
Doppelgänger Saliency:
Towards More Ethical Person Re-Identification

Brandon RichardWebster*, Brian Hu*, Keith Fieldhouse, Anthony Hoogs
Kitware, Inc.

1712 Route 9, Suite 300, Clifton Park, NY 12065
{brandon.richardwebster, brian.hu, keith.fieldhouse, anthony.hoogs}@kitware.com

Abstract

Modern surveillance systems have become increasingly
dependent on artificial intelligence to provide actionable in-
formation for real-time decision making. A critical question
relates to how these systems handle difficult ethical dilem-
mas, such as the re-identification of similar looking indi-
viduals. Potential misidentification of individuals can have
severe negative consequences, as evidenced by recent head-
lines of individuals who were wrongly targeted for crimes
they did not commit based on false matches. A computer
vision-based saliency algorithm is proposed to help identify
pixel-level differences in pairs of images containing visu-
ally similar individuals, which we term “doppelgängers.”
The computed saliency maps can alert human users of the
presence of doppelgängers and provide important visual ev-
idence to reduce the potential of false matches in these high-
stakes situations. We show both qualitative and quantitative
saliency results on doppelgängers found in a video-based
person re-identification dataset (MARS) using three differ-
ent state-of-the-art models. Our results suggest that this
novel use of visual saliency can improve overall outcomes
by helping human users in the person re-identification set-
ting, while assuring the ethical and trusted operation of
surveillance systems.

1. Introduction
Despite the widespread use of surveillance technologies,

recent headlines have begun to highlight some of their po-
tential harms. One prominent example is Robert Williams,
who was wrongly arrested for a crime he did not com-
mit based on facial recognition software that incorrectly
matched him to a different individual [24]. This was one
of the first known cases where technology misidentified an
individual, with real negative consequences for Williams
and his family. He is now suing the Detroit police de-

*denotes equal contribution

Doppelganger pair

Figure 1. Example doppelgänger saliency. Image regions that dif-
fer between the two individuals (e.g. face, shirt logo, pants, and
shoes) are highlighted in green. For illustration purposes, colored
arrows pointing to corresponding image regions are shown. Note
that a region does not have to be highlighted in both images to be
considered a difference. In a full person re-identification system,
the user can view the highlighted regions to quickly spot visual
differences in the doppelgänger pair. Figures best viewed in color.

partment for damages, while advocating for greater trans-
parency about the use of such technologies in policing ef-
forts. Unfortunately, additional cases of wrongful arrest and
imprisonment due to false facial recognition matches have
also been reported [23].

Modern surveillance systems increasingly rely on arti-
ficial intelligence (AI), specifically computer vision, for
their automated reasoning capabilities. Given access to
large amounts of training data, machine learning algo-
rithms can learn to accurately (although not perfectly) re-
identify individuals based on either face or whole-body im-
ages. This has resulted in the exponential growth of the
field of biometrics, spurring new research in areas such as
face recognition [4, 5, 31, 39] and person re-identification
(ReID) [22,30,36,53]. Typically lagging behind this work is
research addressing the ethical concerns of such technolo-
gies, and how to best ensure their appropriate and trusted
operation. More recently, several works have tried to tackle
ethical issues of using these types of technologies [7,41,42].

Ethical AI studies ethical considerations in the design
and use of AI systems [15,19,47,51]. Closely related to the
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Figure 2. Four example tracklets from the MARS dataset [59] illustrate naturally occurring doppelgängers. Tracklets A and B are fairly
similar: both individuals are wearing white shirts, shorts, and glasses, and both have dark hair. However, they have shirt logos that differ
in color/style, and one pair of shoes is white while the other pair is black. Tracklets C and D represent a pair of individuals that are almost
indistinguishable: same shirt, same shorts (short of lighting differences), both have backpack straps, and both have dark hair. There is only
one strong visual difference at this resolution — the shoes are different in type (sandals vs. athletic shoes) and color (black vs. tan).

field of ethical AI is explainable AI (XAI). Explainable AI
is a set of tools and resources that seeks to provide human-
interpretable explanations of AI models [17,45]. In the spe-
cific case of surveillance applications, human-machine in-
teraction is often critical– the machine generates a set of
potential match results and a human user must adjudicate
these results. However, the person ReID algorithms used
are typically “black boxes,” which provide users little in-
sight into how they arrived at their final output decisions.
In high-stakes situations such as these, there is a need for
XAI tools that can help address the interpretability, trace-
ability, reliability, and governability of these systems [6].
This will provide users and model developers the ability to
diagnose model failure modes or inherent biases in the un-
derlying data used to train such models, while also poten-
tially improving model operation and ensuring the trusted
and responsible use of models.

In this paper, we examine the use of saliency maps, a
form of visual XAI, to help users distinguish between vi-
sually similar individuals which we term “doppelgängers”
(Fig. 1). These saliency maps provide important informa-
tion to users when adjudicating potential matches identi-
fied by the system, highlighting salient visual differences
in pairs of images that can support ReID decisions. This
additional information can help to reduce the uncertainty
associated with high-stakes ReID and improve the overall
operation of the system. We make the following contribu-
tions in our work:

• We develop a public benchmark of pairs of natu-
rally occurring, visually similar individuals (i.e., dop-
pelgängers), and use this to assess different models and
their associated explainability.

• We apply a novel form of classification-based saliency
to highlight pixel-level differences in pairs of images
containing visually similar individuals, which can help
human users avoid false matches in high-stakes ReID.

• We quantitatively evaluate the quality of the generated
saliency maps using an automated set of causal met-
rics that measures the impact of the identified salient

regions on downstream model ReID of individuals.

2. Related Work
Person Re-Identification (ReID). Person ReID seeks to
accurately identify individuals over time and across various
environmental changes such as different camera views, in-
door/outdoor settings, etc. Research in this area has increas-
ingly made use of deep learning algorithms, which learn to
classify individuals based on large labeled training datasets.
Examples of commonly used person ReID datasets in-
clude CUHK-03 [32], Market-1501 [60], MARS [59], and
MSMT-17 [55]. These datasets typically contain on the or-
der of hundreds to thousands of unique identities, and range
from cropped single-image views of different individuals to
video-based tracklets of individuals across multiple frames.

Person ReID is a challenging task due to many factors,
including occlusion, misaligned frames, and the presence of
similar-appearance identities. Example tracklets from the
MARS dataset [59] containing visually similar individuals
are shown in Fig. 2. Traditional person ReID approaches
operate on single images and largely make use of convo-
lutional neural networks [22, 30, 36, 53]. More recently,
person ReID models that make use of video-based infor-
mation have also been proposed, with the ability to better
model the appearance and background surroundings of in-
dividuals over time [2,14,21,54]. Although the focus of our
current work is on appearance-based modeling, other work
has explored using additional forms of information such as
gait [40, 49] or soft biometric fusion [18, 35, 52].

More recently, there has also been research on incor-
porating forms of attention or saliency as part of the un-
derlying person ReID algorithm. This includes work that
uses forms of attention that learn to highlight relevant im-
age regions for matching either during training or at test
time [9, 33, 34, 58]. These attention mechanisms help the
model focus on relevant image features for each iden-
tity, while removing potential confounds such as the back-
ground, occlusion, or multiple individuals in a given frame
that often naturally occur in datasets. These approaches can
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Figure 3. Model training and saliency generation. (Left) Tracklets A and B are used as input to a fixed feature extractor to generate
chip-level features. A binary classifier is trained on these features to predict the probability of a chip belonging to tracklet A or B. (Right)
A representative chip from each tracklet is fed into the saliency generator provided by the Explainable AI Toolkit (XAITK) [26], which
outputs the final “differences” saliency. At a high-level, the saliency generator masks out regions of the input image and inputs those
masked images into the trained model and classifier. The computed output probabilities are then weighted-averaged to identify salient
regions in each chip that represent the strongest visual differences between the two identities (shown overlaid as green regions).

often provide a basic form of interpretability that is intrinsic
to the model, although other forms of post-hoc explainabil-
ity also exist for evaluating models that have already been
trained. Examples of these methods will be described in
more detail in Section 2 below.
Ethical and explainable AI. Towards this end, there is also
work on ethical and explainable AI (XAI). More broadly,
ethical AI focuses on the ethical development and use of AI
technologies. Ethical AI touches upon the areas of research,
social concern, and public policy, making it rather unique in
the field of AI. Some of the most infamous cases are gender
and race biases in face recognition systems created by ma-
jor internet companies [7,41,42]. Recently, the Department
of Defense also released several ethical principles related to
the development of AI technology: responsible, equitable,
traceable, reliable, and governable [6]. XAI can be consid-
ered a subset of ethical AI, and seeks to provide methods
to help users better understand and appropriately trust AI.
XAI is critical in high-stakes situations such as autonomous
driving, criminal justice, and healthcare [12, 25, 44], where
the outputs of the model can negatively impact humans and
need to be reliable and trustworthy.

Explanations of AI models typically fall into two differ-
ent categories based on their scope and mechanism. Lo-
cal explanations provide interpretations of individual exem-
plars or data points (e.g. images), while global explanations
seek to explain models at the entire dataset level. Explana-
tions can either be white-box or black-box based on how
much access to the underlying model being explained is
required. Black-box methods are model agnostic and can
be applied more generally since they only require access

to the inputs and outputs of a model. In contrast, white-
box methods often require the computation of model gra-
dients which require knowledge of the model’s internal ar-
chitecture and parameters. In addition to post-hoc expla-
nation methods, models can also be made more inherently
interpretable [12, 44]. Recent techniques include prototypi-
cal part networks [8] and concept bottleneck networks [29],
where models are made more interpretable via learning of
“prototypical” examples or specialized loss functions.

Visual saliency. We focus specifically on the use of vi-
sual explanations in the form of saliency maps, which are
heatmaps that provide users insight into image regions the
model paid attention to when making its output prediction.
The majority of XAI techniques involving saliency have
been developed for image classification tasks [16,43,46,57].
Zeiler and Fergus [57] proposed a black-box method for
computing classification-based saliency maps using occlu-
sion. By sliding a box across the image, they measured
changes in classification confidence to indicate salient im-
age regions that contributed most to the model’s classifi-
cation. Related to this idea is work from Ribeiro et al. et
al. [43], which proposed local interpretable model-agnostic
explanations (LIME). The model uses super-pixels pre-
computed on the input image, which define correlated re-
gions of the input, and measures the influence of remov-
ing these super-pixels on the classification model through
a surrogate linear model. In contrast to these black-box
approaches, methods can also use the internal activations
and associated gradients of the model for a given predic-
tion, such as Grad-CAM [46]. These methods reveal coarse
input regions which are associated with the output predic-
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Figure 4. The representative chip for each identity is used in exactly two doppelgänger pairs through a cycle computation. A cycle is
generated by treating the NxN feature similarity matrix as a fully-connected graph (N=5 here for illustration purposes). Since the edge
weights of the fully-connected graph contain the distance between each possible pair, we can compute a cycle with the minimum possible
sum of weights. The selection of doppelgängers is described in Sect. 4. Note, while this figure contains people with mostly white shirts, the
full set of doppelgängers contains variance in clothing attire — generally, the cycle groups people with similar colored clothing or clothing
style such as shorts, pants, dresses, hats, etc.

tion of the model, and are relatively fast to compute due
to their requirement for only a single forward and backward
pass through the model. Finally, Fong and Veldadi [16] pro-
posed a masking procedure to find meaningful perturbations
of the image that influence model predictions. They did this
by casting the problem as an optimization problem, with a
process to find masks constrained by size over the input im-
age. More recently, there has also been interest in creating
explanations for other image understanding tasks, such as
object detection [38] and image similarity [11,13,27,48,56].

3. Methods
Consider a ReID scenario with two separate cropped

video clips each containing one individual, with each rep-
resented as a sequence of chips called a tracklet. Given a
representative chip from each of the two tracklets which
best approximates a frontal view of the individual in the
tracklet, we compare the two representative chips for visual
differences which can be used to differentiate the pair of in-
dividuals. Given any model that has been trained for person
ReID and that can produce person-specific features, we pro-
pose the following method to produce saliency maps which
highlight these discriminative image regions in the pair of
representative chips.
Tracklet Definition. A tracklet is a sequence of chips that
have been cropped to an individual that was tracked across
the full-frame video. A tracklet can be variable length and
from any camera. In the case of doppelgängers, we assign
one tracklet, A, to represent one of the two doppelgängers,
and another tracklet, B, to represent the other doppelgänger.
Examples of tracklets that represent doppelgänger pairs can
be seen in Fig. 2. Notice that doppelgängers can differ in

degree of visual similarity, and that not all pairs that are con-
sidered doppelgängers by both models human observers.
Model Definition. In the context of person ReID, we con-
sider a model that takes as input two tracklets and predicts
the probability of whether or not the identities match. In the
doppelgängers case, two individuals are so visually simi-
lar that the prediction of whether the two tracklets are of
the same person or not is considered somewhat unreliable.
Thus, a model for doppelgänger saliency requires more than
a simple binary decision, but instead a prediction of which
tracklet, A or B, the selected chip belongs to. There are
numerous model definitions that could work here, but three
criteria must be met: 1) the end-to-end model must pre-
dict binary-classification probabilities, 2) the feature gen-
erator must be pre-trained, and 3) the binary-classification
layer/step must be retrainable for each doppelgängers pair.

Before we generate saliency for two representative chips
of tracklet A and tracklet B, we must re-train the classifi-
cation portion of the model on tracklet A and tracklet B.
One reason and motivation for the use of a video-based per-
son ReID dataset is to have access to a sufficient number of
chips for each individual to train this classifier (instead of
a single chip per individual). The objective is to force the
binary classifier to learn the descriminative features of only
tracklet A and tracklet B (instead of more general features
useful for the overall person ReID task) — here a slight
over-fitting of the classifier is desired in order to learn pixel-
level semantic differences between tracklet A and tracklet
B. A pipeline of the entire model and saliency generation
procedure can be seen in Fig. 3.
Saliency Definition. Assume there exists a function F that
fits the previously given model criteria, which predicts the
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Figure 5. Example saliency results demonstrating the proposed method. The first four pairs of doppelgänger saliency are from a trained
ReID model and the last pair is a sanity check with training data randomization (see Sect. 4 for details). The first four pairs highlight at
least one key difference, in order from left to right: missing logo, shorts instead of dress, different shoes, and different face. The fifth pair
shows more diffuse saliency due to the data randomization, showing that the saliency maps represent the model’s training.

probability pc an input chip x belongs to class c:

Fc(x) =

{
pA, if c = A
pB, if c = B

(1)

where pA is the probability x belongs to tracklet A and pB
the probability that input image x belongs to tracklet B. Be-
cause F is a binary classifier, pA + pB

!
= 1.

Given an input image x of an individual, FA(x) and
FB(x) are then the predicted probabilities for classes A and
B by the model F. We define x′ to be a perturbed version
of the original image x. This perturbation is usually done
with some form of occlusion, using a pixel-wise multipli-
cation of image x with a mask of the same size with values
between 0 and 1. These occlusions remove important image
features from a particular region of the image (Fig. 3). For
example, x′ might be the image after removing the face of
the individual in the image. In this case, if the individual
belonged to class A, the predicted probability for class A,
FA(x

′), might decrease as a result of the perturbation.
By repeating these perturbations many times and record-

ing the change in the predicted probabilities for each iden-
tity A and B, we can compute a weighted average of the
masked regions and obtain a saliency map corresponding
to each class (Figure 3). Intuitively, image regions that are
highlighted by the saliency map are critical for the model’s
prediction (i.e. removing them impacts the predicted class
probability). In other words, the region of pixels that has
the strongest signal is also the region which most strongly
discriminates it from its doppelgänger counterpart: if image
x initially belongs to tracklet A, the strongest signal / region
of pixels is the region that differs most from tracklet B, and
vice-versa. This is what we call doppelgänger saliency. In

our subsequent results, we compute saliency maps for each
representative chip in each doppelgänger pair.

4. Experiments

MARS dataset. The MARS (Motion Analysis and
Re-identification Set) dataset is a large-scale, video-based
person ReID dataset collected from six near-synchronized
cameras [59]. The dataset consists of 1,261 different pedes-
trians, spanning more than 20,000 tracklets. Each of the
videos contains significant variations in pose, color, and il-
lumination, along with the resolution of different pedestri-
ans, each of whom were captured by at least two cameras.
Moreover, the dataset also contains 3,248 distractor images
for testing the robustness of person ReID algorithms.

Saliency is difficult to apply across a sequence of images,
particularly in the case of doppelganger saliency. In addi-
tion, if every pair of possible chips were used from MARS,
the number of saliency maps that would need to be gener-
ated would become intractable. As such, for the purposes of
demonstrating the utility of doppelganger saliency, we se-
lected a subset of the MARS dataset to highlight the utility
of the method. First, for each identity one track is manu-
ally selected to represent that identity — distractors are ex-
cluded. The track was selected to be frontalized in order to
capture as much detail in a person as reasonably available.
Second, since each tracklet requires a representative chip
from which the saliency maps will be generated, we manu-
ally selected one representative chip for each of those track-
lets. In all there were 616 tracklets representing 616 iden-
tities with a total of 616 representative chips. Frame selec-
tion was done independent of cameras. Lastly, the MARS
dataset includes a small number of children in the frames —
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all children were excluded in our manual selection process.
Models. We selected three ReID models which vary in
model architecture, rank-1 accuracy, and publication date
to demonstrate the generalizability of our proposed method.
Working from oldest to newest, which is also the ordering
by rank-1 accuracy, we have a ResNet-50 [20], a DenseNet-
121 [28], and a PCB [50] person ReID model. At this point
in time, ResNet-based models are the classic “go to” of the
deep-learning models as it is known for being able to train
quickly with what is still considered extremely deep neu-
ral architecture layers. ResNet introduced shortcut residual
connections which reformulate layers as learning residual
functions instead of unreferenced functions. Effectively, He
et al. [20] demonstrated that ResNet was easier to optimize
and could gain accuracy from the considerably increased
depth while also remaining computationally less complex
than its predecessor network structures.

With the innovation of residual connections changing the
game in terms of network depth and optimization efficiency,
Huang et al. [28] introduced a variation on ResNet that pro-
vided a substantial improvement in the flow of information
through a network. At the cost of the great depth residual
networks could achieve, DenseNet structure connected ev-
ery previous layer to every future layer all the way from the
input layer to the final feature layer. This network structure
allows for each layer to have access to the the output infor-
mation of every layer before it. A consequence of this is
that the reuse of information allow for more compact mod-
els while maintaining higher performance.

Our final model, Part-based Convolutional Baseline
(PCB), is a rework of neural architectures designed specifi-
cally for persons, where-as the two were originally based on
object recognition. PCB can take any network without the
fully-connected layers as the backbone, but in the model un-
der consideration ResNet-50 is used as the backbone. The
backbone’s global pooling layer is removed and replaced
with PCB to spatially down-sample the resulting feature ac-
tivation tensors into column vectors which each get turned
into classifiers. However, as is the case for all three of our
networks, the final output layers are removed for both the
purposes of training them into ReID models as well as gen-
erating doppelgänger saliency.

Adapting the ReID trained version of each of these mod-
els is simple. Each of the ReID classification layers is
removed such that only a feature representation remains
as output. The weights are then frozen in place so the
model does not change from the original dataset that it was
trained upon (i.e. Market-1501 [60]). For every new dop-
pelgänger pair, the associated tracklets (one for each per-
son) are passed onto the model and features are extracted.
A binary support vector machine (SVM) classifier is trained
to predict the probabilities that each feature came from one
of the two tracklets. The SVM is retrained on every pair in

order to force the learned SVM to fixate on differences in
the tracklets. One might consider that more data is better
because it usually allows for better generalization, however
in this case too much generalization may prevent the SVM
from fixating on key differences. Likewise, too little data
can cause the SVM to only fixate on individual pixels. In
practice, we use the entire length of the associated tracklets
as no “perfect” number has been determined.
Doppelgänger pairs Even with our full set of tracklets and
representative chips, not all combinations of these chips will
be doppelgangers. Instinctively, one might consider taking
the pairs with the minimal Euclidean distance in the person
ReID model’s feature space, however this runs into an issue
where one representative image can be selected in many of
the pairs (this is a known issue and described in Dodding-
ton’s Zoo [10]). Instead, what we want is to ensure that
every representative chip is used at least once and select
the closest chips by Euclidean distance. In theory, a per-
fect selection would be to select a cycle in the graph using
the minimum some of distances, unfortunately this is also
known as the traveling salesman problem and NP-hard.

To get this approximated selection, we use an open-
source implementation [3] of Ant Colony Optimization to
get a fast approximation of a cycle. With the computed cy-
cle, every representative chip is selected to be in exactly
two pairs. Finally, since this process produces a cycle that
is specific to each model, we take the average similarity ma-
trix across our three selected models first and use then used
the averaged similarity matrix to select the cycle. We call
this the global set of doppelgängers. A subset of the global
set of doppelgängers can be viewed in Fig. 4, which also
describes the cycle computation process.
Saliency Generation. To facilitate the masking of the input
doppelgängers pairs and generation of saliency masks for
each selected model, we use an off-the-shelf publicly avail-
able Python package named xaitk-saliency, which is part of
the larger Explainable AI Toolkit (XAITK) [26]. The xaitk-
saliency package — hereby referred to as xaitk — imple-
ments a class of explainable AI (XAI) algorithms known as
saliency algorithms. In our person ReID paradigm, a ReID
model + trained SVM operates on a representative input
chip to produce a binary classification probability. Saliency
algorithms build on this to produce visual explanations in
the form of saliency maps as shown in Fig. 5. To ensure
the validity of the computed saliency methods, we also per-
formed a data randomization test as proposed in [1], where
we randomly shuffled the labels of the data used to train
the classifier model (which should result in chance perfor-
mance) and and re-computed saliency maps. We found that
our proposed saliency algorithm passed this sanity check.
Evaluation Protocol. To quantitatively evaluate the effi-
cacy of doppelgängers saliency, we use two automatic eval-
uation metrics, deletion and insertion as proposed in [37].
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Figure 6. An example sequence of insertions (top) and deletions (bottom) showing the steps used in the evaluation metrics as described in
Sect. 4. The plot on the right shows the corresponding curves for such insertion (red) and deletion (green), which can be quantified by an
area under the curve (AUC). Our reported results are averages across all image pairs.

The deletion metric seeks to remove input pixels that will
force the model to decrease its predicted probability of the
predicted class. The insertion metric is the opposite to the
deletion metric in that it measures the increase in the prob-
ability of the predicted class when pixels are slowly intro-
duced to the input image. In both metrics, a sharp change
in fraction of pixels will cause either a higher or lower area
under the probability curve. A better score is higher AUC
for insertion and lower AUC for deletion. The background
image used for both metrics is gray, which is set to the mean
channel-wise values of the pretrained models.

In the person ReID setting, these metrics measure how
useful the image regions identified by the saliency algorithm
are for distinguishing between doppelgängers. For example,
if the logo on the shirt of one of the individuals is the critical
image feature that helps distinguish him or her from a visu-
ally similar individual, saliency should be focused on that
logo. When masking this logo, the ability of the classifica-
tion model to accurately distinguish between doppelgängers
should decrease, and this should be reflected in better inser-
tion and deletion scores. A complimentary figure showing
example insertion and deletion results can be seen in Fig. 6.

To compare both the quantitative and qualitative results
with a control sample, we performed a second set of experi-
ments by where we randomly shuffled the training labels for
chips in tracklets A and B. This acts as a data randomiza-
tion test, which effectively changes the SVM optimization
and produces saliency maps that are effectively “random”
but still plausible. These “random” saliency maps were then
used to alter the order in which pixels would be inserted or
deleted. This creates a mismatch between the SVMs that
were trained with proper class labels and the saliency maps
that were generated with random class labels, allowing a
sanity check of the proposed saliency method [1].
Qualitative Results. Generally, the visually quality of the
doppelgängers saliency for the trained models is in many
cases quite good. We see that differences in logos on
shirts, hand bags, clothing colors, and shoes get highlighted

with a strong signal. However, we often also see substan-
tial amounts of non-person regions being highlighted (e.g.,
background). In a full person ReID system, this could be
mitigated by using a person detector, so this is less conse-
quential than one would initially consider. From a practical
point of view within a full ReID system, the proposed “dif-
ferences” saliency only needs to provide one usable differ-
ence in a pair for a user to determine if the pair is same or
different. One area of highlighting that we would have liked
to see is faces, but in most cases this is ignored. There are
two main reasons that this could be: 1) the faces are low res-
olution as a result of the tracklet capture process described
in the the MARS dataset, and 2) the ReID models are fix-
ating on clothing colors, as demonstrated in Fig. 4 which
contains a sub-cycle of the full global doppelgänger cycle.

We also visualize one random saliency map from the
control experiments for a doppelgänger pair in Fig. 5 (5).
This pair can be compared to the trained saliency presented
in Fig. 1. Generally, random saliency is more diffuse and
more background/non-person context is highlighted com-
pared to the trained saliency. That said, this method of pro-
ducing “randomness” in the saliency is meant to preserve
some locality of regions, and you can see that occurring in
the logo of the two individuals in the doppelgänger pair.
When training the SVM for this pair, the model still picks
up on the logo being different across the chips despite the
shuffled class labels. We can see this region highlighted in
the random saliency. In contrast, more course-grained fea-
tures such as the shoe color highlighted in Fig. 1 are lost.

Quantitative Results. To perform a quantitative saliency
analysis, we computed the insertion and deletion scores on
each of the three models using positive saliency. Positive
saliency by definition is a region which increases the con-
fidence the representative chip belongs to the tracklet A or
B. We would expect that when inserting pixels with strong
signal strength, we would see a sharp rise in the class prob-
abilities, thus also a higher aggregate insertion score. The
reverse is also true: pixels with strong signal should have a
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Trained Random
Model Reference Rank-1 Insertion ↑ Deletion ↓ Insertion ↑ Deletion ↓
PCB Sun et al. (2018) [50] 92.64% 0.532 0.468 0.501 0.499
DenseNet-121 Huang et al. (2017) [28] 90.17% 0.547 0.450 0.499 0.501
ResNet-50 He et al. (2016) [20] 88.84% 0.538 0.458 0.498 0.497

Table 1. Three selected person ReID models which vary in architecture, rank-1 accuracy, and publication date. Each model was trained and
evaluated on the Market-1501 dataset [60] for the reported rank-1 accuracy. Models are ordered by rank-1 score from highest to lowest.
Insertion and deletion scores, as described in Sect. 4 and Fig. 6, were computed on the MARS dataset [59]. An arrow next to the insertion
and deletion column header indicates the direction of the better score (i.e., higher insertion scores and lower deletion scores are better).

sharp decrease in predicted probabilities when removed and
thus lower aggregate deletion scores. Positive saliency also
has a counterpart negative saliency, which by definition is a
region that reduces the confidence for a given class. So if we
were to add the negative saliency regions, we do not expect
them to increase the insertion score. For this reason, inser-
tion and deletion scores were only generated using positive
saliency (mirroring the original RISE paper which proposed
these metrics [37]) even though visualizations utilize both
positive and negative (i.e., all saliency figures in this article
display both positive and negative saliency).

The chosen models showed varying performance that did
not always correlate with their insertion and deletion scores,
as shown in Table 1. Although the PCB model achieved
the top rank-1 performance on Market-1501, its insertion
and deletion scores were slightly worse than the DenseNet
model. This suggests that the highest performing model
may not be the most explainable one, i.e., the model that
best generates highlighted regions that can effectively be
used by someone in a full ReID system to differentiate be-
tween doppelgängers. To confirm that our saliency maps
represent the underlying models, we can also compute in-
sertion and deletion scores under the control case of data
randomization. In the control case, what we would expect
to see is both the insertion and deletion scores to degrade
relative to the trained model’s metric; insertion should de-
crease, and deletion should increase. Our results show that
insertion scores decrease and deletion scores increase for
all models under this data randomization control, suggest-
ing the proposed saliency method passes one of the san-
ity checks and is indeed sensitive to model training. This
change in insertion/deletion scores between the control and
our baseline is a good quantitative indicator that our trained
models are successfully selecting discriminative features to
be highlighted in saliency and usable for real-life ReID.

5. Discussion
A limitation of the current work is that we did not vali-

date our approach with actual human users in a real-world
deployment scenario due to time and resource constraints.
One possibility would be to design an experiment that al-
lows human users to adjudicate pairs of doppelgängers with
and without saliency, and measure their overall ReID per-

formance under these two conditions. This would allow us
to better quantify the utility of the explanations in the person
ReID setting and how this scales with task difficulty. With
the addition of human annotations, we could also validate
whether or not the regions indicated by the saliency maps
are similar to those that humans would use to distinguish
between similar identities instead of our current automated
evaluation approach, which is only a proxy.

The current saliency algorithms also operate on a per-
frame basis, ignoring potential temporal information that is
readily available in video data of tracklets of people that
could further be used to help disambiguate different indi-
viduals. As such, we also only use a single chip from each
tracklet of individuals, making it critical to have frontal and
unoccluded views of individuals as input to the algorithm.
Future work could study how to leverage the rich spatio-
temporal information present in tracklets of detected indi-
viduals, both in the form of better ReID algorithms as well
as corresponding explanations of these algorithms.

Finally, the proposed saliency technique may also be
more broadly applicable to the set of computer vision prob-
lems known as fine-grained visual recognition. In this area
of research, algorithms must learn to make use of the small
differences between classes of very similar objects (e.g. dif-
ferent species of birds or visually similar faces). Utilizing
our saliency method in these paradigms may also reveal
the features used by models to distinguish between visu-
ally similar classes, helping to limit any potential bias and
improve the quality of models in data-limited regimes. As
such, we believe the techniques proposed here may be of
broad interest to computer vision communities at large.
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