almost constant false alarm rate (5%
in this case) despite the label shift.

Figure 5 shows the variations in TPR of CIFAR10-
WideResNet using ONE for k-NN and OC-SVM detectors.
Similar to Figure 1 and Figure 4, the plots indicate large
inter-class and intra-class false alarm rate variations, a not
so desirable outcome for OoD detection applications. This
finding again motivates the use of MULTI.

Simulation Study Shown in Figure 3 To produce the re-
sults shown in Figure 3, we artificially modified the class
ratios of the training and test datasets to match randomly
chosen class ratios ptrain(y) and ptest(y). For the CIFAR10-
WideResNet case as used in this example, the class ratios
p(y) = (p1, p2, . . . , p10) are 10-dimension vectors where∑10

k=1 pk = 1. In other words, p(y) ∈ S10 where S10 is a
10-dimension probability simplex.

Computationally, to randomly sample ptrain(y) and
ptest(y) from S10 , we made use of a property of the ex-
ponential distribution exp(1). Suppose Xi ∼ exp(1), i =
1, 2, . . . ,K are K i.i.d. samples of an exponential distribu-
tion exp(1). It can be proven that random vector(

X1∑
i Xi

,
X2∑
i Xi

, . . . ,
XK∑
i Xi

)

is uniformly sampled from SK .
By using the trick above, we generated ptrain(y) and

ptest(y), computed the resulting false alarm rate for the test
distribution under label shift, and repeated the same exper-
iment for 100000 times to obtain the scatter plot shown in
Figure 3.

3.2. Missed Detections (Type-2 Errors/False Posi-
tives)

Next, let us examine how MULTI impacts the OoD de-
tection performance, in terms of the missed detection rates
(ratios of OoDs that are mistaken as IDs). We computed the
average missed detection rates for the five different OoD de-
tection methods over the aforementioned OoD benchmarks
under both ONE and MULTI, for all seven pre-trained classi-
fication models. The results are summarized in Table 2.

As we can see from Table 2, different pre-trained mod-
els yield similar results under ONE and MULTI, and we
will again take a more detailed look at the results from
CIFAR10-WideResNet, shown in Table 3. As can be seen,
the False Positive Rate (FPR) performance differences be-
tween ONE and MULTI are small, up to a few percentage
points. Considering the shortcomings of ONE discussed
above, the slight performance trade-off from using MULTI
is well worth it.

In Table 3, for a given algorithm, we can also see large
performance variations across OoD benchmark datasets. To
get a better understanding of the obtained results, we also
calculated the statistical distances between the ID training
set (i.e., CIFAR10 in this case) and each OoD dataset as a
measure of their “OoDness”. Two statistical distance met-
rics, the Wasserstein Distance [36] and the Energy Dis-
tance [34], were used in our calculation. We then com-
puted the Pearson Correlation between the performances of
an OoD dataset and the corresponding statistical distances
(i.e., the correlation between two columns in Table 3). The
results are shown in Table 4, where we can see negative
correlations between the statistical distances and the missed
detection rates. This indicates increased difficulties in OoD
detection for OoD datasets that are “closer” to the ID test
set in terms of statistical distances.

It is also worth noticing in Table 3 that the two learning-
based detectors (k-NN and OC-SVM) usually give better
performance than the non-learning-based ones (max-logit,
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Table 2. Average Missed Detection Rates under ONE and MULTI

K Max-softmax Max-logit Energy k-NN OC-SVM ODIN Mahalanobis
(ONE | MULTI)

CIFAR10-WideResNet 10 0.57 | 0.57 0.39 | 0.42 0.38 | 0.41 0.35 | 0.38 0.37 | 0.41 0.40 | 0.40 0.45 | 0.47
CIFAR10-DenseNet 10 0.54 | 0.54 0.39 | 0.39 0.38 | 0.38 0.32 | 0.34 0.35 | 0.37 0.35 | 0.36 0.51 | 0.52
SVHN-WideResNet 10 0.09 | 0.09 0.08 | 0.08 0.08 | 0.08 0.06 | 0.06 0.14 | 0.08 0.17 | 0.16 0.06 | 0.04
GTSRB-AlexNet 43 0.50 | 0.40 0.33 | 0.35 0.32 | 0.34 0.49 | 0.61 0.83 | 0.66 0.25 | 0.25 0.75 | 0.71
CIFAR100-WideResNet * 100 0.79 | 0.77 0.73 | 0.71 0.73 | 0.71 0.77 | 0.71 0.77 | 0.76 0.67 | 0.67 0.70 | 0.67
CIFAR100-DenseNet * 100 0.77 | 0.75 0.72 | 0.69 0.73 | 0.70 0.81 | 0.74 0.79 | 0.76 0.62 | 0.62 0.69 | 0.68
ImageNet-DenseNet 1000 0.64 | 0.70 0.57 | 0.65 0.58 | 0.66 - - - -

- denotes cases not covered in our experiment due to scalability issues.
* same hyperparameters of the corresponding CIFAR10 classifiers

energy and Mahalanobis), under both ONE and MULTI. De-
spite the fact that we are conducting a best-case analysis
here for learning-based algorithms, this finding still high-
lights the benefits and potential of learning-based detection
algorithms that utilize all logit entries for decision-making.

3.3. Sensitivity Analysis for Single-Threshold Ap-
proach

In addition to the above-mentioned problems with ONE,
slight variations of τone can have huge impact on the final
OoD detection performance at test time. Many factors, in-
cluding label shift (i.e., varying class ratios in ID data), can
affect τone. Therefore, using τone determined on the valida-
tion set can yield undesirable detection outcomes. On the
contrary, our class-wise thresholding scheme MULTI is nat-
urally robust to label shift because each class is considered
separately.

We conducted an experiment to analyze the potential im-
pacts of perturbed τone due to the choice of the validation
set. To simulate additive perturbations ∆τ on τone, we uni-
formly sampled 50 perturbation values

∆τ ∈ δ ·
[
−
∣∣∣∣τone −min

j
τj

∣∣∣∣ , ∣∣∣∣max
j

τj − τone

∣∣∣∣] ,
where δ ∈ [0, 1] is a factor that modulates the maximum
strength of the perturbation in the validation set. In our
experiments, we set δ = 0.5. Figure 6 shows that ONE
often produces worse performance than MULTI under per-
turbed threshold τone + ∆τ in terms of missed detection
rates, which indicates the risk of using ONE.

4. Related Work
Pre-trained models as black boxes Hendrycks et al.
found out that OoD images tend to have lower maximum
softmax scores [11] and maximum logit [9] than ID images.
Based on the assumption that neural networks are trained
to lower the energy of ID data, Liu et al. [25] proposed to
use an energy function as a score function. On the other
hand, with auxiliary OoD datasets and input preprocess-
ing, ODIN [22] can be considered an ML model training

Figure 6. Variations of the missed detection rate for OoD examples
from each benchmark dataset, for perturbed τone values (box plot).
In blue the value for MULTI thresholding scheme.The experiment
is performed on pre-trained model CIFAR100-WideResNet, with
max-logit being used as the OoD detection algorithm.

the temperature parameter T of the softmax function at the
output layer. However, the resulting detector may not gen-
eralize well to other unseen OoD samples [14]. Therefore,
Hsu et al. [14] proposed Generalized ODIN without the use
of auxiliary datasets. Still, input preprocessing can induce
undesirable time delay for real-time applications.

Pre-trained models with open inner structures Break-
ing the black-box assumption, the Outlier Exposure (OE)
method [12] detects OoDs by modifying the neural network
loss function and with additional training. However, the
auxiliary OoD datasets that are required are not always ac-
cessible [4]. Lee et al. [20] used Mahalanobis distance, and
MOOD [23] used energy functions, while incorporating in-
formation from early layers.

OoD Detection with generative modeling In addition to
the above-mentioned works that detect OoDs based on a
given classification model, another category of works use a
dedicated model for OoD detection. An intuitive approach
is to use generative modeling to learn the distribution of
the ID dataset and reject samples that have low likelihood
of being ID. Although Choi et al. [5] showed that image
classifiers can assign higher likelihood to OoD data, Ren et
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Table 3. Missed Detection Rates on OoD Benchmarks for the CIFAR10-WideResNet Model.

Max-softmax Max-logit Energy k-NN OC-SVM ODIN Mahalanobis Statistical Distances
Datasets (ONE | MULTI) Wasserstein Energy
Animals 0.68 | 0.69 0.61 | 0.64 0.61 | 0.64 0.63 | 0.66 0.62 | 0.67 0.69 | 0.69 0.80 | 0.81 129 70

Anime Faces 0.61 | 0.68 0.38 | 0.44 0.37 | 0.42 0.28 | 0.36 0.32 | 0.41 0.36 | 0.34 0.37 | 0.45 174 95
Fishes 0.51 | 0.54 0.30 | 0.37 0.30 | 0.36 0.28 | 0.37 0.29 | 0.38 0.42 | 0.42 0.30 | 0.35 158 86
Fruits 0.60 | 0.63 0.42 | 0.48 0.42 | 0.47 0.32 | 0.39 0.38 | 0.47 0.55 | 0.56 0.63 | 0.67 181 99
iSUN 0.56 | 0.51 0.35 | 0.36 0.34 | 0.35 0.31 | 0.32 0.33 | 0.34 0.28 | 0.25 0.31 | 0.27 187 102

Jigsaw on Training Set 0.60 | 0.58 0.45 | 0.47 0.44 | 0.47 0.36 | 0.39 0.43 | 0.46 0.52 | 0.52 0.65 | 0.64 159 88
LSUN-Crop 0.31 | 0.33 0.09 | 0.12 0.08 | 0.11 0.11 | 0.15 0.09 | 0.14 0.10 | 0.10 0.31 | 0.36 178 99

LSUN-Resize 0.52 | 0.46 0.29 | 0.30 0.28 | 0.29 0.26 | 0.26 0.28 | 0.29 0.22 | 0.20 0.30 | 0.26 193 107
Office-Home Art 0.55 | 0.56 0.37 | 0.40 0.36 | 0.39 0.32 | 0.35 0.34 | 0.39 0.40 | 0.40 0.50 | 0.51 151 81

Office-Home Clipart 0.55 | 0.51 0.34 | 0.38 0.34 | 0.38 0.34 | 0.36 0.34 | 0.37 0.20 | 0.22 0.12 | 0.16 182 99
Office-Home Product 0.60 | 0.56 0.42 | 0.46 0.42 | 0.45 0.44 | 0.45 0.43 | 0.44 0.34 | 0.36 0.37 | 0.38 170 93

Office-Home Real 0.57 | 0.54 0.40 | 0.43 0.39 | 0.42 0.37 | 0.39 0.39 | 0.41 0.37 | 0.38 0.41 | 0.42 163 88
PACS Photo 0.72 | 0.71 0.62 | 0.62 0.62 | 0.62 0.60 | 0.62 0.61 | 0.63 0.68 | 0.67 0.83 | 0.82 135 75

PACS Art 0.58 | 0.59 0.41 | 0.43 0.41 | 0.43 0.36 | 0.38 0.38 | 0.41 0.48 | 0.47 0.59 | 0.59 138 75
PACS Cartoon 0.58 | 0.59 0.37 | 0.40 0.37 | 0.39 0.35 | 0.36 0.36 | 0.40 0.31 | 0.31 0.48 | 0.52 150 81

PACS Sketch 0.55 | 0.53 0.26 | 0.30 0.25 | 0.28 0.23 | 0.26 0.27 | 0.30 0.18 | 0.20 0.55 | 0.60 178 99
Place365 0.59 | 0.55 0.40 | 0.41 0.40 | 0.41 0.38 | 0.38 0.39 | 0.40 0.47 | 0.47 0.69 | 0.65 134 72

SVHN 0.48 | 0.56 0.35 | 0.41 0.35 | 0.41 0.25 | 0.34 0.31 | 0.37 0.44 | 0.46 0.16 | 0.20 214 122
Texture 0.60 | 0.62 0.52 | 0.57 0.53 | 0.57 0.44 | 0.51 0.51 | 0.58 0.55 | 0.54 0.17 | 0.18 160 85

Mean Score 0.57 | 0.57 0.39 | 0.42 0.38 | 0.41 0.35 | 0.38 0.37 | 0.41 0.40 | 0.40 0.45 | 0.47

The “Statistical Distances” are real-valued scalars measuring the distances between the logits from test-set ID and OoD examples. More
details can be found in the appendix.

Table 4. Pearson Correlations between the Missed Detection
Rates on OoD Data and the Corresponding Statistical Distances
for CIFAR10-WideResNet Network.

Wasserstein Energy
ONE MULTI ONE MULTI

Max-softmax -0.54 -0.47 -0.55 -0.46
Max-logit -0.57 -0.51 -0.56 -0.51

Energy -0.57 -0.51 -0.56 -0.51
k-NN -0.66 -0.60 -0.65 -0.59

OC-SVM -0.60 -0.57 -0.59 -0.56
ODIN -0.57 -0.56 -0.55 -0.54

Mahalanobis -0.72 -0.70 -0.68 -0.65

al. [31] showed how to alleviate this issue by distinguishing
between the background and the semantics in the genera-
tive model. Zhang et al. [41] explained the phenomenon
that flow based models can assign higher likelihood to OoD
samples, but always generate ID images. Tonin et al. [35]
proposed an energy-based unsupervised detection method
without access to class labels.

5. Conclusion
In this paper, we have addressed an issue that relates to

the thresholding strategy used in many state-of-the-art OoD
detection algorithms. Despite the simplicity of our multi-
threshold solution, our main contribution is to identify the
problem and to raise people’s awareness about the adversar-
ial effect of label shift (and distribution shift in general) in
the context of OoD detection. This issue, to our best knowl-
edge, has has never been identified or discussed in previous

literature. Our solution has addressed this issue in a simple
and effective way, making it amenable to real-world appli-
cations.

It is worth pointing out one limitation of our proposed
approach: when there are very few samples for a particular
class in the training and validation sets, it will be difficult to
set a meaningful cutoff threshold τi. Since real-world train-
ing data can often be long-tailed, it is possible that the data
for some classes are very scarce. We leave this challenge to
our future work. Beyond label shift, we also plan to study
how other types of domain shift (such as concept shift and
covariate shift) affect OoD detection algorithms and how to
address such challenges.
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