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Abstract

Due to the covariate shift, deep neural networks per-
formance always degrades when applied to novel domains.
In order to mitigate this problem, domain adaptation tech-
niques require samples from target data during the feature
extraction training, which is not always applicable in real-
world scenarios. Batch Normalization is a known com-
ponent of computer vision models, aiming at reducing the
training-time covariate shift. However, facing distribution
shift results in an internal state mismatch inside the Batch-
Norm layers during the inference time. In favor of alleviat-
ing the induced mismatch, this paper proposes a source-
free, lightweight and straightforward approach by intro-
ducing the "Visual Domain Bridge" concept reducing the
BatchNorm’s internal mismatch in the cross-domain set-
tings. Compared to the other BatchNorm-based source-
free domain adaptation techniques such as AdaBN and
Prediction-BN, our method formed a new state-of-the-art
cross-domain few-shot fine-tuning method neglecting extra
augmentations; while improving the performance in near-
domain settings too. The proposed method can integrate
with other domain adaptation methods and enhance their
performance requiring just a few lines of modification in the
BatchNorm’s implementation. Implementations are avail-
able in https://github.com/MosyMosy/VDB

1. Introduction

Although Convolutional Neural Network (CNN) [10]
achieved outstanding results in different deep learning
tasks, when facing domain shift, their performance falls
drastically. The problem of applying a learned represen-
tation from a source domain to a target domain under
the distribution shift gets even worse when the target
domain is rarely annotated [4]. In order to mitigate this
shortcoming, there is a large body of research as well
as challenges, competitions, and benchmarks, conducted
toward transfer learning across distant domains [31].

Figure 1. Illustration of the Visual Domain Bridge (VDB). Inside a
CNN’s Batch Normalization (BN) layers, the intermediate features
get transferred to the source domain distribution when facing a
target domain with domain shift.

Domain adaption leveraging the statistical distribution
of data is a well-studied technique in the literature [11].
However, most of these efforts focus on computationally
expensive approaches benefiting target samples to make a
robust representation under domain shift [20].

Batch Normalization (BN) [8] is a well-known compo-
nent of deep CNN which speeds up model convergence dur-
ing the training. Adding BN layers to deep learning models
stabilizes the distribution of layer input features by mod-
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Figure 2. The output of a pre-trained autoencoder when fed with different datasets in inference time. The top row shows the output when
all normalization layers are the Batch Normalization (BN). The bottom row depicts the output for the same inputs but, the BN layers are
replaced with the VDB. Best viewed in color.

ulating their mean and variance. Inspired from "label in-
formation is usually stored in network’s weight matrix and
the statistics of the batch norm layer represents the domain-
related knowledge." [13], there are attempts to utilize the
BN layers toward filling the domain gap between the source
and target domains. Utilizing the BN layers by the mean
of domain adaptation as a tempting lightweight approach
attracted a portion of the literature; Studies such as the
AdaBN [13], Prediction-BN [17], TENT [24] and Core
[30]. Despite the effectiveness of these proposed methods,
they suffer from induced internal state mismatch. To alle-
viate this problem, they need steps of feature extractor up-
date during the inference time. Both of these shortcomings
have turned these methods into less real-world practical ap-
proaches.

Few-shot learning (FSL) as meta-testings followed by
meta-learning steps refer to the problem of learning a task
from just a few samples of the task’s distribution. Despite
its effectiveness and recent advances, the FSL underperform
when there exists a significant shift between base and novel
class domains [4]. This work proposes a source-free few-
shot domain adaptation method by adapting the BN statis-
tic as a lightweight interpretable approach, as depicted in
Figure 1. Based on our knowledge, the Prediction-BN is
the current state-of-the-art (SOTA) in source-free BN based
methods, which does not utilize additional augmentations
or backbone updating; the proposed method formed a new
SOTA in cross-domain few-shot learning (CDFSL), outper-
forming the Prediction-BN on the ImageNet source CDFSL
benchmark score, by more than two percents.
While most of the Domain Adaptation approaches aim at
adapting a pre-trained model towards a target domain (with
a possible distribution shift in input features); Inspired from
[7], we propose a contradictory viewpoint by transferring
the input’s statistical elements to the training times accu-
mulated statistics, inside BatchNorm Layers. This process

accrues in test time without modifying the training proce-
dure or the pre-trained backbone. From this, we attempt to
decrease the internal state mismatch of the BNs, rooted in
the shift between the source and target data (Figure 1).
The rest of the paper is structured as follows: First, the
needed notations are represented, followed by the formal
definition of the proposed method. Then we recall a brief
history of the current related methods. After that, experi-
ments setup and evaluation results are presented, followed
by the analysis of the result. In the end, the paper is summed
up with a conclusion.

2. Methodology

2.1. Preliminaries

For consistency with the literature, we adapt the nota-
tions from [25].

2.1.1 Domain

A domain D is composed of a feature space X and
a marginal probability distribution P (X), where X =
{x1, ..., xn} ∈ X . Having a specific domain D =
{X , P (X)}, a task T consists of a feature space Y and a
conditional probability distribution P (Y |X); learnable in
a supervised manner from the labeled data {xi, yi}, where
xi ∈ X and yi ∈ Y . Given two domains: a training
dataset with adequate labeled data as the source domain
Ds = {X s, P (X)s}, and a test dataset with insufficient
labeled data as the target domain Dt = {X t, P (X)t};
with partially labeled part, Dtl, and the unlabeled parts,
Dtu, form the entire target domain, that is, Dt = Dtl ∪
Dtu. Each domain comes with its task: The source task
T s = {Ys, P (Y s|Xs)}, and the target one is T t =
{Yt, P (Y t|Xt)}.
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Distribution Shift (Domain shift) refers to situations
where feature distribution differs from Ds to Dt: P (X)s ̸=
P (X)t

Near-Domain refers to situations where feature distribu-
tion are the same between Ds and Dt, but conditional prob-
ability distribution differs from T s to T t: P (X)s = P (X)t

and P (Y s|Xs) ̸= P (Y t|Xt)

Cross-Domain refers to situations where feature distribu-
tion differs from Ds to Dt while conditional probability dis-
tribution differs from T s to T t too: P (X)s ̸= P (X)t and
P (Y s|Xs) ̸= P (Y t|Xt)

2.1.2 Batch Normalization

Having a batch of labeled examples {(xs
i , y

s
i )}Ni=1 of size

N from a source domain Ds where xs
i ∈ X s and ysi ∈ Ys,

and Θ as a deep convolutional neural network consisting
of L layers with weight matrices θl where l represents the
layer index. If h represents the intermediate features of Θ
for layer l, the Batch Normalization at layer l is computed
for each channel and can be defined as:

BN(hs
c) = γs × hs

c − µs
c√

σ2
c
s + ϵ

+ βs (1)

here, subscript c represents the channel index, γs and βs

are learnable affine parameters and µs
c and σs

c are statistical
mean and variance of hs

c respectively defined as:

µs
c =

1

NHW

∑
n,h,w

hs
nchw (2)

σs
c =

√
1

NHW

∑
n,h,w

(hs
nchw − µs

c)
2
, (3)

where H and W are the spatial dimensions of hs
c.

The superscript s stood for the relation of features, sta-
tistical elements, and learned parameters with the source
domain Ds.

2.1.3 Batch Normalization under distribution shift

During the inference time, features xt
i ∈ X t from a target

domain Dt with distribution shift to the source domain Ds,
are normalized using the training time domain’s statistics
and relevant fitted affine parameters as follow:

BN(ht
c) = γs × ht

c − µs
c√

σ2
c
s + ϵ

+ βs (4)

This results in an inconsistency between the input futures
ht
c statistical elements and source domain captured ones in-

side the BN layers referred to as Internal State Mismatch

[17]. We attempt to transfer the target features using the
source and target domain’s statistical elements to alleviate
this internal state mismatch.

2.2. Proposed method

Assume there is Ds and Dt as cross-domains. While
most of the Domain Adaptation approaches aim at adapting
the P (Y s|Xs) toward the target domain Dt, we propose a
contradictory viewpoint by transferring the ht

c’s statistical
mean and variance to the source domain Ds during the fine-
tuning. From this, we attempt to decrease the internal state
mismatch of the BNs, rooted in the shift between the P (X)s

and P (X)t (Figure 1).

2.2.1 Visual Domain Bridge (VDB)

Having a target domain Dt with distribution shift according
to the training time source domain Ds, before normalizing
the intermediate feature ht

c we transfer it using the source
and target domain statistical elements as follows:

htrans
c =

ht
c − µ̂c

t√
σ̂2
c

t
+ ϵ

× σ2
c
s
+ µs

c (5)

in order to reduce the imposed mismatch of new features’
statistics (as reported in [17]), we employ a weighted aver-
age of the target and source statistic. The µ̂c

t and σ̂2
c

t
are

calculated as follow:

µ̂c
t = αµt

c + (1− α)µs
c (6)

σ̂c
t = ασt

c + (1− α)σs
c (7)

where α equals to the momentum factor as the BN’s in
training time. µ̂c

t and σ̂c
t are the same as µ̂c

s and σ̂c
s, but

on target feature hs
nchw.

The batch normalization to the transferred intermediate
feature htrans

c is applied using the new emerging transferred
domain Dtrans’s statistical elements:

BNtransfer(h
t
c) = γs × htrans

c − µ̂c
trans√

σ̂2
c

trans
+ ϵ

+ βs (8)

similarly, the µ̂c
trans and σ̂2

c

trans
are weighted average of

statistic elements of the training-time source domain and the
transferred features htrans

nchw :

µ̂c
trans = αµtrans

c + (1− α)µs
c (9)

σ̂c
trans = ασtrans

c + (1− α)σs
c (10)

Where

µtrans
c =

1

NHW

∑
n,h,w

htrans
nchw (11)

σtrans
c =

√
1

NHW

∑
n,h,w

(htrans
nchw − µtrans

c )
2 (12)
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Figure 3. t-SNE plot of output logits of a ResNet18 pre-traine on
ImageNet depicted as Kernel Density Estimations. Blue: with BN
fed with the Imagenet, Orange: with BN fed with the ISIC, Green:
with VDB fed with the ISIC. Hperparameters: learning-rate=200,
iteration=1000, and perplexity=30. The + marks represent the den-
sity centers.

3. Related work

Despite the fame of meta-learning domain adaptation
methods, Guo et al. [4] revealed that the pure fine-tuning
exceeds current SOTA meta-learning performance when
fronting a significant distribution shift. Problems with a sig-
nificant domain gap between the source and target data are
the main focus of recent research in FSL [4]. Also, progress
in semi-supervised and self-supervised learnings methods
resulted in advances for the CDFSL problems; They al-
ways need significant computational resources and multi-
ple steps of adjustment. STARTUP [18] is a well-known
technique in distant domain problems that utilizes a mixture
of self-supervised and self-training elements for CDFSL. In
contrast to the STARTUP, the proposed method is simpler
and more lightweight by a large margin. Furthermore, a
branch of domain adaptation methods is specially focused
on employing batch normalization to bridge between do-
mains [13]. AutoDIAL [3], and TransNorm [26] offered
techniques to train the feature extractor parameters using
a mixture of source and known target domains. However,
the target domain is not always known during the training
time. These methods are constrained to re-train the feature
extractor, which is much heavier than just statistically trans-
ferring the input features. A recent work [6] offered a two-
step proposal for transferring the input feature vector into

a more Gaussian-shaped distribution followed by a transi-
tive approach to adapting the feature vector to the test-time
data. Despite its effectiveness, its transductive nature limits
its application to new targets without re-adaptation, which is
a limited approach compared to the proposed method. As a
generalized source-free domain adaptation technique, [28]
proposes a method to adapt to new domains while keeping
the performance on the source domain. Source-free refers
to methods independent of the training-time data during the
adaptation phase. Focusing on the source-free methods as
more practical domain adaptation approaches, the AdaBN
[13] proposes adapting the BatchNorm’s moments at test
time based on the target’s domain statistics, demanding ac-
cess to the whole target samples. Although the AdaBN is
not explicitly designed for the few-shot setting, it is known
as an influential paper in the field of BatchNorm-based do-
main adaptation. Despite its effectiveness and simplicity,
its performance decay when facing a distribution shift in
test-time data. The AdaIN method [7] exploited the In-
stanceNorm [21] layers statistics by mean of style trans-
fer. Although the style transfer is rarely related to the few-
shot adaptation, the core idea is similar to the AdaBN and
is a source of inspiration in this work. The Prediction-BN
[17] proposes a similar method to AdaBN by replacing the
batch-wise target statistics instead of the whole domain’s
statistics. The main motivation for this refinement is that
the AdaBN imposes a large discrepancy between the Batch-
Norm’s statistics and weight layers, which is alleviated by
batch-wise statistics updates. Evaluations reveal that the
Prediction-BN performance decrease through time and fi-
nally converges to the AdaBN’s level. In order to adapt
the backbone’s wights to the imposed discrepancy from the
BN’s statistics replacement and Inspired by Prediction-BN,
[24] added the BN’s affine parameters adapting by entropy
minimization named as TENT, which requires the backbone
updating during the inference time. However, entropy min-
imization is not a good measure to keep the feature extrac-
tor’s discrimination power. As TENT does not preserve
the discriminative ability of the feature extractor, and the
Prediction-BN causes a mismatch with the network state,
[30] proposes a test-time calibration of the BN’s statistics
followed by an affine parameter adaption named as Core.
Despite the effectiveness of the TENT and Core methods,
both require backpropagation across the feature extractor
during the inference time, which is not always applicable.
This study investigated an alternative BN’s statistic trans-
fer in the CDFSL setting, exposing a slight internal state
mismatch to the backbone but independent of updating the
feature extractor. Recently the FeaturNorm [29] was pro-
posed as an alternative for the BatchNorm layers during the
training time, resulting in a more generalizable representa-
tion under distribution-shift. As this method neglects the
learnable affine parameters of the BN layers, it needs the
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Figure 4. Output distribution of selected Normalization layers from a ResNet18, pre-trained on ImageNet (Best viewed in color). Red:
ImageNet on BN layers, Blue: EuroSAT on BN Layers, and Green: EuroSat on VDB layers. Left: layer 0, Center: layer 7, and Right:
layer 18 which are selected based on a uniform probability. When facing distribution shift, the model with VDB results in more picked and
centered distributions in per-layer aggregated feature values. Also it as apparent that VDB maintains the distribution shape when fed with
training time domain. We witnessed the same pattern across all layers.

backbone to be trained from scratch and is not comparable
with our source-free and simple method. However, we have
evaluated the combination of the FeatureNorm with our pro-
posed method to demonstrate the ability of our method to
combine with other straightforward approaches. Compared
to the AdaBN, Prediction-BN, TENT, and Core, our method
transfers the statistical elements of the input feature vector.
It does not exert any modification or update to the back-
bone, making it a suitable lifelong and source-free domain
adaptation method.

4. Evaluation
4.1. Why VDB work?

Visualization is a convenient and interpretable approach
to understanding method effects. Here, the VDB is visu-
alized to investigate the effect of the proposed method on
the feature representation of an encoder component of a
convolutional autoencoder architecture. Then we present
the representation and normalization layers’ output distribu-
tions of a pre-trained model when facing the training-time
source domain and an arbitrary target domain both for BN
and VDB as normalization layers.

Experiment Setup: We utilized a SegNet [1] based con-
volutional autoencoder from [14] and replaced the en-
coder part’s BN layers with the VDB, just before loading
the pre-trained state dictionary. As the state dictionary is
pre-trained on the ImageNet like datasets, a visual trans-
fer of any input to the real-world day-time color schema

is expected. We feed batches of samples from challeng-
ing datasets (EuroSAT [5], Under Water [12], Diabetic
Retinopathy [27], HRF [2], ExDark [15], PCam [22],
FairFace [9], and the ImageNet as blank domain) first with
BN for all of the normalization layers and then with VDB
replaced in encoder part (momentum set to 1). The result is
illustrated in Figure 2. An empirical evaluation of the BN
and VDB output’s distribution is conducted using a publicly
available pre-trained ResNet18 fed with batches of samples
from the ImageNet as the source domain and the EuroSAT
as the target domain. The output values of normalization
layers are channel-wise aggregated as presented in Figure
4. In Figure 3, the representation gap induced from the dis-
tribution gap is considered. We plot the calculated t-SNE1

from logits of a pre-trained ResNet18, equipped with the
BN layers fed with samples from the source domain and the
ISIC. Then, the Kernel Density Estimation of the t-SNE plot
is compared with the same model where the BN layers are
replaced with the VDB and fed with the ISIC domain.

Results: From Figure 2, it is evident that the autoencoder
with VDB visually transfers any arbitrary target domains to
the source ImageNet like domain. From the right side of
the figure, the sample from ImageNet remains unchanged,
whereas the samples from other domains visually get trans-
ferred toward the source domain, resulting in a lower dis-
tribution gap in CNN’s layers inputs. The effect of VDB is
demonstrated as more picked distributions at the normaliza-

1t-distributed stochastic neighbor embedding
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5 Ways # Shots CropDisease EuroSAT ISIC ChestX

pure tuning 1 68.46 ± 0.87 59.18 ± 0.85 33.11 ± 0.60 22.54 ± 0.42
AdaBN 68.19 ± 0.85 57.46 ± 0.80 34.72 ± 0.65 22.32 ± 0.41
Prediction-BN 70.57 ± 0.84 61.60 ± 0.83 35.52 ± 0.65 22.60 ± 0.42
VDB (our) 71.98 ± 0.82 63.60 ± 0.87 35.32 ± 0.65 22.99 ± 0.44
STARTUP 74.56 ± 0.85 64.00 ± 0.88 35.12 ± 0.64 22.93 ± 0.43
STARTUP + VDB 77.43 ± 0.81 63.61 ± 0.87 35.54 ± 0.64 23.20 ± 0.43
FN 70.93 ± 0.87 62.75 ± 0.88 32.77 ± 0.60 22.37 ± 0.41
FN + VDB 74.75 ± 0.79 65.60 ± 0.89 34.94 ± 0.63 22.54 ± 0.43

MAML* 5 78.05 ± 0.68 71.70 ± 0.72 40.13 ± 0.58 23.48 ± 0.96
ProtoNet* 79.72 ± 0.67 73.29 ± 0.71 39.57 ± 0.57 24.05 ± 1.01
pure tuning 89.86 ± 0.50 79.99 ± 0.64 45.53 ± 0.59 26.66 ± 0.42
AdaBN 90.12 ± 0.50 80.21 ± 0.60 48.88 ± 0.62 25.66 ± 0.42
Prediction-BN 89.80 ± 0.51 81.71 ± 0.57 50.42 ± 0.65 25.61 ± 0.43
VDB (our) 90.77 ± 0.49 82.06 ± 0.63 48.72 ± 0.65 26.62 ± 0.45
STARTUP 92.86 ± 0.43 82.51 ± 0.62 48.54 ± 0.63 27.17 ± 0.44
STARTUP + VDB 93.13 ± 0.45 82.11 ± 0.64 49.72 ± 0.65 27.48 ± 0.45
FN 91.32 ± 0.46 80.75 ± 0.63 44.80 ± 0.57 26.32 ± 0.43
FN + VDB 92.20 ± 0.45 82.68 ± 0.61 47.79 ± 0.60 26.56 ± 0.46

MAML* 20 89.75 ± 0.42 81.95 ± 0.55 52.36 ± 0.57 27.53 ± 0.43
ProtoNet* 88.15 ± 0.51 82.27 ± 0.57 49.50 ± 0.55 28.21 ± 1.15
pure tuning 96.01 ± 0.28 88.02 ± 0.47 55.64 ± 0.57 31.98 ± 0.44
AdaBN 96.26 ± 0.28 88.94 ± 0.44 58.98 ± 0.58 31.11 ± 0.46
Prediction-BN 95.92 ± 0.28 89.82 ± 0.41 60.43 ± 0.61 30.91 ± 0.45
VDB (our) 96.36 ± 0.27 89.42 ± 0.45 59.09 ± 0.59 31.87 ± 0.44
STARTUP 97.43 ± 0.23 89.63 ± 0.43 59.98 ± 0.59 33.54 ± 0.46
STARTUP + VDB 97.42 ± 0.22 89.65 ± 0.45 60.37 ± 0.57 33.49 ± 0.49
FN 96.68 ± 0.25 87.88 ± 0.45 56.43 ± 0.56 32.36 ± 0.46
FN + VDB 97.09 ± 0.25 89.70 ± 0.43 59.51 ± 0.57 32.31 ± 0.46

ProtoNet* 50 90.81 ± 0.43 80.48 ± 0.57 51.99 ± 0.52 29.32 ± 1.12
pure tuning 97.59 ± 0.22 91.04 ± 0.37 61.38 ± 0.57 35.28 ± 0.48
AdaBN 97.90 ± 0.19 92.08 ± 0.36 63.61 ± 0.59 34.21 ± 0.45
Prediction-BN 97.61 ± 0.20 92.62 ± 0.33 64.34 ± 0.55 34.14 ± 0.46
VDB (our) 97.89 ± 0.19 92.24 ± 0.35 64.02 ± 0.58 35.55 ± 0.45
STARTUP 98.53 ± 0.16 92.59 ± 0.33 65.90 ± 0.56 37.67 ± 0.47
STARTUP + VDB 98.48 ± 0.17 92.46 ± 0.35 65.21 ± 0.55 38.17 ± 0.46
FN 98.09 ± 0.19 91.01 ± 0.38 62.64 ± 0.57 36.32 ± 0.47
FN + VDB 98.35 ± 0.17 92.29 ± 0.34 65.81 ± 0.56 36.90 ± 0.48

pure tuning avg 87.98 ± 0.39 79.56 ± 0.43 48.91 ± 0.43 29.11 ± 0.37
AdaBN 88.12 ± 0.38 79.67 ± 0.42 51.55 ± 0.44 28.33 ± 0.37
Prediction-BN 88.47 ± 0.38 81.44 ± 0.41 52.68 ± 0.44 28.32 ± 0.38
VDB (our) 89.25 ± 0.38 81.83 ± 0.43 51.79 ± 0.44 29.26 ± 0.38
STARTUP 90.85 ± 0.37 82.18 ± 0.43 52.39 ± 0.44 30.33 ± 0.38
STARTUP + VDB 91.62 ± 0.36 81.96 ± 0.43 52.71 ± 0.44 30.58 ± 0.38
FN 89.26 ± 0.38 80.60 ± 0.43 49.16 ± 0.43 29.35 ± 0.38
FN + VDB 90.60 ± 0.36 82.57 ± 0.43 52.01 ± 0.44 29.58 ± 0.38

Table 1. The CDFSL classification accuracy results of a ResNet10 backbone pre-trained on miniImageNet for 5 ways and # number of
shots. FN refers to the FeatureNorm method. avg: Average over all shots. * refers to results from [4].
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5 Ways # Shots CropDisease EuroSAT ISIC ChestX

pure tuning 1 71.71 ± 0.87 64.58 ± 0.82 30.30 ± 0.52 22.16 ± 0.40
AdaBN 67.00 ± 0.84 55.58 ± 0.86 29.43 ± 0.51 21.75 ± 0.38
Prediction-BN 69.84 ± 0.77 59.72 ± 0.86 31.65 ± 0.54 21.55 ± 0.39
VDB (our) 75.46 ± 0.76 67.76 ± 0.83 33.22 ± 0.58 22.28 ± 0.41

FN 76.98 ± 0.83 66.45 ± 0.78 30.09 ± 0.57 23.14 ± 0.42
FN + VDB 79.68 ± 0.74 69.67 ± 0.80 32.96 ± 0.57 22.64 ± 0.41

pure tuning 5 91.20 ± 0.46 84.88 ± 0.57 44.01 ± 0.57 25.23 ± 0.43
AdaBN 91.09 ± 0.47 77.73 ± 0.67 43.26 ± 0.55 23.94 ± 0.40
Prediction-BN 91.30 ± 0.43 80.10 ± 0.63 44.11 ± 0.52 24.00 ± 0.41
VDB (our) 93.11 ± 0.42 85.29 ± 0.52 47.48 ± 0.61 25.25 ± 0.42

FN 93.54 ± 0.42 86.10 ± 0.51 44.48 ± 0.61 26.15 ± 0.41
FN + VDB 94.63 ± 0.37 87.31 ± 0.50 47.48 ± 0.59 25.55 ± 0.43

pure tuning 20 96.52 ± 0.27 91.51 ± 0.37 55.66 ± 0.57 29.19 ± 0.41
AdaBN 96.84 ± 0.25 86.69 ± 0.53 55.33 ± 0.53 27.95 ± 0.41
Prediction-BN 96.91 ± 0.24 87.61 ± 0.48 55.35 ± 0.52 27.43 ± 0.42
VDB (our) 97.61 ± 0.21 91.93 ± 0.37 58.89 ± 0.59 29.49 ± 0.42

FN 97.62 ± 0.23 92.28 ± 0.33 56.61 ± 0.59 30.14 ± 0.44
FN + VDB 98.20 ± 0.19 92.85 ± 0.34 59.65 ± 0.58 30.28 ± 0.45

pure tuning 50 98.05 ± 0.20 93.34 ± 0.28 61.42 ± 0.56 31.80 ± 0.47
AdaBN 97.97 ± 0.19 89.63 ± 0.43 59.83 ± 0.55 29.75 ± 0.45
Prediction-BN 97.89 ± 0.22 90.55 ± 0.39 60.25 ± 0.53 29.12 ± 0.45
VDB (our) 98.40 ± 0.16 93.95 ± 0.30 64.23 ± 0.58 32.37 ± 0.47

FN 98.56 ± 0.17 94.30 ± 0.27 63.72 ± 0.57 33.60 ± 0.46
FN + VDB 98.83 ± 0.13 94.79 ± 0.27 65.27 ± 0.56 33.24 ± 0.45

pure tuning Average 89.37 ± 0.38 83.58 ± 0.40 47.85 ± 0.42 27.10 ± 0.37
AdaBN 88.23 ± 0.37 77.40 ± 0.45 46.96 ± 0.42 25.85 ± 0.36
Prediction-BN 88.99 ± 0.36 79.49 ± 0.43 47.84 ± 0.41 25.53 ± 0.36
VDB (our) 91.15 ± 0.35 84.73 ± 0.40 50.96 ± 0.43 27.35 ± 0.37
FN 91.68 ± 0.36 84.78 ± 0.39 48.73 ± 0.43 28.26 ± 0.37
FN + VDB 92.83 ± 0.34 86.15 ± 0.39 51.34 ± 0.43 27.93 ± 0.37

Table 2. The CDFSL results for a ResNet18 backbone pre-trained on ImageNet, evaluated over 600 episodes. pure tuning, linear classifier
fine-tuned on labeled target samples. AdaBN is fine-tuned the same as the pure tuning except adapt the BN layers before fine-tuning,
Prediction-BN and VDB similar to the AdaBN except for the BN adaptation occurs during the fine-tuning. Results are for 5-Way and #
Shots classification accuracy. avg: Average over all shots.

1-shot 5-shot 20-shot

pure tuning 54.56 ± 0.84 76.18 ± 0.69 84.53 ± 0.52
VDB (our) 56.08 ± 0.86 76.61 ± 0.72 84.59 ± 0.55

Table 3. Near-domain few-shot evaluation on pure tuning and VDB. Models are pre-trained on miniImageNet and evaluated on novel
classes of ImageNet over 600 episodes.

tion layers outputs as illustrated in Figure 4. From this fig-
ure, we can see VDB maintains the distribution shape when
fed with training time domain while the model with VDB
results in more picked and centered distributions in per-

layer aggregated feature value when facing distribution shift
(we witnessed the same pattern for all the layers). From
Figure 3 it is observant that the model with VDB reduces
the representation gap on data with distribution-shift. Com-
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pared to the model with BN (orange), the VDB equipped
green shape is expanded toward the source’s shape (blue),
and the center of the density is moved to the source do-
main’s center of density. As previously explored in [19]
distribution shift will appear as distance in representation,
and reducing the representation distance will directly result
in a performance upgrade. We repeated the plot with differ-
ent hyperparameters resulted in similar patterns.

4.2. VDB in CDFSL

Experiment Setup: The FSL evaluation on the CDFSL
benchmark is established as introduced in [4]. The mini-
ImageNet [23] is employed as the base training-time source
dataset as well as the more extensive ImageNet dataset. The
target datasets are comprised of four datasets, each from a
shifted distribution relative to the source domain (miniIm-
ageNet and ImageNet). The target datasets are composed
of EuroSAT (satellite imagery to determine land usage),
CropDiseases (plant images to identify botanical diseases),
ChestX (chest X-rays to detect pathology), and ISIC2018
(images of skin abrasions to detect melanoma) as described
in [4]. Methods such as STARTUP and AdaBN bene-
fit randomly sampled 20% of unlabelled images from the
target datasets to use in the representation learning stage,
consistent with the setup of [18], remaining samples are
used during the fine-tuning. Identical to [4], we conduct
experiments in an FSL classification setting while the sup-
port set is comprised of 5 classes with k samples per class
(5-way k-shot), where k ∈ {1, 5, 20, 50} and the overall
CDFSL score is an average of accuracies across all target
datasets for k ∈ {5, 20, 50}. Evaluation of pre-trained mod-
els brings off over 600 episodes. 95% confidence intervals
with mean accuracy are reported. Pure tuning stands for our
baseline, is the method without any adaptation rather than
the fine-tuning, which utilizes a pre-trained model regularly
trained on the source domain. The CDFSL evaluations for
ResNet10 pre-trained on the miniImageNet and ResNet18
pre-trained on ImageNet, are reported in Tables 1 and 2,
respectively.

Results: When facing Cross-Domain targets, a ResNet10
architecture pre-trained on miniImageNet is evaluated
based on the CDFSL benchmark’s setting as presented in
Table 1. From the reported values, we can see the VDB out-
performed the last SOTA method, the Prediction-BN with
a subtle margin. Also the VDB is able to improve the
STARTUP method as a fancy domain adaptation method
with heavy training process utilizing target samples and
benefits from semi-supervised, and self-supervised losses
beside the supervised one. Surprisingly, it is observant that
the VDB rather than enhancing the FeaturNorm method,
FeaturNorm + VDB perform near the STARTUP, which is
a much heavier method. The CDFSL scores for Table 1

methods is: pure tuning (66.58 ± 0.67), AdaBN (67.33 ±
0.66), Prediction-BN (67.78 ± 0.66), VDB (67.88 ± 0.82)
, STARTUP (68.86 ± 0.65), STARTUP + VDB (68.97 ±
0.81), FN (67.05 ± 0.66), and FN + VDB (68.43 ± 0.81).
When it comes to the common and more practical source
domain in real-world scenarios, the ImageNet, we utilized
a publicly available pre-trained ResNet18 and evaluated it
in the CDFSL settings and on the target datasets. As it is
evident from Table 2, Although the AdaBN and Prediction-
BN, both underachieved the pure tuning, The VDB im-
proved the pure tuning’s performance by more than one per-
cent in the CDFSL score. A gain roughly in free, capable
of integrating with other domain adaptation methods. The
CDFSL scores for Table 2 methods is: pure tuning (66.90
± 0.64), AdaBN (65.00 ± 0.66), Prediction-BN (65.39 ±
0.65), VDB (68.17 ± 0.78), FN (68.09 ± 0.63), and FN +
VDB (69.01 ± 0.77).

4.3. VDB in near-domain

Catastrophic forgetting [16] as a caveat of domain adap-
tation techniques in a way that a comprehension model
tends to perform poorly in the source domain is a well-
known phenomenon among domain adaptation methods. In
order to examine the effect of VDB on forgetting the source
domain, we evaluated a pre-trained ResNet10 on miniIma-
geNet in Near-Domain setting in which P (X)s = P (X)t

and P (Y s|Xs) ̸= P (Y t|Xt), with the same setting as
the CDFSL benchmark but on novel classes of ImageNet
datasets as target domain.
From Table 3, although it was not expected, the VDB main-
tains the in-distribution performance even with a slight su-
periority compared to the same pre-trained model without
any modifications.

5. Conclusion

This work proposes a source-free domain-adaptation
method, the VDB, in the cross-domain few-shot learning
setting. A modification to the BN layer to be substituted
with it across a CNN in fine-tuning time. Empirical evalua-
tions reveal the effectiveness of the VDB against the domain
gap through the reduction in the representation gap. Also, it
performed as a new SOTA approach among the BN-based
source-free domain-adaptation methods on a sever few-shot
benchmark, the CDFSL. The VDB improved the perfor-
mance on miniImageNet as well as ImageNet as a more
general source domain wherein previous SOTA methods
underperform the pure fine-tuning.
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