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Abstract

Documents are central to many business systems, and in-
clude forms, reports, contracts, invoices or purchase orders.
The information in documents is typically in natural lan-
guage, but can be organized in various layouts and formats.
There have been recent spurt of interest in understanding
document content with novel deep learning architectures.
However, document understanding tasks need dense infor-
mation annotations, which are costly to scale and general-
ize. Several active learning techniques have been proposed
to reduce the overall budget of annotation while maintain-
ing the performance of the underlying deep learning model.
In this paper, we propose OPAD, a novel framework using
reinforcement policy for active learning in content detec-
tion tasks for documents. The proposed framework learns
the acquisition function to decide the samples to be selected
while optimizing performance metrics that the tasks typi-
cally have. Furthermore, we extend to weak labelling sce-
narios to further reduce the cost of annotation significantly.
We propose novel rewards to account for class imbalance
and user feedback in the annotation interface, to improve
the active learning method. We show superior performance
of the proposed OPAD framework for active learning for
various tasks related to document understanding like lay-
out parsing, object detection and named entity recognition.
Ablation studies for human feedback and class imbalance
rewards are presented, along with a comparison of annota-
tion times for different approaches.

1. Introduction

Documents are a key part of several business processes,
which can include reports, business contracts, forms, agree-
ments, etc. Extracting data from documents through deep

networks have recently started gaining attention. These
tasks include document page segmentation, entity extrac-
tion or classification. Fueled by the availability of both la-
beled and unlabeled data, and advances in the computation
infrastructure, recently, a number of deep learning models
have been proposed for modeling complex tasks [12,23,39].
The promising results from this research direction moti-
vated development of several deep learning models which
show significant performance improvements on these tasks
when trained on a large amount of labelled data [35,53,55].
However, deployment of these models requires consider-
able effort and cost to annotate unlabelled data especially
for document tasks because of requirements for dense an-
notations, e.g. annotating page structures with components
like title, table, figures or references. Thus, there is a need
to explore methods to optimize annotation budgets to accel-
erate the development of document analysis models.

Several approaches have been proposed in the domain of
semi-supervised learning [56], unsupervised learning [52],
few-shot learning [51], active learning [42] etc. . . to over-
come the limitation of availability of labeled data. Each
of these approaches have their own objectives incorporated
in either modeling or data annotation or both for achiev-
ing superior performances in a limited annotated data setup.
Among these, our motivation for using active learning is
two-folds: (1) active learning bridges the gap in the model
by querying samples in the data space, for which the model
does not have enough information [42], (2) the active learn-
ing approaches seek to learn higher accuracy models within
a given annotation cost, through optimizing data acquisi-
tion, which align well with our objective of optimizing an-
notation costs. Recent methods for pool-based active learn-
ing scenario, the query for annotations selects a subset batch
of data samples for the oracle (i.e. the annotator). Pool or
batch-based active learning methods are more scalable than
querying single data sample per learning cycle [20]. Most of
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Figure 1. The proposed active learning-based interface, OPAD, enables intelligent annotation functionalities like optimized selection of
documents for layout detection task, annotating instances and text with boxes (strong labelling) or verification and correction of annotations
(for weak labelling scenarios). Document is cropped for better visualization

the active learning work [2, 42] formulate acquisition func-
tions as information theoretic uncertainty estimates. While
uncertainty-based methods work well for tasks like classi-
fication [17, 49], where a single annotation is required per
data sample, generalizations to document tasks such as page
segmentation and named entity recognition, which require
multiple annotations per selected data sample, have been
scarcely explored. This is because methods to aggregate
uncertainties over various entities present in a data sample
are not well developed [7,41]. Recent techniques have been
proposed to obtain a better acquisition function for active
learning in these tasks [29,31]. However, these methods as-
sume highly task-specific heuristics, and hence can not be
generalized across different content detection scenarios.

In addition to active learning, in particular for dense an-
notation tasks in documents, weak learning can be an ef-
fective approach to reduce annotator’s efforts [36, 37, 50].
When there are multiple entities to be annotated in a data
sample, weak learning reduces the annotation effort, either
by providing faster variations of annotation techniques [37]
or simply asking the annotator to verify the model predic-
tions [36]. However, there are very few works [8, 11] that
combine weak learning with active learning. Furthermore,
to the best of our knowledge, none of the works takes ad-
vantage of the annotator feedback (e.g. from annotator’s
corrections of detected instance boundaries) during an ac-
tive learning cycle.

In this work, we propose a policy-based active learning
approach, taking into account the complexities of aggregat-
ing model uncertainties in the selection of samples to be
labelled. We model the task of active learning as a Markov
decision process (MDP) and learn an optimal acquisition
function using deep Q-learning [34]. While several works
rely on reinforcement learning for learning an optimal ac-
quisition function [9, 22, 29, 31], they assume task-specific
representations of states and actions and hence are not gen-

eralizable across tasks. We further show that the proposed
method can be combined with weak labelling, reducing the
cost of annotation compared to strong labelling. Moreover,
we incorporate class imbalance and human feedback signals
into the design of MDP using suitable reward functions to
further improve the performance of our approach.

To summarize, the major contributions of our work are
as follows:

• We propose a policy-based task-agnostic active learn-
ing approach for complex content detection tasks, lay-
out detection and named entity recognition in docu-
ments.

• We report that the proposed approach is generalizable,
through demonstrating the performance of our active
learning setup on varied detection tasks.

• We investigate the effectiveness of incorporating class
balance and human feedback rewards in improving the
active learning policy.

• We demonstrate the advantage of the proposed ap-
proach in reducing the costs of annotation in aforemen-
tioned complex detection tasks.

Throughout the remainder of the paper, we explain the
proposed concepts, models, configurations, and discussions
from the perspective of the layout and object detection, and
named entity recognition tasks.

2. Related Work
Document content analysis has been studied extensively

along several dimensions such as document classification (
image [53, 54] or text [1, 38] or both [4, 25]), named en-
tity recognition in documents [32, 55], content segmenta-
tion [19, 35], document retrieval [10, 45, 48], layout analy-
sis [5] among many others. The availability of large scale
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labeled datasets of documents [21, 26, 27, 47, 58] led to
the advent of several state-of-the-art deep learning mod-
els which have significantly improved these tasks in a large
scale data setup. However, to the best of our knowledge,
there is very limited amount of literature which uses active
learning to optimize data annotation cost in a low resource
setting, specifically for document analysis tasks [6, 18].
Therefore, in this section, we discuss about works that deal
with general active learning policies, and active learning in
a couple of related well studied domains, image classifica-
tion, object detection and named entity recognition.

Active learning selects data samples with high uncer-
tainty in the model prediction, which can provide more in-
formation to the underlying model. Different works have
proposed different ways to compute model uncertainty [42].
While some methods depend on information theory for de-
signing acquisition functions [17, 24, 49], others rely on al-
ternative ways to approximate model uncertainty [13, 16].
Yoo et al [57] add a light-weight loss prediction module to
the prediction model to predict the loss for the unlabelled
samples, and use that as an uncertainty measure. Mayer et
al [33] use uncertainty measure to find the optimal sample
and query the data sample closest to the optimal sample.

For complex tasks such as object detection and named
entity recognition, recent works [7, 41, 44] have been pro-
posed to use uncertainty scores for the acquisition of sam-
ples. Most of these methods rely on aggregating the uncer-
tainties of various entities within a data sample using max,
sum or average functions [7,41]. Aghdam et al [3] proposed
a novel approach combining pixel-level scores to obtain an
image-level score for doing active learning for the task of
pedestrian detection task.

Several works have been proposed to incorporate rein-
forcement learning to learn an optimal acquisition function
for active learning. The objective of these approaches is to
model the active learning process into a Markov decision
process through defining and designing suitable represen-
tations for states, actions, and rewards [15, 22, 30]. Liu et
al [29] proposed an imitation learning approach for active
learning in tasks related to natural language processing, re-
lying on an algorithmic expert to find an optimal acquisi-
tion function. We differ from the work of Casanova et al [9]
on using reinforced active learning approach for image seg-
mentation, in terms of the generalize-ability of our approach
on various tasks. We also report the effectiveness of using
weak learning on top of policy-based active learning in con-
suming the budget with maximum efficiency.

3. Proposed OPAD Framework
In this section, we describe the proposed Optimized

Policy-based Active Learning Framework for Document
Content Analysis, OPAD. Figure 1 shows the interface
for OPAD, which enables various scenarios of detection

tasks for human annotators. The underlying algorithm for
OPAD is a Deep Query Network (DQN)-based reinforce-
ment learning policy, optimized for data sample selection
based on the performance metrics for the task. OPAD has
two stages - policy training stage and deployment stage. In
the policy training stage, OPAD is trained using simulated
active learning cycles to maximize performance on a vali-
dation set. While deploying, the trained policy is used to
make online batch selection for annotation. The overall for-
mulation for OPAD is described below.

3.1. Formulation

The underlying objective for policy training in OPAD is
to perform an iterative selection of the samples from an un-
labelled pool, Xu, which would maximally increase the per-
formance of the model being trained, Θ until the annotation
budget, B is consumed. In each active learning cycle, the
policy DQN Π [34] selects a batch of ncycle samples, which
are labelled, and added to the set of labelled samples Xl.
The detection model Θ is then trained for a fixed number of
epochs using the expanded set, Xl. The reward for the pol-
icy network for selecting the samples is the performance of
the underlying model Θ computed using a metric apropos
to the task (e.g. Average Precision for layout detection, and
F-score for named entity recognition) on a separate held-
out set, Xmet. The training of the policy Π is performed
through episodes of active learning.

Notations Description
Xtrain, Xval,
Xtest

Train, Validation and Test sets of a
given dataset

Xu, Xl, Xinit Unlabelled, labelled, and initial la-
belled sets

Xcand Candidate unlabelled examples for
an active learning cycle

Xmet, Xstate Metric calculation set, State repre-
sentation set

At, St, Rt Action, State and Reward at time t
Π, Θ Policy deep Q network and Predic-

tion model to be trained
M, B Memory buffer for Q learning, To-

tal budget for active learning
ncycle, npool,
ninit

Number of samples to be acquired
in one active learning cycle, Num-
ber of samples in a pool, Number
of samples labelled for initial train-
ing

Table 1. Notations used to represent various data splits and model
components.

We now describe various components of the proposed
policy-based active learning approach in details.
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3.2. Data Splits

Given a dataset D, we split the samples (or use the exist-
ing splits of the dataset) into Xtrain, Xval, and Xtest sets.
For the two stages of OPAD, the further splits are as follows.

During policy training stage We separate a set of sam-
ples Xmet along with their labels from Xtrain, which is
used for validating the performance of underlying model
Θ and computing rewards for training the policy DQN Π.
For the RL setup of the policy DQN, we use a held-out set
Xstate which is used together with Xcand later to compute
overall state representation. Note that, unlike [9], we do not
require labels for Xstate, which further reduces the annota-
tion budget. During this stage, we train the detection model
Θ on Xl, which is initialized with Xinit and populated with
samples from Xu as the active learning progresses. Here,
Xinit is a set with ninit randomly selected samples with
the corresponding labels for initial training of the model
Θ. Therefore, before the active learning process starts, Xu

equals Xtrain − {Xinit +Xstate +Xmet}, and Xl equals
Xinit.

During deployment stage We utilize the Xval set for
training the detection model Θ. We make this differ-
entiation from the policy training stage to ensure that
sample selection by the policy happens on an unseen
set. During this stage, we use the same terminology
Xinit, Xl, and Xu from the previous stage. However,
the ninit samples in Xinit set are selected from the
Xval set and therefore, at the start of the active learning
process Xu equals Xval − {Xinit}, and Xl equals Xinit.
We use the same set of examples for the state computa-
tion set Xstate. In this stage we do not require the Xmet set.

Though we have ground truth annotations available for all
the samples in all the three sets, to simulate the annotation
setup, we mask this data from both Θ and Π models and
utilize the labels as and when required.

3.3. Active Learning

[!h] [1] Input: Xtrain, budget B Output: Policy DQN,
Π, trained for querying the samples for annotation Ran-
domly sample examples from Xtrain to form Xstate and
Xmet sets. Initialize policy and target DQN Initialize mem-
ory replay buffer M convergence of DQN loss Initialize Θ
Randomly sample ninit from Xtrain − {Xstate + Xmet}
to form Xinit Initialize Xu to Xtrain − {Xstate +Xmet +
Xinit} Initialize Xl to Xinit Train the model Θ on Xl Com-
pute the performance metric on Xmet Consumption of bud-
get B Sample npool × ncycle number of samples from Xu

as candidates for labelling Xcand Compute state representa-
tion St using predictions of model Θ on Xstate and Xcand

Prediction 
model (Θ)

Unlabelled 
Set (𝒳u)

State Set 
(𝒳state)

Candidate 
Set (𝒳cand)

𝒳1
𝒳2

𝒳 ncycle

Metric 
Calculation 
Set (𝒳met)

Random 
Sampling

Reward,
Ｒt+1

State & candidate 
representation 

(St, Ct)

Policy DQN 
(𝚷)

Action (At)

Annotate the data samples

Labelled Set 
(𝒳l)

Update the 
labelled set

Retrain 
prediction 

model

1 2

3

4

5

6

7

Figure 2. Overview of the policy training in OPAD - (1) Candi-
date samples are chosen randomly from the unlabelled pool Xu.
(2) State representation is calculated using Xcand and Xstate,
which is then passed to the policy DQN Π to select the samples to
be annotated (3, 4 and 5). (6) The labelled set Xl is then updated
and the model Θ is retrained. (7) Finally, reward is computed us-
ing the set Xmet.

Conv1D(representation_dim, 512, 1)

Conv1D(256, 128, 1)

st
State Subset Representation

|state_subset| x representation_dim

Conv1D(representation_dim, 512, 1)

Conv1D(512, 256, 1)

Conv1D(256, 128, 1)

ct
Candidate Representation
npool x representation_dim

Linear(pool_size x state_subset, npool x 64)

Product

Q(st, ct)
Q-values corresponding to ct

npool - dimensional

Conv1D(512, 256, 1)

Linear(pool_size x 64, npool x 16)

Linear(pool_size x 16, npool)

State 
representation 

(St)

Figure 3. Architecture of the proposed Deep Query Network, Π
for the policy.

Select ncycle samples from Xcand using ϵ-greedy policy and
add it to Xl - Action At Retrain the model Θ on Xl Com-
pute the metric on the Xmet Compute the reward Rt+1 as
the difference in metric Re-do steps 14 and 15 - Next State
St+1 Add tuple (St, At, R+1, St+1) to the memory replay
buffer M Optimize policy DQN, Π Figure 2 shows an
overview of active learning (inner while loop at step 11 in
Algorithm 3.3) in a single episode of policy training. In
an active learning cycle, we select npool×ncycle number of
samples from the set Xu, which represent the candidates se-
lected for the current active learning cycle Xcand. The pol-
icy DQN Π computes Q-value for samples within each pool
containing npool samples, based on candidate set Xcand and
state representation set Xstate. The policy selection net-
work is optimized to maximize the reward, Rt:

Q∗(St,At) = max
Π

E[Rt+1|St,At,Π] (1)

The annotator then annotates the selected samples, and the
labelled set Xl is updated by adding these new samples.
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We then retrain the model Θ using the updated labelled set
and finally calculate the reward for the current cycle Rt by
measuring the performance of the model Θ on Xmet.

Rt+1 = Performancet,Xmet
− Performancet−1,Xmet

(2)
where Performance is measured in terms of AP metric for
layout and object detection tasks, and F-score for named en-
tity recognition task. Algorithm 3.3 summarizes the training
phase of the proposed approach.

3.4. Policy Training Stage

Policy Network Our policy network Π is a deep query
network, as shown in Figure 3. The underlying prediction
model Θ computes the representations ct and st from the
sets Xcand and Xstate respectively (details in Section 4.3).
The policy network then receives the two inputs st, and ct,
which we denote as the state representation St in Figure 3.
We pass the two representations through convolution lay-
ers, followed by vector product of state and candidate rep-
resentations. The final Q-value is obtained by passing the
combined representation through fully connected layers.

Policy Optimization The computed Q-value is used for
selecting ncycle samples at each step. For this, a memory or
experience replay buffer, M is created using MDP state rep-
resentation tuples, (St, At, Rt+1, St+1). Further, as a batch
of ncycle needs to be selected, the candidate set, Xcand, is
randomly partitioned into ncycle mini-batches, and action
set At is set to Ai

t
ncycle

i=1 . The loss is then optimized as fol-
lows to train the policy network:

Loss(Π) = Et∈M[(Yi
t −Q(St,Ai

t)); Π))2] (3)

The values for Yi
t are computed using a double DQN for-

mulation [22] incorporating a target network, Π′ for stable
training:

Yi
t = Rt+1 +max

Ai
t+1

γQ(St+1,Ai
t+1; Π

′); Π) (4)

where, γ is the discount factor for future reward, set to 0.9
in our experiments.

ϵ-greedy selection To encourage exploration of diverse
samples by the policy during training, an ϵ-greedy strategy
is followed while training the policy, which selects a ran-
dom sample for the action Ai

t with probability epsilon, in-
stead of the sample maximizing Q-value. The ϵ value starts
with 0.9 for the initial cycle, and decreases by a factor of
0.1 for subsequent cycles. For policy deployment, ϵ is set
to 0. The gradient optimization is done using the temporal
difference method [46].

3.5. Deployment Stage

[1] Input: Xval, Xtest, Xstate, budget B Randomly
sample ninit from Xval to form Xinit Initialize Xu to
Xval −{Xinit} Initialize Xl to Xinit Initialize Θ Train the
model Θ on Xl Compute the performance metric on Xtest

Consumption of budget B Sample npool×ncycle number of
samples from Xu as candidates for labelling Xcand Com-
pute state representation St using predictions of model Θ
on Xstate and Xcand Select ncycle samples from Xcand us-
ing ϵ-greedy policy and add it to Xl - Action At Retrain the
model Θ on Xl Compute the metric on the Xtest and report

Algorithm 3.5 summarizes the deployment stage (or pol-
icy testing stage). We freeze the parameters of the model Π
in this stage. We use the Xval set to iteratively select the
samples and train the model Θ. At the end of each active
learning cycle we compute the performance of the model Θ
on the held-out set Xtest and report the values in Section 4.

3.6. Weak labelling

In a usual annotation scenario (as shown in Figure 4 -
top), the annotator has to mark all the entities present in
a sample by drawing the bounding boxes and selecting la-
bels for them. To reduce the annotation cost, we propose a
weak labelling annotation framework (Figure 4 - bottom).
Inspired from [36], the annotator is shown the document as
well as the predictions with high confidence from the model
Θ for that document. The annotator can then (1) add a miss-
ing box, (2) mark a box either correct or incorrect, and (3)
mark a label either correct or incorrect for the associated
box. The annotation interface for the weak labelling ap-
proach is shown in Figure 1.

Figure 4. Weak labelling in the case of layout detection. In the
top image, the annotator has to draw and mark all the layout boxes,
while in the bottom image, the annotator can verify the predictions
of the model in the input image, and add new boxes. Image is best
viewed in color.

The advantage of weak labelling is that it significantly
reduces the annotation time. Annotation of a new entity
by drawing a bounding box or selecting words takes ∼ 15
seconds on an average in the case of detection tasks and ∼ 4
seconds in case of named entity recognition. Verifying an
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entity takes ∼ 5 seconds for layout detection task and ∼ 2
seconds for named entity recognition1.

3.7. Additional Rewards

We propose the following additional rewards to improve
the performance of the active learning approach.

• Class balance reward: To reduce class imbalance in
the newly acquired samples that are to be labelled,
Xnew, we propose an additional class distribution en-
tropy reward which reinforces a class-balanced selec-
tion of samples.

Rcls ent = H(P (Xnew)) (5)

where H is the Shannon entropy function [43], and
P (Xnew) is the probability distribution over various
classes for the newly acquired samples Xnew.

• Human feedback reward: In a weak labelling sce-
nario, where the annotator can modify the output from
the prediction model, Θ, a human feedback signal
could be added at each active learning cycle while
training the policy. The objective is to promote the se-
lection of those samples for which the annotator mod-
ifies the high confidence predictions of Θ heavily be-
cause such samples would be more informative for the
model Θ. Accordingly, the additional human feedback
reward for detection during training time is given as,

Rfeedback = APafter feedback −APbefore feedback

(6)
where APafter feedback is the AP metric on the newly
acquired samples, after the annotator has verified the
predictions, and APbefore feedback is the AP of the
samples before feedback.

4. Experiments and Results
In this section, we provide a comprehensive experimen-

tal evaluation of the proposed policy-based active learning
approach on the document understanding tasks, document
layout detection and named entity recognition. Further-
more, we also evaluate our models on Pascal VOC object
detection task to demonstrate the generalizability of the pro-
posed solution across different domains.

4.1. Datasets

We use the following datasets for the corresponding
tasks:

• GROTOAP2 [47] dataset is used for the complex doc-
ument layout detection task. The dataset consists of

1All the mentioned values are average annotation times of 3 individuals
measured on the developed annotation tool

22 layout classes for scientific journals. We sampled
two sets of 5000 images as training and validation sets.
Among these, we hold-out 10% for reward compu-
tation set Xmet and 256 random samples for Xstate

and use the remaining samples for the active learning
setup. We use the validation set for simulating the ac-
tive learning during the deployment phase and finally
report the performance on a held-out subset of 2500
images. Further, we merged those classes having very
few instances (e.g. glossary, equation, etc.) with the
body content class, resulting into a modified dataset
with 13 classes.

• Pascal VOC-2007 [14] dataset with 20 object classes
is used for the object detection task. We use the train
set of VOC-2007 containing 2501 images during the
policy training phase. Similar to layout detection task,
we hold-out 10% for reward computation set Xmet

and 256 random samples for Xstate and use remain-
ing samples for the active learning setup. During the
deployment phase, we utilize the val set of VOC-2007
containing 2510 images for simulating the active learn-
ing setup i.e selecting samples using trained Π model
and training the model Θ. We use the test set of VOC-
2007 consisting of — samples for reporting the per-
formance of model Θ after each active learning cycle
during the deployment stage.

We also use the following datasets for pre-training the un-
derlying model Θ:

• PubLayNet [58] We use this dataset for pre-training
Θ for document layout detection. This dataset contains
over 360K page samples and has typical document lay-
out elements such as text, title, list, figure, and table as
the annotations. While the list, figure, table and title
classes contains the corresponding information from
document, the text category consists of the rest of the
content such as author, author affiliation; paper infor-
mation; copyright information; abstract; paragraph in
main text, footnote, and appendix; figure & table cap-
tion; table footnote.

• MS-COCO [28] This dataset consists of 91 object
classes. We use this dataset to pre-train the underly-
ing classification model Θ (i.e. Faster-RCNN model)
in the case of object detection on the VOC dataset. We
pre-train the model Θ on this dataset and remove the
last layers from both the class prediction and bounding
box regression branches which are class-specific.

4.2. Models and configurations

We use the Faster-RCNN model [40] with RESNET-101
backbone2 [23] as the underlying prediction model for the

2https://github.com/facebookresearch/detectron2
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layout detection and object detection tasks. The Faster-
RCNN model is pre-trained on a subset of 15000 images
from PubLayNet [58] dataset for the layout detection task,
and on MS-COCO [28] dataset for the object detection task
to bootstrap the active learning experiments.

For active learning, we use a seed set of 512 labelled
samples in case of detection tasks initially. The Faster-
RCNN model is trained for 1000 iterations on the labelled
set in an active learning cycle. In each of the 10 active
learning cycles we select 64 samples for the detection tasks,
from unlabelled dataset for labelling giving a total of 1152
and 350 labelled samples in a single episode for detection
tasks and NER respectively. We run 10 episodes of these
active learning cycles to train the policy network. The learn-
ing rate for training the policy DQN is set to 0.001 with a
gamma value of 0.998. The learning rates of Faster-RCNN
is set to 0.00025. We also apply a momentum of 0.95 to
optimize the training of policy network. We set the size of
memory replay buffer M to 1000 samples with first-in-first-
out mechanism.

4.3. MDP state representation

For the layout detection and object detection tasks, we
use a randomly sampled set of 256 images from the train
set as the subset for representing the overall distribution of
the dataset (Xstate). We pass each instance from the candi-
date (Xcand) and state (Xstate) subsets through the Faster-
RCNN model, to get the top 50 confident bounding box pre-
dictions. We concatenate the class scores for these top 50
predictions to the feature map of RESNET-101 backbone to
get a final representation (1256-dimension for VOC-2007,
and 906-dimension for GROTOAP2) for each sample in the
candidate and state subset sets. The representations thus
obtained from the samples in Xcand are stacked to form ct,
and similarly st from the set Xstate. Together ct and st
form the state representation St in Figure 3.

4.4. Human Annotation Simulation

To simulate the role of a human annotator for weak la-
belling, we use the ground truths of the datasets on which
we perform our experiments. In detection tasks (i.e. layout
detection and object detection), we consider the predictions
which have an IoU greater than 0.5 with the ground truth
box as the boxes being marked as correct by the annotator.
For those boxes in the ground truth which do not have any
prediction with IoU greater than 0.5, we include that box
into the labelled set marking as a full annotation (a strong
label).

4.5. Results

We compare the performance of our proposed method
with three baselines -

Avg time (seconds)−→

Method↓ GROTOAP2 VOC2007

St
ro

ng

Random 10m14s 12m21s
Entropy Max 18m14s 17m16s
Entropy Sum 18m01s 15m53s

Margin 18m00s 15m39s
OPAD 11m22s 14m00s

W
ea

k

Random 10m23s 12m24s
Entropy Max 18m20s 17m31s
Entropy Sum 18m10s 15m26s

Margin 18m03s 15m48s
OPAD 11m36s 14m12s

Table 2. Time required for one active learning cycle i.e selection
of samples for various algorithms along with the model training
time. Note that the model training time is constant.

Annotation time required(seconds)−→

Method↓ GROTOAP2 VOC2007

St
ro

ng

Random 72500 9000
Entropy Max 81600 10500
Entropy Sum 81200 10000

Margin 92700 11000
Ours 66000 7000

W
ea

k

Random 38000 4250
Entropy Max 39000 2000
Entropy Sum 41000 2500

Margin 48000 7500
Ours 33000 2250

Table 3. Annotation time required to reach an AP of 42.5 on GRO-
TOAP2 and an AP of 45.5 on VOC-2007. These values indicate
the minimum achievable best performances by all the models on
the datasets.

• Random Data samples from the unlabelled pool are
randomly chosen for annotation.

• Entropy [41] For the entropy-based selection, first the
entropy of class prediction probability by Θ is com-
puted over all the entities of a data sample. We present
results for aggregating entropy of a single sample in
two ways: 1. maximum entropy, 2. sum of entropy
of all detected entities within the sample, and then
the samples with the highest aggregate entropy are se-
lected for labelling.

• Margin [7] Similar to entropy, a v1vs2 margin score is
computed using the difference of prediction probabil-
ity of highest and second highest class for all the in-
stances of a sample. Then, the maximum margin score
over all the instances is taken to be the aggregate mar-
gin measure for the sample. Samples with the highest
aggregate margin are selected for labelling. The base-
line metrics are as described in the existing prior art.

Figure 5 shows the accuracy of all the methods on the test
sets of different datasets, for both strong and weak labelling
settings. We can observe that the proposed policy-based
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Figure 5. Plots showing the performance of the methods, viz. random, entropy, margin and proposed, for GROTOAP2 and VOC-2007 for
both strong and weak labelling settings.

AL method significantly outperforms the baseline methods.
This is because of the optimized selection policy, learned
to reward the better performance of the prediction model.
While the curves for VOC-2007 approach saturation, we
stop the GROTOAP2 training before reaching saturation as
our objective is to show the performance of the underlying
model with a limited budget. Note that the proposed method
uses vanilla reward in all the plots in Figure 5. Further, as
shown in Table 2 and Table 3, the proposed method takes
significantly less time for annotation than the baselines to
reach the minimum best performance achievable by all the
models, while performing only next to random algorithm
for sample selection timings. The annotation times in Ta-
ble 3 are based on the number of samples selected for an-
notation multiplied by the average human annotation times
mentioned in Section 3.6.

5. Ablation Study
In this section we discuss the importance of the proposed

additional rewards in improving the performance of the pro-
posed AL approach.

5.1. Class balance reward

We conduct ablations by adding the class distribution en-
tropy reward (Equation 5) to the vanilla reward function.
The overall reward function is:

Roverall = Rt + λ ∗ Rcls ent (7)

where λ is a hyper-parameter, and Rt is the vanilla reward.
As seen in Table 4, we observe a significant increase in per-
formance as compared to the vanilla reward policy.

5.2. Human feedback reward

In this experiment we report the effect of adding human
feedback to the vanilla reward, i.e.

Roverall = Rt + λ ∗ Rfeedback (8)

where λ is a hyper-parameter. We report the results of using
this overall reward in our policy in Table 5, along with the
baselines and vanilla policy in a weak labelling setup. We
observe that having a small weight on the feedback reward
results in a jump in the performance.

AP F-score
Method ↓ GROTOAP2 VOC-2007

Random 50.668 47.490
Entropy Max 46.229 46.671
Entropy Sum 46.634 47.431
Margin 47.428 47.179
OPAD 51.508 48.061
OPAD (ClsEnt λ - 0.25) 53.241 47.727
OPAD (ClsEnt λ - 0.50) 51.185 47.701
OPAD (ClsEnt λ - 0.75) 52.143 48.566
OPAD (ClsEnt λ - 1.0) 51.530 48.060

Table 4. Performance of our method on test data with class dis-
tribution entropy reward on various datasets. The total budget is
1152 samples for GROTOAP2 and VOC-2007.

AP −→
Method ↓ GROTOAP2 VOC2007

Random 44.127 45.541
Entropy Max 44.951 46.433
Entropy Sum 43.842 46.437
Margin 42.690 45.639
OPAD 45.813 46.708
OPAD (Feedback λ - 0.1) 48.524 47.238
OPAD (Feedback λ - 0.25) 46.266 46.835
OPAD (Feedback λ - 0.40) 44.899 46.646
OPAD (Feedback λ - 0.70) 44.839 46.071
OPAD (Feedback λ - 1.0) 44.110 46.304

Table 5. Performance of our method with human feedback reward
for weak labelling on GROTOAP2 and VOC2007. AP after con-
suming a total budget of 1152 samples.

6. Conclusion and Future Works

We present a robust policy-based method for active
learning task in complex content detection problems. The
problem of active learning in detection is formulated using
a DQN-based sampling network, optimized for task per-
formance metrics. We extend the active learning setting
to weak labelling, and propose rewards for class balance
and human feedback. To the best of our knowledge, this is
first-of-its-kind work optimizing active learning for detec-
tion tasks in documents. We show the efficacy of the pro-
posed methods on a large document detection set as well as
object detection. As a future direction, we would like to im-
prove on the DQN, and further explore more recent active
learning acquisition functions.
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