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Abstract

Salient object detection (SOD) extracts meaningful con-
tents from an input image. RGB-based SOD methods lack
the complementary depth clues; hence, providing limited
performance for complex scenarios. Similarly, RGB-D
models process RGB and depth inputs, but the depth data
availability during testing may hinder the model’s practi-
cal applicability. This paper exploits only RGB images,
estimates depth from RGB, and leverages the intermediate
depth features. We employ a pyramidal attention struc-
ture to extract multi-level convolutional-transformer fea-
tures to process initial stage representations and further
enhance the subsequent ones. At each stage, the back-
bone transformer model produces global receptive fields
and computing in parallel to attain fine-grained global pre-
dictions refined by our residual convolutional attention de-
coder for optimal saliency prediction. We report signifi-
cantly improved performance against 21 and 40 state-of-
the-art SOD methods on eight RGB and RGB-D datasets,
respectively. Consequently, we present a new SOD per-
spective of generating RGB-D SOD without acquiring depth
data during training and testing and assist RGB meth-
ods with depth clues for improved performance. The code
and trained models are available at https://github.
com/tanveer-hussain/EfficientS0OD2

1. Introduction

Visual saliency refers to the most noticeable and dis-
cernible contents of image data distinguishable from the
background. It is often termed Salient Object Detection
(SOD), as the noticeable contents are different kinds of ob-
jects inside an image. Salient objects include humans, an-
imals, and other general object categories within an image
as foreground. SOD methods [10,31,36,42,51,58,76] aim
to extract useful features from a given RGB or a pair of
RGB and depth images to predict a binarized or gray-scale
saliency map of the corresponding input.
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Figure 1. An example of a challenging input from RGB-D dataset
with multiple candidate salient objects and noisy depth. As shown
in the third row, undesirable depth has adversely affected the
saliency prediction, where our PASNet visual results in the second
row are much closer to the GT with higher F-measure rates. PAS-
Net (M1) and PASNet (M2) refer to RGB-D with original and syn-
thetic depth.

To achieve effective SOD, RGB or RGB-D images are
processed using various soft computing techniques, where
deep models [5,45] have achieved the best results. Whereas,
RGB-D-based SOD has recently attracted the attention of
many experts due to the importance of depth data in pre-
dicting accurate saliency maps when processed compos-
edly with RGB data, providing complementary informa-
tion for objects’ appearance, thereby enhancing the SOD
method’s performance. Moreover, the mainstream RGB-D
approaches introduce multi-stream architectures to extract
RGB and depth features and apply various fusion mecha-
nisms to assist RGB data with depth clues. Previous re-
search techniques input RGB and depth data, apply fusion
at early [60, 61], intermediate (multiple stages) [63, 66],
or later stages [48] of the neural network architecture to
achieve optimal detection. Recently, Zhang et al. [61] in-
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tegrated RGB and depth channels at the start of the network
and processed six-channel input, while in their supplemen-
tary network, the authors extract distributions of RGB im-
ages as well as depth clues.

With RGB-D-based techniques, certain limitations are
associated, such as additional computation is required to
process depth data and, fore-mostly, the depth sensor data
acquisition for generating saliency maps. Conversely,
CNN-based RGB saliency models can quickly fail in chal-
lenging scenarios due to a lack of appearance cues and
dependency over visual cues only. Similarly, RGB-based
saliency detection methods get misled in cluttered back-
grounds due to the complex salient object’s appearance.

To the best of our knowledge, no single end-to-end
method in SOD literature exists that takes RGB input only
and generates its corresponding depth, followed by final
saliency prediction using both channels. Following [56],
Zhang et al. [66] introduced RGB-D SOD without Depth, a
simple network that learns to predict multiple outputs dur-
ing testing; but depend on the depth data for the network
during training.

This article overcomes the limitations mentioned earlier
by introducing novel transformer-CNN features with a pyra-
midal attention network for effective SOD. The proposed
model, Pyramidal Attention Saliency, abbreviated as, PAS-
Net is specifically designed to remove the dependency over
depth data, thereby increasing our model’s application do-
mains and practicability. In simple scenarios, our network’s
RGB flavor can be used to create accurate saliency maps.
While in highly challenging scenarios, where RGB infor-
mation is not sufficient for fine saliency detection, our net-
work’s RGB-D flavor generates depth from RGB and com-
plementary features from the same depth network to support
the RGB features at various levels before optimal saliency
region extraction. Furthermore, it is a well-known fact that
the encoder structure of the SOD model has a considerable
influence while producing saliency maps as information lost
during the encoding process cannot be recovered in the de-
coder. Therefore, along with the focus on decoder [55], the
encoder part should be carefully designed, as, in PASNet,
we present a transformer encoder to extract multi-level fea-
tures with pyramidal attention structure for image feature
enhancement.

Our contributions are highlighted as follows:

e We are the first to introduce the RGB-D SOD model
without actually acquiring depth data as input, thus,
predicting fine saliency using only single RGB input.

e Our encoder network considers both high and low-
level CNN and transformer backbone features to pro-
cess them using pyramidal transformer attention.

¢ We achieve SOTA results on both RGB and RGB-D

SOD benchmarks, validating the proposed model ef-
fectiveness and practical applicability.

2. Related Work

The SOD techniques can be roughly categorized from
the perspective of input data into i) RGB-D methods, ii) Hy-
brid methods, and iii) RGB methods. We provide the SOD
models similar to our approach and justify the uniqueness
of our model from the current state-of-the-art.

RGB-D Methods: The RGB-D methods need RGB and
depth data for generating saliency maps, where both modal-
ities are dependent on each other. The depth modality is
specifically considered to extract the 3D layout and struc-
tural information from the input images and aid the RGB
channels in generating final saliency. Currently, mainstream
RGB-D SOD methods apply Convolutional Neural Net-
works (CNN) [40] due to their enhanced image represen-
tation abilities, compared to handcrafted features [6, | |,38]
which provides limited performance for complex scenarios.
Some RGB-D methods merge depth and RGB channels in
early stages, considering RGB-D pair as a multi-channeled
input [33,43]. Others apply late [16] or multi-stream fu-
sion approaches [10] to effectively utilize the complimen-
tary depth information [3,39,40]. These mentioned meth-
ods require depth maps as input while generating saliency
maps during training and testing. The RGB-D methods’ ac-
curate predictions are highly dependent on the depth data
cues, and any noise in the depth data results in mispredic-
tions. In some cases, particularly noisy regions are con-
sidered salient objects by the model. Thus, for an RGB-
D SOD model, the dependency of depth data affects the
performance in many scenarios, despite the higher com-
putational complexity and expensive resources required for
depth sensor data acquisition.

Hybrid Methods: If trained on RGB-D data, the model is
considered a hybrid and can predict saliency maps without
acquiring depth data. These approaches tend to eliminate
the dependency of supplementary depth cues while generat-
ing output. Initially, Ziao et al. [56] introduced the concept
of leveraging depth information with RGB data to enhance
a model’s performance for SOD task, based on traditional
saliency features and without any end-to-end methodology
for depth and saliency prediction. Similarly, A2dele [41],
an adaptive and attentive depth distiller, is introduced in re-
cent research, aiming at the RGB-D network’s efficiency
and reducing the dependency over depth data during test-
ing. Their main objective is to provide an effective network
that only processes RGB stream rather than involving depth
stream during the testing procedure.

Very recently, Zhang et al. [66] presented a deep RGB-
D network that learns to predict saliency maps as well as
depth images from an RGB-D input; thus, the network takes
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RGB-D data while training and does not require depth data
during evaluation, but results without depth input are sig-
nificantly lagging behind the RGB-D SOTA. Furthermore,
deep RGB-D w/o0 depth methods still have the primary de-
ficiency of depth sensory data dependency during training.
It is not easy to install multiple sensors or a single sensor
with multiple functionalities in some real-world environ-
ments due to marginally higher costs. Finally, a very re-
cent research [66] fuses the actual predicted depth at the last
stages, making their model biased towards the RGB channel
information.

RGB Methods: Traditionally, salient object detection re-
lied on the RGB input only for decades. So far, a handful
CNN based research works employed RGB data only as in-
put to produce refined saliency maps. The CNN models fol-
low the traditional encoder-decoder architecture while gen-
erating saliency, where the network is used as an encoder to
extract initial, middle, and high-level features, followed by
upsampling strategies to generate saliency maps [19, 69].
Different from traditional decoders, Wu et al. [55] intro-
duced a partial decoder that only considers features ex-
tracted from deeper CNN layers, generating initial and fi-
nal saliency maps. The initial saliency is processed apply-
ing a holistic attention module which is then fused through
element-wise multiplication with encoder features and their
proposed partial decoder for the final saliency map. Many
researchers focus on the edge information [69], while others
apply boundaries-directed features learning Siamese net-
works and modified fusion strategies to generate binarized
saliency maps [25].

The existing SOD literature advocates that current deep
models are heavily dependent on depth clues (see Figure 1
374 row) while generating refined saliency maps, mainly
processing RGB and depth input via multi-stream networks.
Herein, we show that providing depth data should only en-
hance the prediction performance (Figure 1, 2" row), and
refined saliency maps can be acquired using RGB input.
Furthermore, RGB-D models need both RGB and depth si-
multaneously to predict saliency. In contrast, we propose
to estimate depth from the RGB image and extract features
from synthetic depth to enhance the encoder’s performance.
Although there are previous attempts [4 1,56, 66] to remove
the depth input reliance and ease their practical applicabil-
ity, these are hybrid (RGB+RGB-D) models i.e., they pro-
cess depth during training and have comparatively higher
error rates and minimal performance for challenging RGB
datasets.

3. Methodology

In this section, we describe the proposed SOD model.
We employ a pyramidal architecture to incorporate CNN
and transformer backbone features. First, we comprehen-

sively introduce our framework explain each component
of our model in detail, followed by the proposed pyramid
structure for feature refining and saliency extraction.

3.1. Overview

The proposed network consists of several components:
i) feature extraction from the backbone network with cus-
tomized dense connections; ii) pyramid block for encoder
feature refining; and iii) upsampling and feature fusion in
the decoder. In the case of the depth requirement, our net-
work generates a corresponding depth map using a pre-
trained ViT-based monocular depth estimation model [44]
and extracts intermediate features from the same model to
be fused with the RGB module before decoding. The over-
all process is visualized in Figure 2 and explained in subse-
quent sections.

3.2. Pyramidal Self-Attention

Transformer networks process bag-of-words/tokens rep-
resentations of input data [46], where image features play
tokens in case of ViT. Herein, following the findings of [44],
we extract deep pixel features from the input RGB image
IrcB, ., UsIng a pre-trained embedding network [17] and
use them as rokens t = {to,...,tn,}, where N, = h;;”',
with height h, width w and p refers to the patch size con-
sidered in our network. The encoder network produces
fas f8: fv, fo = 7(t), where T refers to the proposed en-
coder. The f,, fg are CNN features acquired from the fea-
ture embedding network’s b; and b; blocks and f,, f, are
transformer stages s; and s;. To decode f., and f, features
from the transformer layers, we use a patch un-embedding
strategy.

To enable maximum information flow between CNN fea-
tures and transformer blocks, we embed dense connections
as follows:

fa =T1enn,, (IraB),

1
fﬁ:TCNij(fa)' ( )

So far, we have two kinds of feature vectors comprising ini-
tial edge information ( f,, f3), we extract shapes and struc-
ture of objects, and global receptive fields (f,, f,) as

fy = Trrans.. (fa @ f)),
.fn = TTranssj (fa S fﬂ S f’)’))v

where @ is the concatenation operation. These four ex-
tracted features have a common trans-head to refine and
balance the channels for the proposed pyramidal attention
blocks. The trans-head has three convolutional layers, each
followed by batch normalization and ReLLU activation.
Based on the assumption that initial low-level features
(fa, f3) demand further refining and the later stage trans-
former features( ., f») only need booster layers to enhance

2
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Figure 2. The proposed SOD framework. The encoder module takes an RGB image and passes it to a depth predictor (A) to acquire X geph,
a CNN model (7¢ v n) with a ResNet backbone produces f, and fs feature vectors, and the transformer encoder (7rrqns) generates f.
and f, features. We transform these features to equal channels using a head with sequential convolutional operations. These outputs are
then transformed to highly salient features, effective for SOD using the proposed pyramidal block of DASPP and MHSA p. We employ
skip connections after acquiring features from p and finally concatenate the depth features extracted from an intermediate stage of A model
using a synthetic depth image with the f, features. The decoder module continuously fuses information, employ and upsample them
gradually with residual channel attention at multiple stages before final saliency prediction. We applied a weighted fusion strategy over

different losses to update our model’s parameters.

the existing representations. We employ pyramid attention
block P, to finally acquire the encoder features. The P,
contains multi-scale Dense Atrous Spatial Pyramid Pooling
(DASPP) layers and multi-headed self-attention (MHSA)
at the end of each P, block except the final f, features.
Since the convolutional features need additional attention,
they fit into the pyramid’s base with multiple DASPP mod-
ules followed by an attention mechanism. The last stages
of transformer features are utilized using a single DASPP
and MHSA module. As f, features are already enhanced
enough; therefore, only a single DASPP module is em-
ployed for further feature enhancement. The overall struc-
ture of P, is shown in Eq. 3.

fo DASPPy
Ml DASPP;;,  MHSA;
fs | = | DASPP, DASPP,, MHSA,
fa DASPP,, DASPP,, DASPP MHSA;

3)
Once the refined features are extracted from the RGB in-
put, we enrich f,, features via depth estimation (A) model’s
features. It is noteworthy that depth is not accompanied
(i.e., actual depth acquired via a depth sensor) with the in-
put image in the RGB-D dataset; instead, it is synthetically
generated from the A model. Due to simplicity, we do not
create a separate network to process depth data individually,
which can be a significant future direction for RGB-D SOD
models. The concatenation at this point aids the f, with
fine-grained depth information, producing more refined rep-
resentations (see Figure 1 second row).

Our main objective in the proposed encoder network is
not to lose any information, as it cannot be recovered dur-
ing the decoding procedure. Therefore, we consider infor-
mation about edges filtered by the initial CNN blocks and
employ several transformer layers to extract receptive fields
to keep track of the varied size of objects. Thus, combining
convolutional and transformer layers’ features enables uti-
lizing larger receptive fields when compared to regular con-
volutions and also design dependencies between spatially
distinct features. Finally, the proposed pyramid structured
attention boosts the features for the SOD problem by ap-
plying DASPP [59] for receptive fields capturing from the
overall image and multi-head attention for acquiring salient
information from paired feature representations.

3.3. Fusion Attention

Hence, the encoder network is very dense, extracting var-
ious features. Therefore, we only focus on fusing the en-
coder features in the decoder network before generating the
final saliency. The decoder receives f., f3, f, and f, fea-
tures, progressively concatenating from the fusion of shal-
lower to deeper layers. After each concatenation branch,
our network employs the residual channel attention mod-
ule to capture spatial and channel dependencies between
pixel locations and different channels of the input feature
maps. We achieve the final saliency map S by gradually
upsampling the features during concatenation, as given be-
low mathematically.
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Si=0(fo @ fy),
Sit1 = 0(U(S; @ f3),
Sit2 = 0(Si+1 & fa),

S = Unxw(C(Si+2)),

“4)

where U is the upsampling operation, € refers to the residual
channel attention module, and C' is the balancing convolu-
tion to generate a single channel saliency map S.

3.4. Objective Function

The proposed objective function is the weighted fusion
of several loss functions defined below for input y and
ground truth x images.

gtotal(yyw) = €1l + €2lsgim + 6362 + 64586) (5

where ¢ is the constant having values of €; = 0.2, e = 0.3,
€3 = 02, and €4 = 0.3.

The structure loss ¢, focuses on global structure opti-
mization instead of aiming at a single pixel, thereby being
significantly immune towards unbalanced distributions. We
adopt structure loss from [53], where weights are assigned
to hard pixels to highlight their importance, instead of treat-
ing all pixels equally and ignoring the difference between
pixels. The /4 loss is given as

H w
B Dimt 21 (@igyig ) (1 + Pwij)

—1-

Y, ) H w ’
Doic1 2o (@ig + yij — w5y (14 Vo)

(6)

ést(

where U is a hyperparameter and w are the weights.

Furthermore, different from pixel-wise comparison
losses such as the Euclidean distance, we employ Structural
Similarity Index Measure (SSIM) as a loss function to com-
pute the negation of similarity between y and x and update
the model based on their difference.

(15 + 13 + c1)(s] + sya? + ¢2)

‘gssim(yww)

In Eq. 7, pu; and py represent the average, ¢;; is the co-
variance, <7 and ¢? represent variance of input y and the
ground truth image x, respectively. Herein, ¢; = (ky, L)?,
¢y = (ko, L)? that are two variables to neutralize the divi-
sion in case of weak denominator. Finally, L is a dynamic
range of pixel values and k; = 0.01, k2 = 0.03.

Moreover, {5 refers to (sg;,, regularization. Due to
the involvement of multiple features, our network becomes
complex and prone to overfitting; therefore, we adopt ¢
regularization in our loss function to avoid such prob-
lems. Finally, edge-aware smoothness loss is adopted
from [15, 52], referred to as ¢4, in Eq. 5, which makes the

distinctions between objects smoother using disparity gra-
dients. Herein, € is used to assign weights multiplied with
each loss value when calculating the final objective function
for the model update.

3.5. Implementation Details

Inspired by the CNN-based SOD models’ [9, 45, 60]
backbone strategies, we employ pre-trained DPT [44], that
is trained on a large-scale semantic segmentation dataset as
the ViT networks perform well when trained using large-
scale datasets [8]. For feature extraction, following [44],
we extract transformer tokens from a ResNet50 pre-trained
model [17]. We utilize the same model’s initial two blocks
bi,b; = 1,2 to extract f,, fg features. In case TrrANS,
f~, fo are transformer stages s;,s; = 9,12 features. It
should be noted that we embed depth transformer features
from stage s = 12 of depth estimator backbone model A
into f, features to enhance the representations of existing
features. The resolution of output features is i x %, where
n = 1,2,3, and 4 for f,, f3, f, and f,, respectively with
Deqr = 256 features’ dimensions.

4. Experiments
4.1. Setup

Training details: We implement our method in the Py-
Torch deep learning framework with an NVIDIA GeForce
RTX 3090 GPU. Our initial training settings are inspired
from [61]. We use an ADAM optimizer with 0.9 momen-
tum, the initial learning rate is set to Se~®, and the model is
trained for 25 epochs. The training images are resized to a
standard 224 x 224. The ResNet50 [17] is used as the back-
bone with the pre-trained ImageNet weights in the CNN
module, while in the Transformer module, we use [44]. Af-
ter each epoch, the learning rate is adjusted with a 10% de-
crease, and the batch size is six.

Datasets: We carry out experiments on four benchmark
RGB-D datasets including three standard such as DUT-
RGBD [40], NJUD2K [21], NLPR [38], and newly intro-
duced SIP [9]. We also compare on four datasets, that are
widely used for RGB SOD method evaluation, including
ECSSD [57], HKU-IS [24], DUTS-TE [47], and PASCAL-
S [26]. We follow the provided training and testing dataset
split for each one [9].

Evaluation Metrics: We evaluate our methods on three
widely used metrics: Mean Absolute Error (MAE), standard
F-measure (Fg), and E-measure (E,). We have verified the
results of our methods via MATLAB' and Python® evalua-
tion toolboxes. It should be noted that the lower the (MAE)
the better it is and vice versa for (Fg) (Sn), and (Ej).

Uhttps://github.com/jiwei092 1/Saliency-Evaluation-Toolbox/
Zhttps://github.com/taozh2017/SPNet/blob/main/Code/utils/evaluator.py
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Figure 3. Visual comparison of our PASNet with SOTA models using the most challenging images from RGB-D datasets. Our results are
more close to the groundtruth. Our saliency maps have fine details and clear edges as compared to the state-of-the-art algorithms.
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Figure 4. Visual scenarios with M 2’s more accurate predictions
when compared to M1. The clearly observable difference is due
to the noise in input depth data. SD refers to synthetic depth.

4.2. Comparisons

We compare our results with 4/ methods on RGB-D
datasets and 2/ algorithms employing RGB datasets, com-
prising recent deep learning-based models.

4.2.1 Quantitative Comparisons

RGB-D Saliency: For RGB-D SOD, we compare our
method with 41 deep learning models, and since tradi-
tional hand-crafted feature-based methods are not effective
and accurate enough, we exclude them for simplicity. To
ensure a fair comparison, we mostly report the results of
these methods from their papers or follow existing arti-
cles [20,31,60]. Furthermore, it is worth noting that there
are ten RGB methods performing experiments on RGB-D
datasets, while the closest works to our approach are con-
sidered hybrid models.

The performance comparisons on the RGB-D datasets

oddd”

I I 8 R
GT SD M2 M1

are given in Table 1, where we reported three sections due
to the difference in the SOD input. When compared to RGB
and hybrid methods utilizing RGB-D datasets, we achieved
the best results on all reported metrics, surpassing SOTA
methods by a large margin on some metrics. Similarly, we
receive better performance when we generate saliency us-
ing RGB-D with original depth i.e. second best results on
DUT-RGBD [40]. On the NJUD [21] dataset, we lag behind
some current methods, but it is noteworthy that we did not
use any multi-stream architecture to process depth data, as
our primary objective is to eradicate dependency over depth
data. On the NLPR [38] dataset, we achieved SOTA on
MAE and E,, and held second best in terms of F-measure,
as [74] achieved 0.004 higher F3 from our model. Finally,
we set a new SOTA over SIP [9] dataset.

RGB Saliency: Our proposed model is compared with
21 RGB-based SOD methods in Table 2 on RGB
datasets, which shows significantly reduced error rates
and top performance on three ECSSD [57], HKU-IS [24],
and PASCAL-S [26] datasets except DUTS-TE [47].
Where PASNet is ranked as the third-best against compet-
ing methods. Thus, it can be concluded that the proposed
model is also applicable in challenging scenarios that can
be effectively functional and independent of the depth mod-
ule.

4.2.2 Qualitative Comparisons

We present visual outcomes of our model against SOTA
for four challenging images with noisy depth and complex
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Table 1. Quantitative results of our algorithm against competing methods. The symbols E,, Fg, and S, refer to the E-measure, F-measure,
and S-measure. The (Red color represents the best results and the Blue color is for the second-best results in each block i.e. RGB-D, RGB,

and Hybrid models.
Methods DUT-RGBD [40] NJUD2K [21] NLPR [38] SIP [9]
i E.T Fst Sy1 MAE| |E.t Fgt S, MAE| |E,1T Fgt S,t MAE| |E.T Fz1 S,1 MAE]

DF [43] . 465 185 700 653 .763 .140 157 .664 806 .079 565 465 653 185
CTMF [16] .608 139 846 779 849 .085 840 740 .860 .056 704 .608 .716 139
PCF[1] 814 071 895 .840 .877  .059 887 .802 874  .044 878 814 842 071
MMCI [3] 771 .086 851 .793  .858 .079 841 737  .856 .059 845 771 .833 .086
CPFP [68] 821 .064 910 .850 .878 .053 918 .840 .888 .053 893  .821 .850 .064
CPD [55] 872 .042 . 874 . .051 . 878 . .028 . .884 . .043
TANet [2] .803 075 895  .841 879  .059 902 802 886  .044 .870 .803 835 075
AFNet [48] . 702 . 118 .867 .827 .822 .077 851 755 799 .058 793 702 720 118
DMRA [40] . 888 .883 927 .048 920 .873 .886 .051 940 .865 .899 .031 .844 811 .806 .085
ATSA [63] . 918 916 .032 . 893  .885 .040 876 909 .028 871  .849 .053
PGAR [4] 933 914 899 .035 940  .893 909 .042 . 885 917 .024 . .854 838 .055
UCNet [61] . . 871 . 936 .886 .897  .043 951 .831 920 .025 914 867 .875 .051
S2MA [30] 935 899 904 .043 930 .889 .894 .054 953 .902 916 .030 919 877 872 .058

A JL-DCF [13] 941 910 906 .042 944 904 902 .041 963 918 925 .022 919 877 .880 .058

o SSF-RGBD [64] 950 923 915 .033 935 .896 .899 .043 953 896 915 .027 .870 .786  .799 .091

2 BBSNet [10] 912 870 923 .058 949 919 921 .035 961 918 931 .023 922 884 879  .055
Cas-Gnn [34] 953 926 920 .030 948 911 911 .039 955 .906 923 025 919 879 875 .051
CMW [23] 864 779 797 .098 927 871 .870 .061 951 903 917 .029 804 677 705 141
DANet [72] 939 904 899 .042 935 .898  .899 .046 955 .904 920 .028 918 876 .875 .055
cmMS [22] 940 913 912 .036 897 936 900 .044 955 904 919  .028 911 876 872  .058
UCNet-2 [60] . 864 . .034 937 .893 902  .039 952 893 917  .025 927 877 .883 .045
SP-Net [74] . . . . 954 935 925 .028 959 925 927 .021 930 916 .89%4 .043
DA-MMFF [45] 950 926 921 .030 923 901 .903 .039 950 .897 918 .024 . . .
DCEF [20] 952 926 . .030 922 897 . .038 956  .893 . .023 920  .877 . .051
HFNet [75] 934 885 .900 .044 902  .859 898  .053 934 839 897  .038 904 850 857  .071
VST [31] 969 948 943  .024 951 920 922 .035 962 920 .943 .024 944 915 904 .040
PASNet 1, 966 944 917 .028 938 .892 867  .051 966 921 913 021 987 956 936  .016
DSS [18] . 732 803 .127 776 769 108 755 838 .076
Amulet [65] . . 803 813 .083 798 827  .085 722 838 .062
R3Net [7] . 781 819 113 775 770 .092 .649 846 101
PiCANet [29] . . 826 .878 .080 806 .872 .071 761 871 .053

m PAGRN[70]. . .836 .079 .827 .081 795 .051

2 PoolNet [27] . 871 .049 .850 .057 791 .046
AFNet [12] . . 851 . .064 . 857 . .056 . .807 . .043
CPD [55]. 911 865 875 .055 905 905 .863 .060 925 866 .893 .034 . .
EGNet [69] . . .866 .872 .059 . 846  .840 .060 . .800 .880 .047 .876 .049
MSI-Net [37] . 900 861 .875 .058 906 .859 870  .057 914 854 886  .041 . .
DCF [20] . . . . . . .869 .046 .855 .028 .839 .063
PASNet 966 940 903 .033 946 907  .891 .040 964 921 912 .024 987 955 930 018
A2dele [41] 892 885 .042 884 871 .051 878  .899 .028 884 .829 .043

2 DASNet [67] . . . . . 894 902 .042 . 907 929 .021

é DeepRGB-D [66] | .902  .853 864 .072 927 876 .886 .050 936 .882 .906 .038

= PASNet s> ‘ 966 942 903 .029 ‘ 948 908  .891 .040 ‘ 962 917 912 .021 988 958  .930 015

background, similar or multiple salient objects, and dis-
tant objects. Figure 3 shows how accurately PASNet pre-
dicts saliency maps. PASNet predicts high-quality, smooth
saliency of the input image with similar background and
foreground (1% and 3"¢ rows), where top-ranked RGB-D
models produced very coarse predictions. Likewise, PAS-
Net correctly identified distant objects (2" row) well, even
though the accompanying depth of corresponding RGB has
much noise, confusing the depth-dependent deep models to

produce non-smooth dispersed predictions. Similarly, for
an object hiding behind informative background (4*" row),
our method produced exactly similar saliency as ground
truth, whereas the compared SOTA produced limited re-
sults. It should be noted that our method produces similar
or very close saliency maps to the ground truth. Therefore,
analyzing qualitative and quantitative results demonstrates
the proposed model’s effectiveness and robustness.
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Table 2. Performance comparison on RGB datasets against RGB
methods for MAE metric. The lower ({) is the value for MAE, the
better the accuracy). Red, Blue, and Magenta colors show first,
second, and third best performance.

Methods ECSSD [57] | HKU-IS [24] | DUTS-TE [47] | PASCAL-S [26]
NLDF [35] 051 041 055 083
DSS [18] 051 043 050 081
BMPM [62] 044 039 049 074
Amulet [65] 057 047 062 095
SRM [49] 054 047 059 085
PiCANet [29] 035 031 040 072
DGRL [50] 043 037 051 074
CPD [55] 037 034 043 074
EGNet [69] 037 031 039 080
TSPOANet [32] 047 039 049 082
AFNet [12] 042 036 045 076
PoolNet [27] 042 032 041 076
BASNet [47] 037 032 047 083
GateNet [71] 038 031 037 071
CSNet [14] 033 . 037 073
LDF [54] 034 028 034 067
MSI-Net [37] 034 029 037 071
ITSD [73] 035 031 041 071
VST [31] 037 030 037 067
SDC [25] 034 030 037 11
PoolNet-R+ [28] 040 034 039 068
PASNetrcs 1030 029 039 068

4.2.3 Ablation Study

We carried out several ablation studies to analyze the effect
of the various parameters for the proposed framework. M1
and M2 refer to experimentation in terms of data input i.e.,
including depth data features to predict the final saliency,
provided in Table 1. M 3 refers to the effect of the proposed
pyramidal attention block, where visual qualitative results
are presented in Figure 4, and detailed quantitative ablation
results of various models are given in Figure 5. Next, we
provide our analysis.

Original vs. Synthetic Depth: Basically, the proposed
model processes only RGB input, where in some cases, we
integrated depth data to see the effect on output predictions.
Depth data for sure increases the smoothness of saliency
prediction, and hence it improves the performance (see Fig-
ure 4). Firstly for M1, we used the original depth data
provided in RGB-D datasets and achieved excellent perfor-
mance compared to SOTA and other variants of our model,
but it comes at the cost of depth data dependency. Next,
for M2, we generated depth from the input RGB image
and achieved a comparable decrease in performance against
M1, but still, this model outperformed SOTA models of its
kind. In the case of NJUD2K and SIP datasets, M 2 has bet-
ter performance due to noise in the original depth, as shown
in Figure 4. Although our RGB-D methods have a lower
dependency on depth features, the saliency prediction per-
formance is still adversely affected by noise or improper
depth information.

Effect of Proposed Pyramidal Attention (F,): To ana-
lyze the impact of the proposed pyramidal attention block

features performance, we exclude P, from PASNet named
as M3. It is observable from Figure 5 that the error rates
significantly increase due to the non-effective feature rep-
resentations directly acquired from ViT and CNN networks
without post-enhancement using FP,. The pyramidal atten-
tion block reduces the error rates by an average of 4.525%
on four RGB-D datasets.

010 | L | | | | |
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. = %O .
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Figure 5. Error rates of ablation studies conducted using RGB-D
datasets.

5. Conclusion

In this paper, we rethink RGB and RGB-D SOD from a
new perspective, employing multi-level CNN and pyrami-
dal attention features in the encoder. Our method is appli-
cable to RGB and RGB-D SOD, where we acquire a sin-
gle RGB input, estimate its depth, and fuse depth features
with the RGB model to enhance saliency prediction results.
Moreover, our proposed decoder architecture fuses encoder
features at multi-levels and gradually upsample to predict
saliency maps with refined edges and focus on the essential
parts of the input image. To the best of our knowledge, we
are the first to eliminate the acquisition of multiple inputs
for RGB-D SOD and achieved state-of-the-art results over
both RGB and RGB-D SOD datasets.
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