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Abstract

This paper addresses the problem of automatically
detecting human skin in images without reliance on color
information. A primary motivation of the work has been
to achieve results that are consistent across the full range
of skin tones, even while using a training dataset that is
significantly biased toward lighter skin tones. Previous
skin-detection methods have used color cues almost exclu-
sively, and we present a new approach that performs
well in the absence of such information. A key aspect
of the work is dataset repair through augmentation that
is applied strategically during training, with the goal
of color invariant feature learning to enhance general-
ization. We have demonstrated the concept using two
architectures, and experimental results show improve-
ments in both precision and recall for most Fitzpatrick
skin tones in the benchmark ECU dataset. We further
tested the system with the RFW dataset to show that the
proposed method performs much more consistently across
different ethnicities, thereby reducing the chance of bias
based on skin color. To demonstrate the effectiveness
of our work, extensive experiments were performed on
grayscale images as well as images obtained under uncon-
strained illumination and with artificial filters. Source
code: https://github.com/HanXuMartin/Color-Invariant-
Skin-Segmentation

1. Introduction
Skin detection refers to the process of identifying pixels

that correspond to human skin within image data or video
data. Automated skin detection can play an important role
for sensitive applications such as face detection and recog-
nition (e.g., [25, 27]), facial expression recognition, gesture
recognition [2], content-based image retrieval, filtering of
objectionable content [11, 14], skin rendering in computer
graphics [4, 10], and virtual reality. Although the last two
decades have seen many efforts related to skin detection

Figure 1. Example results from our skin-detection system,
including cases of complex illumination and imaging conditions.
Left to right: Input image; ground truth; segmentation results
using baseline system; results after training using our novel
augmentation approach. Dramatic improvements in detected skin
regions are apparent for all of these cases.

and skin modeling [20, 46], it is interesting that almost all
techniques for image-based skin detection depend heavily
on the use of color information. Extensive surveys are
provided by Mahmoodi et al. [29] and Kakumanu et
al. [22].

We contend that over-reliance on color cues has imposed
performance limits and has also led to bias related to skin
tones. A major reason for such bias is dataset imbalance,
with the large majority of training samples representing
lighter skin tones. Additionally, imaging methods may
also introduce variability, including spectral range of sensor
arrays (grayscale, near-infrared, RGB) and creative filtering
in photography applications (e.g., sepia tones in movies, or
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Instagram filters). Examples of such variations are shown
in Figure 1.

To address such problems, this paper introduces a
new technique for human skin detection that significantly
reduces reliance on color information and focuses much
more on texture and contextual information to detect the
skin pixels in an image. A significant aspect of the system
is that color-space augmentation is applied strategically to
the training set so that a resulting deep neural network
suppresses the system’s dependence on color cues. Hence,
our high-level strategy has been to guide the training proce-
dure away from color cues and toward features related to
visual texture and context. Figure 2 provides an illustra-
tion of the augmentation strategy and the training strategy.
We demonstrate our procedure by training the U-Net archi-
tecture [34] and FCN [28] using ECU [33] dataset and do
testing on both ECU and RFW [44] dataset.

The primary contributions of this paper are as follows.
Color invariance. We describe an approach to automated
detection of human skin that does not depend on the color
properties of the skin. Universality. The resulting system
therefore has potential to operate in environments with
relatively unconstrained illumination conditions, including
extreme cases of over- and underexposed images, grayscale
images, and systems that utilize with creative filters (such
as Instagram). As such, the system is intended for opera-
tion “in the wild,” and can relax requirements and reduce
costs related to camera selection. Little or no racial bias. In
our experimental results, we have systematically evaluated
the performance of our algorithm for subjects with different
skin tones. Using cross-database testing, we have shown
that our new algorithm performs virtually uniformly across
all of the available annotated skin tones.

Data imbalance is a typical problem in data driven
models. Hence, we need to understand the bias before
hand and use intelligent algorithm. It is our hope that our
color-augmentation strategy for training and testing can be
applied widely to other domains, in order to address prob-
lems related to racial and social bias.

2. Related work

2.1. Skin detection for natural images

Early approaches to skin detection focused primarily on
the use of color cues (e.g., [22, 33, 43]), with the goal of
detecting different skin tones under varying illumination
conditions. In a few cases, researchers also incorporated
cues related to visual texture (e.g., [7,15,16]) or shape (e.g.,
[11]) as a supplement to color information. In one case,
researchers considered texture and contextual cues without
the use of color [38]. More recently, researchers have
applied methods using deep neural networks to the problem
of skin segmentation. The different approaches may be

grouped loosely into 3 categories: FCN-based [28], R-
CNN-based [17, 18], and encoder-decoder models [3, 34].

Under the first category, Zuo et al. [47] introduced an
end-to-end network for human skin detection by integrating
an RNN (Recurrent Neural Network) into an FCN model.
They were able to demonstrate improved skin-detection
performance in complex environments, including ECU and
COMPAQ dataset [21]. He et al. [19] later proposed
a semisupervised skin-detection method to address the
problem of insufficient training samples. Compared to
some state-of-art methods. Within the second category,
Roy et al. [35] used an R-CNN-based approach to reduce
the number of false positives by adding a CNN-based skin
detector. This approach yielded a substantial improve-
ment over a baseline of using R-CNN only. Nguyen et
al. [32] integrated a mean-shift hand tracker into Mask
R-CNN [18]. They reported improvements of 5% to 9%
in detection accuracy, compared to Mask R-CNN alone.
Under the encoder-decoder category, Nguyen et al. [31]
modified the original SegNet [3] architecture by increasing
the number of decoders, thereby allowing each encoder to
perform multiple tasks at the same time, which discrim-
inate skin components in the hand area more accurately.
Topiwala [42] has shown that U-Net stands out among the
frequently-used skin detectors on their dataset of the human
abdomen with different skin colors, The method based on
U-Net was also computationally faster. Tarasiewicz [41]
refined the U-Net architecture [34] by considering large-
scale contextual features, using inception and dense blocks
to reduce occurrences of false positives significantly while
doing skin detection.

2.2. Algorithmic bias

This work has been motivated in part by the need
to promote demographic fairness in automated systems,
particularly relating to differences in skin tones that are
related to ethnicity and race. For tasks such as face recog-
nition, techniques have been developed recently to evaluate
bias within algorithms and datasets [5], and to improve fair-
ness with respect to such differences [12]. More generally,
Mehrabi et al. [30] have surveyed the Machine Learning
field and have developed a taxonomy of problems that affect
bias and fairness within automated systems. Most bias-
mitigation systems focus on two types of biases: dataset
bias, and task bias. This paper is concerned with the former,
which refers to datasets having classes are not represented
as well as others within the dataset. Researchers recently
have focused on invariant feature learning for protected
variables (here, the skin color appearance), and perform
database repair to eliminate the representation error [1, 26,
37]. This paper uses the database repair approach through
augmentation for de-biasing.
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(a) (b)
Figure 2. Schematic diagram showing the overall approach. (a) Color space augmentation in HSV space containing hue rotation, saturation
decay and value change. (b) Overall structure of our skin detection system. During training, each input image undergoes color augmenta-
tion.

(a) (b)
Figure 3. (a) Distribution of skin types in the ECU dataset. Labels
I-VI refer to the six skin tones described by Fitzpatrick [13]. The
group “mix” refers to several skin tone categories in a single
image. (b) An example of skin/face evaluation, as described in
equation (3).

3. Methods

The overall process is described in Figure 2. We first
use an image augmentation approach to create an expanded
dataset (Figure 2a), and use the dataset for training a U-Net-
based segmentation network for skin detection (Figure 2b).

3.1. Dataset repair by augmentation

In this work, we adopt color-based data augmentations
that can add artificial images to mimic alternate represen-
tations of the image, in this case, the appearance of the
skin. We have implemented augmentation in the HSV
(Hue, Saturation, Value) space. In general, the ambient
illumination, especially the amount of light reflected by the
skin surface, is reflected in the value channel. It includes
shadows and exposure. Saturation indicates the purity of
the color. On the other hand, the spectral property of the
illumination source is reflected in the hue channel and the
saturation channel. (Examples are shown in Figure 1.)

Studies have shown that physiological biases, particu-
larly skin tones, can influence computer the development of
vision algorithms [5,6,39]. To illustrate a potential cause of
bias, Figure 4 provides heatmaps from the ECU testing set.
We first classified the those images into six skin-tone cate-
gories according to [13]. Then every image in the testing
set was converted into HSV color space, and its skin pixels

were allocated into different bins according to the (S, V),
(S, H), and (V, H) value pairs. The first six columns show
the distributions of skin pixels for the different Fitzpatrick
categories in HSV color space. Column 7 in the figure
(“W/O”) shows the composite distribution for the dataset,
and it is clearly seen that the darkest skin tones are poorly
represented within HSV space. Our recommended method
extends that representation and aims towards a distribution
that is much more balanced across all classes. All three
rows in column 8 (“W”) show improvement.

Figure 5 illustrates how color augmentation works in
our experiments. We augmented the training set with three
groups of thresholds in H, S, and V channels respectively.
Each image in the training set will be converted into fifteen
images, so the original training set will be fifteen times
larger. This augmented training set will be used for training
the skin segmentation models. The thresholds we selected
in the experiments are listed in the figure 5.

3.2. Training segmentation networks

The experiment uses NVIDIA GeForce RTX 2070
SUPER GPU with 16 GB GPU memory. The algorithm
is trained and tested with U-Net [45] and FCN [9].The U-
Net is working under Python 3.8.5 and Tensorflow 2.3.1
environment with no pre-trained models. The FCN is
working under Python 3.8.5 and Pytorch 1.70 with a pre-
trained VGG-16 network. We train the network with a fixed
learning rate of 10−4, and each epoch takes around 79s
when batch size is set to 8. The network will use a module
ImageDataGenerator [23] in the keras to do data augmen-
tation, which includes image rotation, width shift, height
shift, shear, zoom, and horizontal flip with nearest fill mode.
We used binary cross-entropy loss:

L = − 1

N

N∑
i=1

yi log(f(yi)) + (1− yi) log(1− f(yi)) (1)

where N is the number of segmentation classes. The
symbol yi is the label and f(yi) is the predicted probability
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of the points belonging to the ith class. The original output
of the network will be from 0 to 1. Since the pixels should
belong to either skin category or non-skin category, we use
the function below to make the output O binary where 1
refers to skin pixels. The threshold δ we set is 0.5. To make
the experiments more convincing, we also draw precision-
recall curve in the supplementary materials.

O =

{
1 if f(yi) ≥ δ

0 if f(yi) < δ
(2)

3.3. Datasets

In this work, we have used three datasets. The training
and initial evaluation were performed using the bench-
mark ECU [33] dataset. ECU contains images with diverse
attributes including gender, age, skin type, skin-like back-
ground, indoor and outdoor images, and images with
shadows. The dataset contains 4000 RGB images with
manually annotated skin pixels as binary images (see Figure
6 as an example). These images are divided into 1600
images for training, 400 for validation, and 2000 for testing.
Note that each of these images is used for color space
augmentation (18 total). Hence, we have a total of 30400
images for training. To demonstrate the color invariance
of the algorithm, we also transformed the test images to
augmented space.

Racial bias is another critical attribute in skin detec-
tion systems. To evaluate such bias in our system, we
have experimented with six skin types following the Fitz-
patrick scale [36]. Figure 3a shows the distribution of
images containing individuals with skin types of Type I
(less melanin concentration) to Type VI (high concentra-
tion of melanin). In the figure, “mix” means that individ-
uals with different skin tones appear in a single image. The
figure clearly illustrates the class imbalance within the ECU
dataset.

For further evaluation, we selected the RFW (Racial
Faces in the Wild) dataset [44] for cross dataset valida-
tion of our algorithm in order to test whether the proposed
algorithm exhibits bias related to skin tone. RFW is a stan-
dard test database used to study racial bias in face recog-
nition (see Figure 7 as an example). Four test subsets are
provided: Caucasians, Asians, Indians, and Africans. Each
subset contains about 3000 individuals and 6000 image
pairs for face verification. For our work, the RFW dataset
provided 10196 Caucasian faces, 9688 Asian faces, 10308
Indian faces, and 10415 African faces, which shows a good
balance across the different groups.

Finally, we created a small dataset of 20 pictures
with extreme illumination variations. These images were
selected to contain either colored neon illumination or arti-
ficial filters, as shown in Figure 1. Then we performed

Table 1. Test results for several skin segmentation methods with
the ECU dataset. Our results using U-Net are significantly better
than previous methods. For both FCN and U-Net, our use of color-
based augmentation improved overall performance of the system.

Methods Acc Pre Rec F1 IoU
Kolkur et al. [24] 83.73 57.00 88.38 69.31 53.03
Dahmani et al. [8] 85.95 63.12 77.91 69.74 53.54
Jones et al. [21] 89.51 78.23 68.58 73.09 57.59
FCN before aug. 95.78 92.32 86.93 88.66 79.63
FCN after aug. 95.89 92.14 87.70 89.87 81.60

U-Net before aug. 95.59 89.56 89.15 89.35 80.76
U-Net after aug. 96.33 92.99 89.04 90.97 83.44

manual annotation using SuperAnnotate [40] to identify the
skin pixels and non-skin pixels. We conducted extensive
testing using this dataset and made pixel-wise evaluations
using our ground-truth annotations.

3.4. Evaluation

For the ECU dataset, we used five measures to evaluate
the performance: precision, recall, accuracy, F1 score, and
IoU. For the RCW dataset, we do not have the ground truth
skin annotation. Hence we developed a different method
to evaluate the performance. We first used a face detector
to get the face area in the image. Then we run the skin
detection algorithm trained on the ECU dataset. Next, we
identify the skin pixels in the face boundary (as shown in
Figure 3b). Finally, we compute the number of skin pixels
in the face boundary to the total number of pixels in the face
rectangle.

Skin/Face =
Skin pixels detected

Total pixels in face rectangle
(3)

As the pose distribution of the image classes in the RCW
dataset is uniform, we expect an ideal algorithm to provide
a uniform Skin/Face ratio across all ethnicities.

4. Results and Discussion
4.1. Images in the wild

We compared our method with some state-of-the-art skin
segmentation systems, including three traditional methods
and one FCN based methods. Kolkur et al. [24] and
Dahmani et al. [8] are two thresholding methods which
establish some rules in several color spaces to classify a
pixel is skin or not. Jones et al. [21] is a naive bayes
based methods, which predicts the probability of a pixel to
be skin after training with given skin masks. The problem
behind these traditional methods is the lack of high level
features during detection tasks, resulting in the weak robust-
ness against light changes, complex backgrounds or skin
color diversity. For both FCN based methods and our U-
Net based method, we trained two models, one without
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(a)

(b)

(c)
Figure 4. Heatmaps from ECU dataset in three dimensions: (a) Saturation-Value, (b) Saturation-Hue, (c) Value-Hue. The first six columns
mark the skin pixel distributions of Fitzpatrick [13] skin tones I-VI. The last two columns refer to the skin pixel distribution of the training
set before (W/O) and after (W) our color space augmentation.

(a) (b) (c)
Figure 5. Example of color augmentation across hue (a), saturation (b), and value (c). The first column of each group shows the changed
images Inew. The second columns show the skin segmentation results without color space augmentation. The third columns show the
results with color space augmentation. The input images are rotated at every 60 degrees in the hue channel in the group (a). For group (b),
the saturation of images are decayed at ratios of (0.8, 0.6, 0.4, 0.2, 0.0). For group (c), the values of the images are changed at ratios of
(1.0, 0.8, 0.6, 0.4, 0.2).

color augmentation and another with color augmentation to
confirm the effectiveness of color augmentation.

We first trained the U-Net model with the original RGB

images in the ECU dataset (with and without augmenta-
tion) and evaluated the performance with the original test
set. The precision and recall are shown in Table 1. With
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Figure 6. Testing results on the ECU dataset, by various skin segmentation methods including Kolkur et al. [24], Dahmani et al. [8],
Jones et al. [21], FCN before (B) and after (A) augmentation, and U-Net before (B) and after (A) augmentation (Columns 2 to 8). Input
and ground truth are shown in columns 1 and 9. Our approaches (marked by “(A)”) achieve superior results for different backgrounds,
genders, poses, and skin tones.

Figure 7. Experimental results from the RFW dataset using several skin segmentation methods. Left to right: Kolkur et al. [24], Dahmani et
al. [8], Jones et al. [21], FCN before (B) and after (A) augmentation, and U-Net before (B) and after (A) augmentation. Rows 1 to 4 show
sample results for the RFW ethnic groups: Caucasian, Asian, Indian, and African.

augmentation, this system yielded a precision of 92.99%
and recall of 89.04%, which significantly outperforms the
methods of Kolkur et al. [24], Dahmani et al. [8], and
Jones et al. [21] (Naive Bayes). The FCN model achieves a
precision of 92.14% and a recall of 87.70%. This model
also outperforms most CNN-based methods in terms of
overall accuracy. While our method shows an accuracy of
96.33%, Tarasiewicz [41] (also a U-Net based architecture)
reported an accuracy of 92%.

In Figure 6 we show qualitative comparisons, where the
examples cover various skin colors, similar colors in the
background, and complex illumination. The first row is a
girl lying on the grass with her arms open. The second row
is a boy holding a cat, and some of his skin areas are covered
by shadow and the cat. The third row is an image of three
children with dark skin. The fourth row is a man with a large
beard area on his face. These challenging conditions make
other methods fail or perform poorly. Dahmani et al. [8]
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Table 2. F1 scores (%) for the ECU dataset across different skin types. The labels I-VI refer to the six skin tones described by Fitz-
patrick [13]. The “mix” column refers to single images containing several individuals with multiple skin categories. The σ column refers
to standard derivation of the F1 scores for all columns. Our method with augmentation outperforms in most skin tone categories.

Methods I II III IV V VI mix σ

Kolkur et al. [24] 67.61 69.96 70.27 70.44 67.61 46.90 72.42 8.14
Dahmani et al. [8] 66.10 70.52 71.95 71.01 70.46 56.45 70.45 5.07
Jones et al. [21] 64.65 75.89 73.99 74.00 73.28 46.82 77.61 9.99
FCN before aug. 89.03 89.90 90.03 89.56 89.59 83.41 87.37 2.20
FCN after aug. 90.06 90.06 90.34 89.93 90.06 82.98 85.69 2.70

U-Net before aug. 87.16 89.58 90.38 90.99 91.98 84.72 88.82 2.29
U-Net after aug. 90.88 91.34 91.21 90.55 89.35 86.05 89.60 1.84

Table 3. IoU values (%) for the ECU dataset across different skin types. The column labels are the same as in the previous table. Our
method with augmentation outperforms in most skin tone categories.

Methods I II III IV V VI mix σ

Kolkur et al. [24] 51.07 53.80 54.16 54.36 51.07 30.64 56.76 8.22
Dahmani et al. [8] 49.37 54.47 56.19 55.05 54.39 39.33 54.38 5.50
Jones et al. [21] 47.77 61.15 58.72 58.72 57.83 30.56 63.41 10.60
FCN before aug. 80.24 81.66 81.87 81.09 81.15 71.54 77.57 3.44
FCN after aug. 81.92 81.91 82.38 81.70 81.91 70.92 74.97 4.22

U-Net before aug. 77.24 81.13 82.44 83.47 85.16 73.50 79.89 3.68
U-Net after aug. 83.28 84.06 83.84 82.73 80.75 75.52 81.16 2.97

and Jones et al. [21] fail in the first and third rows. Kolkur et
al. [24] classified a large area of background as skin pixels
in the fourth row. U-Net (B) works better but still performs
poorly in the third row. In contrast, our approach overcame
most of the difficulties as stated above, and produced accu-
rate and robust results. (More examples are provided in the
supplementary material.)

In order to detect the skin tone bias in the ECU dataset,
we further tested the algorithms on different skin tones.
Table 2 and Table 3 show that our method outperforms in
all categories. Among the three baseline methods, Jones
[21] shows the best performance for most of the skin types,
but all the methods particularly fail for Type VI (dark skin
category). Even deep learning skin segmentation methods
show an apparent decline in this dark skin category. Our
method consistently shows more than 85% F1 score and
more than 75% IoU for all skin types. Moreover, the stan-
dard derivations in the last column show that deep learning
models have more substantial stability over skin tone bias
after color augmentation (more details in the supplementary
material).

As shown in Figure 3a, one of the significant problems in
the ECU dataset is the imbalance in the images for each skin
type. To further understand the robustness of our method,
we test with the RFW dataset, which has a balanced dataset
across ethnicity. Since RFW dataset does contain manual
labels, we only compute the skin/face ratio in this part
(see Figure 3 and Function 3). Table 4 shows the evalu-
ated skin/face result of RFW dataset. The model is trained
on the ECU dataset using data augmentation. The results
show that other methods have different degrees of decline
in the “African” group, while our method is stable among

Table 4. Skin/face ratios (%) for the four ethnic groups of the RFW
dataset. For the first 3 methods, a significant decline is present for
the “African” group. That decline is not present for our FCN and
U-Net models, after training with color-space augmentation.

Methods Cau Asian Ind Afr
Kolkur et al. [24] 62.34 62.21 64.31 36.78
Dahmani et al. [8] 60.02 59.19 60.95 49.79
Jones et al. [21] 47.29 45.49 48.45 20.05
FCN before aug. 67.24 65.78 67.36 64.37
FCN after aug. 73.35 70.59 72.73 73.99

U-Net before aug. 65.47 65.76 69.82 68.39
U-Net after aug. 77.17 73.20 76.16 78.73

different races. Our method outperforms the best method
for the African group by nearly 29%. Also, our method
is significantly better in all the categories compared to the
three baselines. Compared the results shown in the last
four rows, color augmentation shows its effectiveness on
improving the performance of the models. Considering the
problems of over-prediction, more discussions are shown in
the supplementary materials.

Figure 7 shows some qualitative results containing both
various skin colors and complex illuminance. The first row
is a Caucasian man with background of color similar to his
skin. The second row is an Asian woman with one shoulders
in the dark. The third row is an Indian man with strong light
on his top head. The fourth row is an African woman with
her face in shadow. We find that the three baseline methods
in columns 2 to 4 are fully confused by the background in
the first row. U-Net (B) fails to detect the skin area with
intense light in the fourth row. In contrast, our method
works better and outputs accurate and complete results.
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(a) (b) (c)
Figure 8. Comparison of U-Net models using color augmentation (“After Aug.”) and without color augmentation (“Before Aug.”) to test
robustness for image filtering in the color space. Augmentation shows their effectiveness for all three dimensions: (a) hue, (b) saturation,
and (c) value.

Table 5. Augmentation improves the performance of both U-Net
and FCN when tested on images with unconstrained illumination
and filters from our self-made dataset.

IoU before aug. IoU after aug. IoU gain by aug.
FCN 12.05 64.92 ↑ 52.87

U-Net 11.76 35.85 ↑ 24.09

4.2. Cross dataset testing and ablation study

In order to further test the robustness of the algorithm
under different illumination and creative filtering condi-
tions, we ran experiments by testing images transformed by
HSV color space augmentation (similar to the training set).
We trained two skin segmentation algorithms: One without
color augmentation and one with color augmentation. We
tested them with the color augmented test set. Figure 8
shows the comparison between the results. For the model
without color augmentation, the accuracy falls immediately
when tested with images that are modified by hue (Figure
8a), saturation (Figure 8b), or value (Figure 8c). The accu-
racy remains consistent for the model that was trained with
a set of color augmented images. This ablation study shows
explicitly the effectiveness of our proposed model.

Figure 5 shows qualitative examples of how the output of
our algorithm remains consistent across all the filters, even
with drastic changes in the color. Finally, in order to test
the performance under ambient light across the spectral, we
selected random images from the web and tested them.

Figure 1 shows the robustness of our methods against
the drastic illumination changes. The model without color
augmentation fails to detect a single skin pixel in the second
and third rows, while our method (with augmentation)
successfully detects skin pixels in most cases. Qualita-
tive evaluations in Table 5 shows this improvement. IoU
increase sharply after color augmentation is applied to the
system. More results are in the supplementary material.

4.2.1 Grayscale images

We also conducted tests using grayscale images only. In this
part, we used images from the ECU dataset and converted

Table 6. Augmentation improves the performance of both U-Net
and FCN when tested on grayscale images from the ECU dataset.

IoU before aug. IoU after aug. IoU gain by aug.
FCN 47.13 77.20 ↑ 30.07

U-Net 0.55 69.42 ↑ 68.87

them to grayscale format. We performed testing with the
U-Net model and the FCN model, with and without color
space augmentation. The results are listed in Table 6.

The table shows that the FCN model without color-
space augmentation yields very poor performance, and the
resulting IoU is low. For U-Net without augmentation,
IoU declines to approximately 0, indicating that the model
detected hardly any skin pixels. The performance improves
significantly for both of these models, when color augmen-
tation was applied. IoU for the FCN model returned to
nearly 80%. Improvements also happen to the IoU for the
U-Net model rose to nearly 70% with the help of color
augmentation. We list some example results in the Figure 1
and more results can be found in the supplementary mate-
rial.

5. Conclusion

This paper has introduced a new approach for auto-
mated detection of skin in images. Experimental results
show that the color-based data augmentation step strate-
gically reduces dependence by the system on color-based
cues, and thereby reduces bias related to lightness and
color of skin. Using the ECU dataset, our approach
has demonstrated better performance than three alterna-
tive skin-detection systems. We also conducted an exper-
iment using a racially-balanced dataset, RFW, to illustrate
the robustness of our method across different skin tones.
Further, the approach addresses problems related to illu-
mination differences (e.g., indoor/outdoor situations, harsh
shadows, unnatural lighting) and different sensor parame-
ters (e.g., color, monochromatic, varying spectral sensitivi-
ties). We anticipate that similar approaches can be applied
more broadly to other Computer Vision tasks.
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Matthias Nießner, and Christian Theobalt. State of the art
on monocular 3D face reconstruction, tracking, and appli-
cations. In Computer Graphics Forum, volume 37, pages
523–550. Wiley Online Library, 2018. 1

[47] Haiqiang Zuo, Heng Fan, Erik Blasch, and Haibin Ling.
Combining convolutional and recurrent neural networks for
human skin detection. IEEE Signal Processing Letters,
24(3):289–293, 2017. 2

2915


