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Abstract

Federated learning (FL) scenarios inherently generate a
large communication overhead by frequently transmitting
neural network updates between clients and server. To min-
imize the communication cost, introducing sparsity in con-
junction with differential updates is a commonly used tech-
nique. However, sparse model updates can slow down con-
vergence speed or unintentionally skip certain update as-
pects, e.g., learned features, if error accumulation is not
properly addressed. In this work, we propose a new scaling
method operating at the granularity of convolutional filters
which 1) compensates for highly sparse updates in FL pro-
cesses, 2) adapts the local models to new data domains by
enhancing some features in the filter space while diminish-
ing others and 3) motivates extra sparsity in updates and
thus achieves higher compression ratios, i.e., savings in
the overall data transfer. Compared to unscaled updates
and previous work, experimental results on different com-
puter vision tasks (Pascal VOC, CIFAR10, Chest X-Ray)
and neural networks (ResNets, MobileNets, VGGs) in uni-,
bidirectional and partial update FL settings show that the
proposed method improves the performance of the central
server model while converging faster and reducing the total
amount of transmitted data by up to 377⇥.

1. Introduction

With current trends in “Artificial Intelligence of Things”
and the rapidly growing number of intelligent devices [4],
distributed computing on the edge becomes increasingly
important. Federated learning (FL) allows multiple such
edge devices to jointly train a deep learning model on their
own local data and thus provides a basic level of privacy
to the participating instances, since the local training data
never leaves the devices. However, communication over-
head is a major bottleneck hindering a straight-forward scal-
ability of distributed learning systems. Client model up-

dates or gradients are of the same size as the full model,
which can be in the range of hundreds of megabytes for
modern computer vision models [5]. To enable distributed
training with many edge devices, extensive research on
weight (update) compression has been conducted in recent
years to improve computational and communication effi-
ciency [25]. Communication efforts can be reduced through
two basic concepts: 1) by reducing the communication fre-
quency of weight updates, i.e., multiple local iterations of
weight updates are performed before transmission; or 2)
by compressing the data to be transmitted, e.g., by apply-
ing sparsification, quantization or encoding methods. Of-
ten, those methods slow down the training process, as they
increase the number of iterations required to achieve a con-
verged state of the neural network (NN) parameters.

Moreover, finding optimal communication protocol-
specific hyperparameters (e.g., the number of communica-
tion rounds, the fraction of participating clients, or sparsi-
fication rates) becomes infeasible as the number of clients
increases. Therefore, the authors of [2] suggest to develop
easy-to-tune or auto-tuning algorithms for the instances that
compose the federation, i.e., the client networks, instead
of considering their network architectures, optimizers, and
regularizations as already established and aiming only at the
best accuracy of the central server model by optimizing the
communication protocol. This is one of the motivations for
our proposed filter scaling method, which is a minimally in-
vasive intervention in the computational graphs of the neu-
ral networks, but has a significant impact on the training
process. In this paper, we propose an FL pipeline in which
compressed communication data and low communication
frequency do not compromise on convergence speed. With
our studies we show that

• in various federated computer vision tasks, our pro-
posed method quickly adapts the knowledge of clients’
NNs from a given domain to new domains

• equipping NN layers with additional trainable scaling
factors accelerates and regulates the entire FL process
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• thanks to our sparsification, encoding and scaling tech-
nologies, the amount of transmitted data is minimal

• our proposed method leads to considerable speed ups
compared to prior work and improves communication
efficiency.

First, we discuss the relation to previous works (Sec-
tion 2), then we introduce our compression pipeline (Sec-
tion 3), the filter scaling mechanism and the training pro-
tocol (Section 4). Section 5 presents experimental results,
including the review of different optimization methods, the
effects of filter scaling, computational overheads, variation
in the number of clients and comparison with prior work.
Section 6 concludes the paper.

2. Relation to Prior Work

For data reduction efficacy, it is crucial to use appro-
priate scaling factors in quantized representations of neu-
ral networks. That is, assuming an integer aligned uniform
quantization scheme, the integer values are multiplied by a
scalar step size to better capture the underlying data distri-
bution. The work in [6] quantizes convolutional layers with
one such step size per kernel and dense layers with a global
step size. The step sizes are computed by a grid search, min-
imizing a mean squared error function. The authors showed
that, given a calibration data set, stochastic gradient descent
(SGD) can further refine the step sizes, improving top-1 ac-
curacy by up to 23%. The works in [3, 11] present direct
step size learning in the scope of so-called quantization-
aware training on a per layer granularity. As a counter-
part, in non-uniform quantization each quantization level
can be learned by a corresponding scaling factor indepen-
dently, i.e., they are not equidistantly distributed. This tech-
nique finds application in ternary networks [18], i.e., having
only two trainable quantization levels (“centroids”) per net-
work layer, or generally for low-precision networks to fine-
tune centroids [9]. Local Scaling Adaptation is a technique
that was adopted into the international standard ISO/IEC
15938�17 on neural network compression (NNC) [8,14] to
increase the model capacity and thus compensate for quan-
tization errors. It introduces multiplicative factors at each
output element of NN layers, which are then applied to the
quantized parameter representation.

In the context of distributed learning, several works com-
pensate quantization errors by keeping track of the differ-
ence between the original and quantized gradients [24]. The
work in [26] partitions gradients into blocks, where each
gradient block (i.e., each tensor in their example) is com-
pressed and transmitted in a 1-bit format with a correspond-
ing scaling factor. Another method is to reduce the com-
munication frequency and not send gradients each itera-
tion but weight updates as generalized gradients after clients
have performed multiple iterations, finally averaging the up-

dates on the server side (FedAvg) [19]. The work in [20]
demonstrates that also an Adam [13]-optimized variant of
FedAvg converges faster than traditional SGD, however, at
the cost of additionally transmitting per-parameter learning
rates and estimates of the 1st and the 2nd raw moment of the
gradient. Gradient sparsification methods only send gradi-
ent elements larger than a predefined threshold. One of the
first approaches was presented by [23], using a predefined
threshold, whereas in [16] a fixed sparsity rate is used. In
practice, however, it is non-trivial to choose suitable thresh-
olds or rates, as they can vary considerably for different
neural architectures and even different layer types, layer lo-
cations within the neural network, or in different training
iterations [1]. The architectures are predefined in most of
the works, which may not be the optimal choice for the par-
ticular FL scenario. Beyond improving communication set-
tings, FedNAS [10] proposes a paradigm for personalized
FL by adapting client model architectures.

Our approach exploits the effects of parameter scaling in
FL scenarios to speed up model convergence and reduce the
amount of data to be transmitted. Scaling factors added at
the granularity of convolutional filters allow overall sparser
updates in the FedAvg paradigm in which we do not com-
municate additional Adam information, such as learning
rates. Together with a dynamic threshold for (structured)
sparsification of weight updates, the scaling can faster adapt
client networks to new data domains and implicitly person-
alize them by amplifying and suppressing their local filters.

3. Compression Pipeline For Differential Neu-

ral Network Updates

In this work, one communication epoch t is defined as
follows: 1) clients are synchronized with the server, i.e.,
they download the latest server update and add it to their
model state, 2) clients optimize weights based on their local
data, 3) clients compute the weight difference �W wrt. the
previous state:

�W(t)
i = W(t)

i � W(t�1)
i (1)

with i 2 I = [1, . . . , #clients], 4) compression
of �W(t)

i , 5) clients send the compressed �Ŵ(t)
i to

the server, 6) the server S applies federated averaging:
�W(t)

S = 1
|I|

P
i2I �Ŵ(t)

i , 7) the server sends the up-

date �W(t)
S to clients for synchronization, and so on. This

basic communication protocol is in the spirit of federated
averaging (FedAvg) [19]. Unless otherwise specified, no
error accumulation is used.

An integral aspect of our proposed method is the com-
pression of weight updates, which is typically not part of
FedAvg. In a first preprocessing step, sparsification tech-
niques are applied which set unimportant weight update el-
ements to zero, resulting in sparser and more compressible
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tensors. Importance in this context describes the impact a
particular weight update element has on the computed out-
put values of the model. We use the magnitude of the weight
update elements as a heuristic for importance.

Sparsification can be carried out in an unstructured
or structured manner. In unstructured sparsification, any
weight update element with small magnitude is set to zero,
independently of its position. In contrast, structured sparsi-
fication sets an entire regular subset of parameters to zero,
e.g., convolutional filters, kernels, matrix rows or columns.
In our proposed method we use both paradigms, structured
and unstructured sparsification. For unstructured sparsifica-
tion we calculate the threshold ✓u parameter-wise by Gaus-
sian approximation, i.e.,

✓u = max(|mean(�W ) � � · std(�W )|,
|mean(�W ) + � · std(�W )|) (2)
s.t. ✓u � step size/2.

Here �W corresponds to a specific layer/parameter up-
date within the neural network update �W , std(·) describes
the standard deviation and � is a hyperparameter which
shifts the threshold and can be fine-tuned until a certain
amount of sparsity or model performance degradation is
exceeded. The step size is a global parameter used for
quantization. More precisely, in our uniform quantiza-
tion scheme, it is an integer range multiplied by a float
value which is used to generate quantization levels to which
the original weight update distribution is assigned to, i.e.,
[�q, . . . , �2, �1, 0, 1, . . . , p] · step size, q, p 2 N.

For structured sparsification, we use convolutional fil-
ters F 2 RN⇥K⇥K and output neurons O 2 RN as reg-
ular subsets of weight update elements when considering
convolutional layers Wconv 2 RM⇥N⇥K⇥K and dense lay-
ers Wdense 2 RM⇥N , respectively. Here, N refers to the
number of input channels/elements, M to the number of
output channels/elements and K ⇥ K to the convolutional
kernel size. For simplicity, we use the notation of filter spar-
sification, which in the following shall also include sparsifi-
cation of output neurons in dense layer types. As a threshold
for structured sparsification ✓s, we calculate the average of
filter update means, parameter-wise:

✓s =
�

M

M�1X

m=0

|�F̄ |, F 2 RN⇥K⇥K
. (3)

� is a hyperparameter which shifts the threshold and can be
fine-tuned. Structured sparsity can be exploited very effec-
tively in coding mechanisms, e.g., by skipping matrix rows
that belong to corresponding sparse filter updates.

Having introduced unstructured and structured sparsity,
the model update �W is uniformly quantized and encoded

with the NNC standard. Since the universal DeepCABAC
entropy encoder of NNC can represent frequently occurring
symbols with fewer bits, a high sparsity rate, i.e., a high
probability that a weight update element �wnkk = 0, re-
duces the model’s entropy and thus results in smaller repre-
sentations of �W .

4. Filter and Output Neuron Scaling for

Federated Learning Scenarios

In our proposed method, we introduce additional train-
able scaling factors S to compensate sparse network up-
dates �W . The trade-off is that the more zero elements
are transmitted during a weight update, the less learning
progress is possible because the current state of the model
cannot change significantly. At the same time, we aim to
have many zero elements to make the data more compress-
ible. With our proposed scaling factors, we intend to bal-
ance this trade-off, i.e., we compensate for the fact that
many update elements are zero by adjusting neighboring
weights with a multiplicative factor, even if the associated
neighborhood update is entirely zero.

The scaling factors are implemented at the granularity
of convolutional filters/output neurons which ensures a low
memory and computational overhead of the extra parame-
ters. For the implementation, the computational graph of
the neural network must be adapted by equipping convolu-
tional and dense layers with a multiplication function and
a multi-dimensional parameter whose first dimension’s size
corresponds to the number of output elements of the asso-
ciated layer, while all following dimensions are of size 1
(“unsqueezed”) to allow for correct tensor multiplication.
The overall number of dimensions is equal to the asso-
ciated layer’s number of dimensions, e.g., for a convo-
lutional layer Wconv 2 RM⇥N⇥K⇥K the scaling fac-
tors are S 2 RM⇥1⇥1⇥1, which allows each single filter
F 2 RN⇥K⇥K in Wconv to be multiplied by a scalar s:

F
⇤
m = Fm · sm, m 2 [0, . . . , M � 1]. (4)

In the following, s refers to a single scaling factor, i.e.,
s ✓ S ✓ S . Apart from the increased model capacity, the
additional parameters lead to different mechanisms taking
effect in the context of incremental weight update compres-
sion of NNs. Filter scaling speeds up the convergence of
the center model, although very sparse weight updates typ-
ically require many communication rounds to converge. As
shown in the experiments section, the scaling factors can not
only amplify certain convolutional filters but also attenuate
or even suppress redundant filters, i.e., feature extractors,
and increase the overall sparsity of model updates �W .

Algorithm 1 gives an overview of our proposed filter-
scaled sparse federated learning (FSFL) scheme. First,
clients Ci are synchronized with the server S by receiving
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Algorithm 1: Unidirectional filter-scaled sparse
federated learning (FSFL)

1 input initial model W(0), dataset D, #clients, T, E
2 output federated learned server model Ŵ(T )

S
3 init all clients Ci, i 2 I = [1, . . . ,#clients] are

initialized with the server S parameters Wi  WS.
Every client holds a different data split Ci  Di, Dvali .
Scaling factor initialization is Si  1, Si ✓Wi.

4 for t = 1, . . . , T do

5 Client side training:
6 for i 2 I do

7 downloadCi S(�W(t)
S )

8 W(t)
i = W(t)

i +�W(t)
S

9 W(t+1)
i = train(W(t)

i ,Di), s.t. S(t+1)
i = S(t)

i

10 �sW(t+1)
i = sparsify(W(t+1)

i �W(t)
i ,Di)

11 Ŵ(t+1)
i = W(t)

i +�sW(t+1)
i

12 S(1)
i  Ŵ(t+1)

i , perf = eval(Ŵ(t+1)
i ,Dvali)

13 for e = 1, . . . , E do

14 S(e+1)
i = train(S(e)

i ,Di)

15 if eval(S(e+1)
i , Ŵ(t+1)

i ,Dvali) � perf then

16 perf = eval(S(e+1)
i , Ŵ(t+1)

i ,Dvali)

17 Ŵ(t+1)
i  S(e+1)

i

18 end

19 end

20 �Ŵ(t+1)
i = Ŵ(t+1)

i �W(t)
i

21 uploadCi!S(�Ŵ(t+1)
i )

22 end

23 Server side aggregation:
24 �W(t+1)

S = 1
|I|

P
i2I �Ŵ(t+1)

i

25 Ŵ(t+1)
S = W(t)

S +�W(t+1)
S

26 end

27 return Ŵ(T )
S

its averaged update, then each client is trained on its local
data split Di. Note that in this training step the scaling fac-
tors Si remain unchanged. After optimizing the clients, the
differences wrt. the previous state are calculated and sparsi-
fied according to Equations (2) and (3). The sparsified up-
dates �sW(t+1)

i are then added to the previous model state
W(t)

i which will serve as a basis for scaling factor optimiza-
tion. For E sub-epochs, Si are trained, whereas the rest of
the network is frozen, including the running variances and
means of the BatchNorm modules. After each sub-epoch,
the scaled network is evaluated on the validation data set
of the respective instance Dvali . From all sub-epochs, the
network variant with the best validation performance is se-
lected and proceeded with.

If the scaling factor training does not improve model per-
formance compared to the sparsely updated model Ŵ(t+1)

i ,
the scaling factor updates are discarded. Otherwise, the pa-
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Figure 1. Learning rate schedules used with |T | =15 epochs.

rameter differences of the model are recalculated (consid-
ering also the scaling factor parameters), quantized and en-
coded prior to transmitting them to the server. Note that we
also investigated up- and downstream compression, where
the server update �W(t+1)

S is sparsified and scaled as well.
This is not shown in Algorithm 1.

4.1. Learning Rate Scheduling for Scaling Factors

In our studies, we tested different optimizer-learning-
rate-scheduler combinations, since the learning rate is cru-
cial for appropriate convergence of the defined optimization
problem. Even though the Adam optimizer [13] supports
individual adaptive learning rate estimates for different pa-
rameters, the resulting learning rates are sometimes unsuit-
able for gradient optimization of our present FL scenarios.
If the initial rate is too small, the optimizer is likely to con-
verge to local minima and does not improve performance
while simultaneously increasing the bitstream sizes due to
the additional scaling factors. On the other hand, larger
rates lead to coarser steps in gradient descent and thus are
suboptimal for loss optimization in the later epochs.

To limit Adam’s peak learning rate, a linearly decreasing
learning rate schedule can improve the results among oth-
ers (e.g., the cosine annealing learning rate scheduler with
warm restarts (CAWR) as proposed in [17]). The schedulers
are implemented such that after each batch of inferenced
data, the scheduler performs one step according to the func-
tions shown in Figure 1. The warm restarts of CAWR are
introduced after each main training epoch t, prior to training
the scaling factors S . We also ran experiments using SGD
for scaling parameter optimization.

5. Experiments

In the experiments, we evaluate our novel compression
pipeline for FL scenarios by deploying three widely used
neural network families (MobileNet, ResNet, VGG) and
three datasets which are introduced in this section. We in-
vestigated different optimization methods, communication
protocols, scaling factor parameterizations and their effects
on weight updates as well as computational overhead, vari-
ation in number of clients and comparison with prior work.
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Figure 2. Filter-scaled sparse federated learning (FSFL) of VGG11, ResNet18, MobileNetV2 and VGG16 (row-major order) solving the
Pascal VOC and Chest X-Ray classification tasks, respectively. The MobileNetV2 chart includes experiments with scaling factors attached
only to the output convolutions of each inverted residual block, compared to one experiment with full scaling factors (full-S). The VGG16
results include bidirectional compression of partial and end-to-end updates.

5.1. Experimental Setup

The used neural networks are pre-trained on ImageNet
and downloaded from the torchvision model zoo1. We
adapted the classifiers to predict 20, 10 and 2 instead
of 1, 000 classes for the computer vision datasets Pascal
VOC [7], CIFAR10 [15] and Chest X-Ray [12], respectively.
Training and validation data were randomly split into non-
overlapping client data sets Di. Note that for the sake of
generalization, the optimization of scaling factors is eval-
uated locally using the validation data splits Dvali and fi-
nally tested at the server’s global model on the test data
split. The batch sizes used are 64 for VOC and CIFAR
and 100 for Chest X-Ray. The VGG11 network to solve
the CIFAR task, named VGG11CIFAR10 in the following,
was thinned to [32, 64, 128, 128, 128, 128, 128, 128] convo-
lutional filters and 128 input neurons in the dense layers.

Unless otherwise specified, model weights W are
transfer-learned in the FL scenarios as described in Sec-
tions 3-4 for |T | = 15 epochs using Adam with an initial

1https://pytorch.org/vision/stable/models.html

learning rate of 1e � 5. Since we deploy  16 clients and
assume reliable communication with no specific hardware
limitations, our setups fall into the cross-silo FL category.

For uniform quantization of weight updates �W , we
use a step size of 4.88e � 4 and 2.44e � 4 for uni- and
bidirectional FL settings, respectively. Scaling parameter,
bias and BatchNorm parameter updates are quantized with
a step size of 2.38e � 6. For further details on software
implementation and data splits, we refer to the Appendix A.

5.2. Results for Different Optimization Schedules

Figure 2 depicts the federated learning process in terms
of server model performance and overall transmitted data
between clients and server. Specifically, each data point in
the charts represents one round of communication and indi-
cates 1) how much data in bytes has overall (accumulative)
been transmitted since the last round and 2) which perfor-
mance (accuracy, F1 score) has been achieved by the aggre-
gated server model. Thus, our goal is to shift the curves
as far as possible to the upper left corner of the charts to
achieve fast and communication-efficient FL.
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We compare different configurations: The baseline con-
figuration neither includes filter scaling nor sparsification,
the sparse baseline includes sparsification only and all other
curves represent our FSFL method of scaled and sparse dif-
ferential filters with various optimizers (Adam, SGD) and
learning rate schedulers (no schedule, linear, CAWR).

It is evident that training converges significantly faster
when applying filter scaling. Also, the cumulative sum of
transmitted data is reduced, which leads to significant sav-
ings in data traffic, especially for VGG11. The Adam opti-
mization of scaling factors outperforms SGD optimization
in all cases, so we refer to the Appendix B for SGD re-
sults. For Adam optimization, linear and CAWR sched-
ules improve the training process in different regimes: in
later epochs, the use of CAWR often generates models with
higher performance, however, in the earlier epochs a linear
schedule achieves better top-1 accuracy/F1 scores.

In literature, it has been shown that it is meaningful to
compress weight updates in a bidirectional fashion, i.e.,
center-to-clients and clients-to-center communication. We
tested this scenario with the Chest X-Ray dataset as it is mo-
tivated by a possible real world scenario, where a number of
hospitals jointly train the detection of pathological evidence
in x-ray data and a central server regularly updates the local
detectors in the hospitals. As can be seen in Figure 2 (bot-
tom right), also in the bidirectional compression scenario
filter scaling can contribute to faster convergence, bitrate
savings and improved model performance. And finally, we
also compare a full model update (“end2end”) with a partial
update which only updates the classifier part of the VGG16
network consisting of a BatchNorm module and two dense
layers. Here, only 258 scaling factors were applied, still the
improvements are substantial.

The achieved gains seem to be counter-intuitive at first
glance, as additional scaling parameters (with a fine quanti-
zation level, i.e., less lossy) have been added to the encoded
bit stream and still the total bit rate has decreased. Thus, this
characteristic is closer examined in the following section.

5.3. Effect of Filter-Tuning on Weight Updates

The scaling factors can amplify or suppress the impact
of specific filters on the overall loss function, e.g., if a scal-
ing factor s is close to zero, the entire convolutional filter
only marginally contributes to the net output as the gener-
ated feature map will be quite sparse or of very low mag-
nitude. This also has a large impact on the weight updates
�W and can be particularly advantageous for FL in com-
puter vision applications to eliminate redundant or unused
feature extractors learned in divergent image domains.

Having a closer look at Figure 3, we can observe differ-
ent behaviors of scaling factors S dependent on their loca-
tion within the neural network. On one hand, scaling fac-
tors in more shallow layers (close to the input) tend to con-
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Figure 3. Scaling factor statistics for MobileNetV2 during 15
epochs of training of three layers at different network positions:
first inverted residual block, 17th inverted residual block, and the
dense output layer (from top to bottom).
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Figure 4. Sparsity of two scaled & unscaled MobileNetV2 clients.

verge to values close to 1, i.e., they do not change much and
thus only marginally influence the computational graph. In
deeper located layers, the scaling factors on the other hand
converge to values of s ! 6 while simultaneously suppress-
ing other filters with values close to zero. Interestingly, in
the dense output layer (bottom subplot of Figure 3) all out-
put neurons are somehow amplified due to scaling.

A positive side-effect of these mechanisms is that also
the filter weight updates �W result in sparser tensors when
using trainable scaling factors S . It is not surprising that
filters F with corresponding s ! 0 generate sparse out-
put features. Consequently, the backpropagation algorithm
computes smaller gradients for the associated weights. An-
other effect might be that optimized s make further training
of filter weights redundant as the loss wrt. the filter F has
already converged due to “macro training” through s.

Figure 4 illustrates the sparsity of two clients per epoch

3372



Table 1. Number of additional parameters and training time.

model #paramsorig #paramsadd tadd

MobileNetV2 2.3M 2,836 1.17⇥
with full-S 2.3M 17,076 1.31⇥
ResNet18 11.2M 4,820 1.62⇥
VGG11 128.8M 10,964 1.65⇥
VGG11CIFAR10 0.8M 1,002 1.68⇥
VGG16 16.8M 4,482 1.60⇥
VGG16partial 2.1M 258 1.40⇥

when filter scaling and sparsification are applied vs. spar-
sification only. In the first few epochs, �W is equal to or
sparser than �Wscaled, however in most of the epochs fil-
ter scaling increases sparsity, even up to 100% (meaning
that exclusively scaling factors S are sent by the client, i.e.,
macro training only). In summary, even though additional
scaling factors are added to the transmitted bit streams, their
impact increases the sparsity of filter updates, resulting in a
final overall data reduction.

5.4. Computational and Memory Overhead

In addition to the experimental results above, Table 1
gives an insight into the number of scaling parameters S
and additional training time required. It shows that S only
accounts for 0.009% to 0.748% of the total network parame-
ters, i.e., the extra storage and size of the compressed update
is small. The additional processing time of scaling parame-
ter training does not directly scale with the total number of
S . It also depends on the number of layers equipped with S
and the overall size of the network. This is due to the fact
that the optimization algorithm considers the whole compu-
tational graph of the network for gradient propagation, even
if only S is updated. However, performing one training it-
eration to update W compared to performing two iterations,
one for W and one for S , requires on average only 1.17⇥
to 1.68⇥ the original computation time, which was also re-
flected in the run times of our experiments. This extra effort
can be interpreted as an upper-bound and there are options
to minimize the effort, e.g., by

1) applying scaling parameter training less frequently;
2) equipping less layers with S , e.g., as tested with Mo-

bileNetV2, where we only equipped the final convolutional
layer of each inverted residual block instead of all convolu-
tional layers therein (cf. “full-S” in Figure 2 and Table 1);

3) focusing S to be applied in deeper layers, as shown
in partial updates of the VGG16 network, which converged
as the end-to-end training counterpart (see also Section 5.3,
where we showed that scaling factors do not change much
in shallower layers);

4) considering smaller training splits to train S , i.e., not
the full training split which is used to train W .
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Figure 5. ResNet18 with error accumulation (residuals) and varia-
tion in number of clients.

5.5. Increasing the Number of Clients

The purpose of the following analysis is to investigate the
potential scalability of our approach, i.e., whether filter scal-
ing can still achieve fast and communication-efficient FL as
the number of clients increases. In the Pascal VOC scenario,
we increased the number of clients from 2 to 4 and 8. As this
FL scenario with #clients � 4 barely achieved representa-
tive accuracies without our FSFL method, we implemented
error accumulation as used in [21] after sparsification:

�W(t+1)
i = R(t)

i + W(t+1)
i � W(t)

i (5)

with R(t+1)
i = �Ŵ(t+1)

i ��W(t+1)
i and Equation 5 being

inserted in Algorithm 1, line 10.
The described error accumulation stores the difference

of the compressed update and the original full-precision up-
date locally (“residual”). According to this scheme, also
small update elements in terms of magnitude can sum up
until they exceed a certain threshold. Compared to the ex-
perimental results without residuals (cf. ResNet18 in Fig-
ure 2 vs. Figure 5 with #clients: 2), residuals produce up-
dates with a higher bitrate, as more information is accessi-
ble and will be send. The performance of the center model
is slightly increased, however if the number of clients in-
creases, convergence speed decreases as a consequence of
the higher degree of distribution in the system and the rising
non-IID-ness in data due to random partitioning of client
data (see Appendix C). As our primary goal is faster con-
vergence and bitrate reduction, we don’t address robustness
on non-IID data in the scope of this work.

The results in Figure 5 show that FSFL (“scaled”) again
outperforms all unscaled training processes, which becomes
even more evident as the number of clients increases. The
relative improvement in top-1 accuracy is highest for the
scenario with 8 clients equally involved in federated learn-
ing, which may be a tentative indicator that the proposed
method is scalable.
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Table 2. Comparing different approaches from literature and combinations with parts of our proposed compression pipeline with our filter-
scaled and sparse FL method (FSFL). Experiments were conducted using a thinned VGG11 solving CIFAR10 with 2, 4, 8 and 16 clients
for t = 1, ..., T = 90 epochs. A constant sparsity rate of 96% was used for sparse ternary compression (STC) and our methods.

|I| = 2 Clients |I| = 4 Clients |I| = 8 Clients |I| = 16 Clients

Acc. = 70.0 Acc. = 76.7 Acc. = 64.3 Acc. = 71.6 Acc. = 57.9 Acc. = 67.2 Acc. = 48.2 Acc. = 61.4P
data t

P
data t

P
data t

P
data t

P
data t

P
data t

P
data t

P
data t

FedAvg [19] 387.13 MB 58 ? ? 747.09 MB 56 ? ? 1,467.02 MB 55 ? ? 2,988.37 MB 56 ? ?
FedAvg [19]† 10.54 MB 58 ? ? 17.82 MB 55 ? ? 31.86 MB 55 ? ? 55.48 MB 56 ? ?
STC [21]† 4.33 MB 73 ? ? 8.65 MB 74 ? ? 16.56 MB 72 ? ? 34.11 MB 76 ? ?
Eqs. (2) + (3) 3.71 MB 90 ? ? 7.23 MB 90 ? ? 14.24 MB 90 ? ? 27.46 MB 90 ? ?
STC [21]‡ 1.97 MB 31 5.53 MB 86 4.34 MB 34 10.59 MB 83 7.81 MB 31 21.79 MB 86 10.63 MB 22 42.81 MB 86
FSFL 1.68 MB 36 3.92 MB 90 3.61 MB 39 8.09 MB 90 6.16 MB 34 15.94 MB 90 7.93 MB 23 31.34 MB 90
† Literature method with DeepCABAC encoding. ‡ Literature method with DeepCABAC encoding and our proposed filter scaling, cf. Equation (4).

? configuration has not achieved the target accuracy within 90 communication epochs

5.6. Comparative Results

After investigating several parameter variations of our
FSFL method, this subsection provides final results in com-
parison to current state-of-the-art methods. Here, Federated
Averaging (FedAvg [19]) is a widely used baseline algo-
rithm for communication-efficient FL. Accordingly, there
are numerous works in the literature that propose improve-
ments for FedAvg, of which Sparse Ternary Compression
(STC [21]) is a regularly cited improvement [2, 22]. STC
converges faster when compared to other averaging algo-
rithms like FedAvg while less bits are communicated over-
all. Because of these advantages, we also compare our
method with STC. The STC protocol compresses communi-
cation via sparsification, ternarization, error accumulation -
according to Equation (5) - and Golomb encoding. For bet-
ter comparability, and since DeepCABAC also makes use
of Golomb encoding for binarization, we encoded weight
updates with DeepCABAC in our STC implementation.

Table 2 shows the respective experimental results. We
deployed a thinned VGG11, as used in [21], which was fed-
erally learned on 80% of the CIFAR10 training data (20%
were used as validation data). For the FL scenario, we used
2, 4, 8 and 16 clients which were trained for T = 90 epochs
with a constant sparsity rate of 96%.

First, we executed FedAvg, where the uncompressed
client model updates are sent after each epoch, then aver-
aged on the server side and broadcast to the clients (here
without server-to-clients compression, which holds for all
results in Table 2). Second, we applied our proposed
uniform quantization and DeepCABAC encoding to the
FedAvg pipeline, which reduced the amount of communi-
cated bits by a factor of ⇡ 54. Third, STC is applied to
the weight updates. Different from the experimental setup
in [21], we did not use an “equivalent” delay period of n

iterations for FedAvg, consequently STC introduces addi-
tional sparsity of weight updates, leading to convergence at
later epochs t. In the fourth row of Table 2, we provide re-
sults for applying our proposed sparsification to the weight

updates which further decreases the amount of communi-
cated bits, however, at the cost of additional training epochs
to converge. This can be explained due to the structured
sparsity introduced in the weight updates which is not fine-
tuned here but fixed to 96% for better comparison. In a next
step, we applied our filter scaling method to STC and to our
proposed sparsification scheme (FSFL).

With filter scaling enabled, both methods converge sig-
nificantly faster, i.e., they require less communication
rounds to achieve the target accuracies, while the amount of
transmitted data is reduced by up to ⇡ 377⇥ compared to
FedAvg, and achieve higher top-1 accuracies overall com-
pared to unscaled configurations. In accordance with the
previous section, the benefits of filter scaling increase as
the population of clients grows. However, the accuracy
achievable within 90 epochs, and thus the overall conver-
gence speed, decreases with a larger number of participat-
ing clients (as also described in section 5.5).

6. Conclusion

In this paper we presented a fast converging compression
pipeline for FL scenarios in computer vision applications.
The pipeline applies structured and unstructured sparsifi-
cation, and equips weight layers with additional trainable
scaling factors at the granularity of convolutional filters. We
showed that the scaling factors can amplify or suppress the
impact of specific filters on the overall loss function and
by doing so can compensate very sparse updates while im-
proving convergence speed. As a result, overall data and bit
stream sizes are reduced. The proposed method was tested
and verified in its data reduction capability with different
FL settings, including a learning scheduler variation, single
(server-to-clients) and double (also clients-to-server) com-
munication, end-to-end and partial updates, as well as FL
systems with different number of clients. Compared to pre-
vious work, the proposed scaling method converges faster,
achieves higher accuracy and reduces the amount of total
transmitted data by up to ⇡ 377⇥.
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