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Abstract

Federated learning (FL) is an attractive distributed ma-
chine learning framework due to the property of privacy
preservation. The implementation of FL encounters the
challenge of the Non-Independent and Identically Dis-
tributed (Non-IID) data across devices. This work focuses
on mitigating the impact of Non-IID datasets in wireless
communications. To achieve this goal, we propose a gen-
erative models-based federated data augmentation strategy
(FedDA) with privacy preservation and communication ef-
ficiency. In FedDA, the Conditional AutoEncoder (CVAE)
is adopted to generate the missing samples on Non-IID
datasets. The Knowledge Distillation Mechanism is intro-
duced to achieve Federated learning, through which knowl-
edge is shared, rather than model parameters or gradi-
ents. The knowledge is designed based on the hidden-layer
features to reduce the communication overhead and pro-
tect raw data privacy. Meanwhile, to generate cross-class
samples that are easy to classify, the latent variables in
CVAE are constrained and the attention mechanism is in-
troduced. Extensive experiments are conducted on Fashion-
MNIST datasets and CIFAR-10 with different data distribu-
tions. The results show that FedDA can improve the model
accuracy by up to 8% while reducing the communication
overhead by up to 2×, compared to classic baselines with
highly Non-IID data.

1. Introduction
Federated learning (FL) [10,18,31] has been proposed as

an attractive distributed machine learning framework with
privacy preservation and has been applied to many real-
world applications, e.g., smart healthcare [17], automated
industrial processes [23], and vehicular services [20]. In
FL, instead of having to share private raw data, devices keep
their data locally and only share information of the locally
trained model. As a distributed system [2], FL faces the
challenge of Non-Independent and Identically Distributed
(Non-IID) data due to different local environments and

characteristics of devices [16, 29]. In wireless communica-
tions, the limited link resource is another challenge [14,33].

To handle Non-IID data, some approaches [18, 22, 27]
have shared parameters based on the weights or gradients
of target models. Unfortunately, due to limited bandwidth
in wireless communications, it is difficult to share so many
parameters between devices and the server [5]. Other ap-
proaches [7,24,31,36] have concentrated on creating a cen-
tral dataset in the server, through which local missing data
on devices can be supplemented. The data in the central
dataset is composed of local raw samples uploaded by each
device [7, 24, 36], or is generated by generators trained on
local raw samples [31]. While sharing raw data or generator
parameters are good solutions for the challenge of Non-IID
data, they compromise the privacy of the raw data.

Inspired by the research [7, 22, 31, 36], we design a fed-
erated data augmentation strategy, FedDA, to address the
Non-IID challenges in wireless communication. The pur-
pose of FedDA is to create an IID foundation in each device
with the cooperation of the central server. The key charac-
teristics of FedDA are concerned with efficient communi-
cation between devices and the server, and the protection of
data privacy.

To achieve data augmentation, the generative model
[4, 25] is leveraged in each device. Considering the storage
space and processing capacity of the wireless device, Con-
ditional AutoEncoder (CVAE) [25] is chosen as the gen-
erator. CVAE in each device is trained under FL settings
to utilize the data from all devices. To implement Feder-
ated learning, the knowledge distillation mechanism is in-
troduced. In this mechanism, one neural network can learn
some useful information through the knowledge from other
neural networks [1, 6, 15, 30]. In FedDA, the knowledge is
designed based on the typical hidden-layer features for each
class and shared between devices and the server. To extract
general knowledge for each category the attention mecha-
nism [35] is introduced. Since knowledge takes up fewer
bits compared to model weights or gradients, the sharing
of knowledge consumes fewer communication resources.
Without sharing generators’ weights or generated samples,
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Figure 1. The overall procedure of FedDA. The dotted bidirec-
tional arrows represent the upload and download process between
devices and the server. The hollow arrow indicates the expansion
of the details.

the privacy of the raw data is protected. In addition, to gen-
erate cross-class samples that can be easily distinguished,
the CVAE is constrained by the sampling of latent variables.

The procedure of FedDA in wireless communications is
briefly described below. An initialized CVAE in each device
is trained by the local Non-IID dataset with the constrained
mean value of the hidden variables. Meanwhile, attention-
based knowledge is calculated and utilized to restrain the
federated training process. The main procedure of FedDA
is demonstrated in Fig. 1.

The main contributions are summarized as follows:

• We propose a Federated data augmentation strategy,
FedDA to address the Non-IID challenges in FL. The
FedDA can provide an IID foundation for target tasks
in each device based on the local Non-IID dataset. The
separation of data augmentation from the target task
addresses the Non-IID data challenge while helping
the target task to achieve higher accuracy.

• Federated data augmentation strategy is achieved by
generative models with privacy-preserving. CVAEs
are utilized as generative models to fit the characteris-
tics of wireless devices. Meanwhile, to generate cross-
class samples that can be easily distinguished, the la-
tent variables of CVAE are constrained and the atten-
tion mechanism is introduced.

• Knowledge distillation mechanism is employed to
achieve Federated data augmentation in wireless com-
munications. The knowledge is designed based on the
per-label typical hidden-layer features to reduce the
communication overhead and protect raw data privacy.

• The experiments show that FedDA can improve the
model accuracy by up to 8% while reducing the com-
munication overhead by up to 2×, compared to classic
baselines with highly Non-IID data.

2. Related Work

Some research has focused on mitigating the impact of
Non-IID datasets in wireless communications. Sattler et
al. [22] have designed a sparse ternary compression FL
framework for low-bitwidth communication with Non-IID
data. Rothchild et al. [21] have compressed model gradi-
ents by a count sketch to reduce shared bits in each global
round and address the Non-IID data challenge. Vahidian
et al. [27] have proposed a model pruning approach to re-
duce the shared bits in each global and mitigate the accu-
racy degradation caused by Non-IID data. Zhao et al. [37]
have derived a tractable upper bound to reduce the impact of
non-IID data and designed a joint optimization algorithm to
keep the balance between the model accuracy and the cost.
Li et al. [13] have designed a Lottery Ticket hypothesis-
based FL, in which, lottery ticket networks are designed for
learning and communication.

Some research has concentrated on data augmentation
for Non-IID datasets. Zhao et al. [36] have proposed a
data-sharing strategy by creating a cloud dataset, which is
a collection of raw samples uploaded by each device. The
cloud dataset is downloaded by all the edge devices to sup-
plement missing local data. Jeong et al. [7] have built the
cloud dataset, as research [36]. Thereafter, a global gen-
erator is trained on that cloud dataset and downloaded by
each device to augment the local dataset. Duan et al. [3]
have proposed a Self-balancing framework, in which each
client needs to send its label distribution information to the
server. Wen et al. [31] have designed a generator-sharing
strategy, in which, the weights of generators are shared be-
tween devices and the server. This work has paid attention
to defending against Byzantine devices’ attacks in classifi-
cation tasks. Shin et al. [24] have proposed an XOR-based
one-shot FL framework. The core idea is to collect other
devices’ encoded data samples, which are decoded only us-
ing each device’s own data samples. Yoon et al. [34] have
designed a mean augmented method by exchanging the av-
eraged batch local data with the server.

3. FedDA

This section includes two sections: (1) We describe the
system modeling and introduce our optimization problem.
(2) We present the details of FedDA. The local training pro-
cess in devices is defined as the local iteration. The com-
munication iteration between devices and the server with
upload and download processes is defined as the global iter-
ation. In each global iteration, the knowledge uploaded by
devices is defined as the local knowledge, and the knowl-
edge downloaded from the server is defined as the global
knowledge. The local training iteration for the generator
in each device is defined as the local iteration. The main
notations in sections 3, 4 are summarized in Table 1.
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Table 1. Description of main notations

Notation Description

D Dataset
B Batch size
x Raw data sample

y, y = (1, . . . , Y ) Label of a sample
r, r = (1, . . . , Y ), (r �= y) Label of a sample

h, h = (1, . . . , H) Index of a sample in y class
NI Non-IID
IID IID
x̃ Generated sample

∗ Server
n, n = (1, . . . , N) Index of a device

m,m = (1, . . . , N),m �= n Index of a device

F Neural network function
w Model weights
η Local learning rate
L Loss function

k Knowledge
u, u = (0, . . . , U) Index of the global iteration
v, v = (0, . . . , V ) Index of the local iteration

G Generator
Enc Encoder of CVAE
Dec Decoder of CVAE
z Latent variables
μ Mean value of latent variables
σ Standard deviation of latent variables
φ Weights of encoder
θ Weights of decoder

A Attention Score
KD Process of knowledge distillation
λ Weight of KD loss function

DKL Distance of KL-divergence

Q Number of imbalanced classes
IR Imbalance-ratio

3.1. Problem Statement

We assume that there is a server and N devices in the
wireless network. Each device is connected directly to the
server, and there is no connection between devices. Each
device hosts local data processing units and the same initial-
ized generative networks. The server collects and processes
the information uploaded from the devices and returns the
processed data to the devices.

In each device, there is a local and labeled dataset D :=

(xh, y)
H

h=1, y = (1, . . . , Y ). These data can be described by
the joint probability between features x and labels y. Statis-
tical models in each device draw examples (x, y) ∼ P (x, y)
from the local data distribution. Compared with a dataset
in centralized machine learning approaches with joint dis-
tribution P∗(x, y), there are N datasets in N devices with

distribution Pn(x, y), n = (1, . . . , N). To protect data pri-
vacy, FL cannot assemble datasets from individual devices
into a centralized dataset D∗ in the server. Therefore, we are
committed to obtaining a dataset in each device with a data
distribution P̂n(x, y) similar to that of a centralised dataset
P∗(x, y).

When IID data is referenced, the distribution of datasets
across devices is the same (Pn(x, y) = Pm(x, y), n =
(1, . . . , N),m = (1, . . . , N),m �= n). In wireless com-
munications, considering the scenario of Non-IID data, the
data tend to deviate from being identically distributed across
devices, Pn(x, y) �= Pm(x, y). To analyze the data distri-
bution, we rewrite Pn(x, y) as Pn(x|y)Pn(y). We focus
on the label distribution skew, where the marginal distribu-
tions Pn(y) and Pm(y) may vary across devices, even if
Pn(x|y) = Pm(x|y) is the same.

For FedDA, the Non-IID dataset DNI is acted as the in-
put in each device. We are committed to adjusting the joint
distribution in devices to reduce the differences between
Pn(x, y), Pm(x, y) and the hypothetical P∗(x, y). There-
fore, the generator is introduced to build an IID dataset
DIID in each device. The data distribution can be calcu-
lated as P (x, y) = P (y|x)P (x). Through the trained gen-
erators, the marginal distributions Pn(x) and Pm(x) are ex-
pected to be as equal as possible. Compared with generators
of vanilla VAEs, the CVAEs are employed to adjust the con-
ditional probabilities so as to make Pn(x|y) and Pm(x|y) as
equal as possible.

With the above analysis, the design goals can be de-
scribed in the following aspects.

• Privacy. To protect data privacy in each device, it is
essential to design a framework that keeps each de-
vice’s data locally without sharing. Meanwhile, we are
dedicated to designing a federated training scheme for
generators that do not share model weights and gener-
ated samples.

• Low communication overhead. The total communi-
cation overhead of FL relates to the shared bits in each
global iteration and the number of global iterations.
We are devoted to minimizing the total communication
overhead by reducing the shared bits in each iteration
and decreasing the number of iterations.

• High Quality. FedDA needs to ensure that the quality
of the generated samples is within the desired range on
Non-IID data.

3.2. Federated Data Augmentation Strategy

The FedDA addresses the Non-IID data challenge by
building an IID data foundation. The generative mod-
els are applied to achieve data augmentation. To prevent
the privacy of local data, some noise samples, initialized
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Figure 2. The training process of the knowledge distillation in
FedDA. The server and two devices are selected as examples. The
hollow arrow indicates the expansion of the details. The ↑ repre-
sents the upload and the ↓ represents the download.

by Laplace noise [32], are mixed into each device’s local
dataset.

Generative models in FedDA are chosen based on the
characteristics of wireless communications. Considering
the insufficient computing power and storage spaces in
common devices, VAE-based generators [9] are more suit-
able than GAN-based generators [4]. As the images gener-
ated by the baseline VAE have no labelling information, the
generated samples cannot supplement the Non-IID dataset
by class. Therefore, Conditional variational autoencoder
(CVAE) [25], the variant of VAE with label information, is
introduced due to the ability to generate samples with clas-
sification information.

CVAE is a directed probabilistic graphical model of the
marginal likelihood for data samples [25]. In CVAE, an en-
coder and a decoder are two components. The encoder is
to infer the posterior q(z|x,y), where z is the latent vari-
ables, x is the input data sample, and y is employed to de-
note “condition”, which contains the label information, and
encoded as one-hot vectors. After modeling the posterior,
the decoder models the conditional likelihood of x with the
latent variables z and the “condition” by p(x|z,y). The de-
coder outputs the generated samples with label information.
The loss function of CVAE is:

LCV AE =

−DKL(qφ(z|x,y)||pθ(z|y)) + Eqφ(z|x,y)(log pθ(x|z,y)),
(1)

which represents the variational lower bound of marginal
likelihood log p(x|z,y).

There are two constraints during the training process
of CVAE: (1) The sampling process for latent variables is
constrained. (2) The data reconstruction is regularized by
knowledge distillation in the FL way.

3.2.1 Sampling of Latent Variables

For CVAE, the mean value of latent variables for each
class is constrained so as to cross-class samples that can

Per-label knowledge

Encoder Decoder

z

Per-label typical 

hidden-layer features

Condition

Figure 3. The shared information of FedDA in each global itera-
tion. Each device shares the local knowledge based on the typical
hidden-layer features of each class.

be easily distinguished. The mean value of latent variables
for each class is assigned a unique value to distinguish the
peaks of the Gaussian curves from the different categories.
The latent distribution is constrain by predefining the prior
p(x|z,y) to Gaussian N (μ, σ2), where the value of μ sat-
isfies the 3σ Rule. Notably, the mean value for the same
class is set to be the same across devices.

3.2.2 Reconstruction Process of VAE

To adjust the conditional probability P (x|y) across de-
vices and leverage sample information from all devices, the
CVAE is regularized in a federated manner. The Knowledge
Distillation Mechanism [6,30] is introduced to minimize the
difference between the local knowledge kG,n from devices
and the global knowledge kG,∗ from the server.

The distance between the local and global knowledge is
measured by the Kullback-Leibler divergence and reduced
through the following loss function:

LKD =

Y∑

y=1

DKL(k
y
G,n,k

y
G,∗). (2)

Therefore, the loss function of CVAE is written as:

LFedDA = min
θ,φ

(LCV AE + λLKD), (3)

where the parameter λ is related to the proportion of the two
parts of the loss function. The training process for CVAE is
shown in Fig. 2.

Knowledge should be set up to suit the FL settings and
wireless communication environment. The local knowledge
kG,n is designed based on the hidden-layers of the decoder
to protect privacy. Per-label typical hidden-layer features
from the fully connected layer before the deconvolutional
layer are exploited as knowledge. Since the knowledge
takes up fewer bits compared to model weights or gradi-
ents, sharing knowledge consumes fewer communication
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Algorithm 1 Federated Generation

Require: The value of z is set to be the same across de-
vices.

1: procedure SERVER EXECUTES:
2: for u-th global iteration do:
3: for label y = 1 . . . Y do
4: for device n = 1 . . . N in parallel do
5: ky,u+1

G,n ← DeviceUpdate(ky,uG,∗)

6: ky,u+1
G,∗ ← 1

N

∑N
n=1 k

y,u+1
G,n

7: function DEVICEUPDATE(kyG,∗)
8: for v-th local iteration do: B ← DNI

9: for sample x ∈ B do
10: z ← Enc(x, y) ∼ N (μ, σ)
11: x̃ ← Dec(z, y)
12: kyG,n ← Ay

13: cntyG,n ← cntyG,n + 1

14: for label y = 1 . . . Y do
15: kyG,n ← F y

G,n/cnt
y
G,n

16: calculate LKD using Eq.(2) based on kyG,n and
kyG,∗

17: g ← ∇(LCV AE(x, c; θ, φ) + LKD)
18: φ, θ ← Update parameters using gradients g
19: return kyG,n(y = 1, . . . , Y ) to the server

resources. The shared information between devices and the
server is shown in Fig. 3.

To optimize the shared knowledge, the attention score
[28] is introduced. The attention score is a measurement,
introduced from the attention mechanism, which attempts to
capture the correlations among different information within
the same sequence. In FedDA, the attention score is applied
to signify which information the decoder is most concerned
with.

The formula of attention score can be described as map-
ping a “query” (Q) and “key” (K) to an output. The defi-
nitions of Q, K are as follows: Q = XWQ,K = XWK.
The character X is an input. Parameters concerning WQ

and WK are trained. The matrix of outputs is calculated as
Eq. (4):

Ã = softmax(
f(Q,K)√

dK

). (4)

The Ã is defined as the attention score to explore the re-
lationship of similarity between Q and K. The character
of dk is the vector to control variance. As the attention
score is acted as the knowledge, the attention score is sim-
plified to a nonparametric version. The element values of
dK are set to 1. The both characters of “query” (Q) and
“key” (K) represent the vectors, defined by features Z from

the fully connected layer before the deconvolutional layer:
Q = Z,K = Z.

To reduce the communication overhead, the attention
score is calculated by the Hadamard product [8]. Hadamard
products were used to extract the significant and general in-
formation in each category. Meanwhile, the communica-
tion between devices and the server is benefited from the
Hadamard products with few parameters.

The calculation of the Hadamard product-based attention
score is as follows. Firstly, the unnormalized attention score
Ây with “condition” y is computed by the Hadamard prod-
uct Ây = [âi

y] = zy ◦zy ∈ R1×H , where the z is the vector
of typical feature with 1 ×H dimensions with “condition”
y. Then, the attention score is normalized by the softmax
function to make it comparable between different devices.
The normalized form Ay = [ayi ] ∈ R1×H is as follows:

ayi =
ea

y
i

H∑
j=1

ea
y
j

=
ez

y
i ◦ zy

i

H∑
j=1

ez
y
j ◦ zy

j

.
(5)

Finally, the attention scores with condition y is averaged:
Ay = 1

Hy

∑Hy

h=1 Ah. The mini-batch is set to unify the
number of input samples.

The local knowledge ky
G,n is defined by per-label aver-

aged normalized attention score Ay . The global knowl-
edge ky

G,∗ from the server is calculated by averaging
the local knowledge from participating devices: ky

G,∗ =
1
N

∑N
n=1 k

y
G,n.

3.2.3 Main Procedure of FedDA

The main procedure of FedDA is shown in the following
process. A global generator, CVAE, is initialized. In each
device, the global CVAE is acquired and treated as the lo-
cal generator. The mean value of the hidden variables for
each class is assigned a unique number which is set to be
the same across devices. From the first round of local itera-
tion, the local generator is trained by the local data, and the
local knowledge kG,n based on the attention score is cal-
culated. After the v-th local iteration, generators start the
first global iteration in a federated manner. In devices, the
local knowledge is uploaded to the server. The index of the
local iteration is recounted from 0-th, and the index of the
global iteration is increased by one. In the server, the global
knowledge kG,∗ is calculated and downloaded by each de-
vice. In each device, the global knowledge act as guidance
in each local iteration to update the local generator. After
the v-th local iteration, the local knowledge is uploaded to
the server for the next global iteration. The algorithm for
the main federated training procedure of the generator in
FedDA is shown in Algorithm 1.
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Table 2. Average accuracy of CNN-4 on Fashion-MNIST.

Dataset Standalone FedAvg XorMixFL FAug-Standalone FedDA-Standalone FedDA-FedAvg

Class: 5
IR = 3 82.76±0.51 88.32±0.78 91.29±0.47 90.87±0.54 90.62±0.61 91.55±0.68

IR = 6 80.35±0.68 87.16±0.81 90.86±0.59 89.48±0.73 90.31±0.69 90.27±0.69

IR = 12 77.74±0.96 85.75±0.72 89.47±0.63 89.05±0.78 88.26±0.61 90.16±0.77

Class: 8
IR = 3 81.16±0.65 86.91±0.86 89.08±0.62 87.22±0.59 88.35±0.51 89.48±0.62

IR = 6 77.48±0.62 85.26±0.93 87.96±0.66 85.16±0.70 87.58±0.62 88.96±0.66

IR = 12 74.92±0.89 82.35±1.03 84.52±0.73 84.75±0.84 85.12±0.71 87.52±0.73

Class: 9
IR = 3 62.34±1.84 85.12±0.71 86.26±0.65 84.75±0.84 85.37±0.92 87.03±0.67

IR = 6 56.13±2.73 81.29±0.76 83.34±0.93 82.62±0.74 84.28±1.05 85.29±0.76

IR = 12 48.96±3.66 72.79±0.85 75.54±1.05 74.95±0.80 76.17±1.38 80.64±0.88

4. Experimental Evaluation

4.1. Dataset

The experiments are conducted on the datasets of
Fashion-MNIST [12] and CIFAR-10 [11]. The standard
data pre-processing strategies are adopted, including hori-
zontal flip, padding, and random crop [26]. On each dataset,
Q classes are randomly selected as imbalanced classes. To
measure the degree of imbalance in each class, the Imbal-
ance Ratio (IR) [19] is introduced. The number of IR is
calculated by dividing the maximum statistic ζ by the min-
imum: IR = maxiζi

minjζj
. Based on hyper-parameters of Q and

IR, Non-IID datasets are created across devices.

4.2. Baselines

Standalone is a local training method for classification
tasks, where no information is shared across devices. Fe-
dAvg [18], as the vanilla algorithm, shares the weights of
classifiers. FAug [7] shares the raw samples and weights
of the generator across devices. XorMixFL [24] shares the
embedding of local samples. We assemble data augmenta-
tion approaches (FedDA and FAug) with classifiers (Stan-
dalone and FedAvg) to obtain hybrid approaches, FedDA-
Standalone, FAug-Standalone, and FedDA-FedAvg.

4.3. Models and Settings

CVAE is utilized as the generator. The structure of the
encoder is 2 convolutional layers, each with 64, 4 × 4 ker-
nels, a stride of 2, and relu. The encoder is followed by
2 fully connected layers, each with 28 units in Fashion-
MNIST. The architecture of the decoder is almost the trans-
pose of the encoder, but the output parameters are dis-
tributed by pixels. For the dataset of Fashion-MNIST, 4-
layer CNN (CNN-4) is applied as the classifier. The struc-
ture of CNN is 2 convolutional layers with relu and max-
pooling layers and 2 fully connected layers. For the dataset
of CAIFR-10, the 11-layer VGG network (VGG-11) is sim-
plified and acted as the classifier. The structure of VGG-11

is transformed by reducing the number of convolutional fil-
ters to [32, 64, 128, 128, 128, 128, 128, 128], and the size of
the hidden fully connected layers is cut down to 128.

We suppose that there are 20 devices for Fashion-
MNIST, and 100 devices for CIFAR-10. All devices fully
participate in each global iteration. The neural networks
are trained with the mini-batch strategy. For the local train-
ing, CVAE is constrained by Adam with the batch size of
64, the local iteration of 100, and the initial local learning
rate of 0.0003. Besides, the mean values of latent variables
are set as [0, 6, 12, 18, 24, 30, 36, 42, 48, 54], and the σ is set
as 1. For the global training, CVAE is restrained with the
weight of 0.01 for KD loss function. The training settings
for the competitors are the same as their research [7,18,24].
For FAug [7] and XorMixFL [24], 4 samples in 4 classes
are shared. The data augmentation processes, handled by
FedDA, FAug and XorMixFL, are carried out in a feder-
ated manner to build local IID datasets. Standalone and Fe-
dAvg are employed as classifiers and trained by that built
IID dataset. The Standalone is trained locally, while Fe-
dAvg is trained federally.

4.4. Accuracy of FedDA-based Classifiers

We validate the performance of these generated samples
for the classification task on the Non-IID dataset. The av-
erage accuracy of classifiers is recorded in Table 2 and 3.
It is apparent that FedDA-Standalone and FedDA-FedAvg
can achieve good accuracy on various Non-IID data. Com-
pared with FedAvg, FedDA-FedAvg yields higher accu-
racy on Non-IID data. This outcome indicates that the
FedDA improves the tolerance of the classifier for Non-IID
data. Compared with FedAvg, FedDA-Standalone achieves
higher accuracy. This result suggests that the samples
generated by FedDA offer good substitutions for shared
weights. Compared with XorMixFL and FAug-Standalone,
FedDA-Standalone is able to match a similar accuracy with-
out having to share data. The higher accuracy of FedDA-
Standalone validates the effectiveness of FedDA as a data
enhancement algorithm to mitigate the challenges of Non-
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Table 3. Average accuracy of VGG-11 on CIFAR-10.

Dataset Standalone FedAvg XorMixFL FAug-Standalone FedDA-Standalone FedDA-FedAvg

Class: 5
IR = 3 70.08±0.91 72.36±0.86 77.23±0.78 76.18±1.15 74.04±0.88 79.97±0.91

IR = 6 67.79±1.05 71.53±1.14 76.82±0.83 75.66±1.33 73.61±0.96 79.14±0.85

IR = 12 63.16±1.24 71.02±1.21 76.02±0.96 73.95±1.57 72.37±1.12 78.38±1.03

Class: 8
IR = 3 52.82±1.05 58.71±1.42 73.46±0.94 69.74±1.32 71.24±0.76 76.45±0.85

IR = 6 49.35±1.32 57.34±1.68 71.14±1.06 68.15±1.29 70.02±1.38 75.66±0.94

IR = 12 43.49±1.41 55.92±2.10 69.79±1.12 67.68±1.37 69.13±1.23 74.87±1.26

Class: 9
IR = 3 37.76±1.88 40.72±2.30 67.89±1.08 65.75±1.39 70.27±1.14 73.15±1.13

IR = 6 31.15±2.37 35.54±2.77 66.12±1.06 63.23±1.51 69.87±0.87 72.63±1.34

IR = 12 28.28±2.49 32.13±2.62 64.72±1.15 61.62±1.47 66.54±1.32 71.41±1.06

Table 4. Shared bits in each communication round. When the
upload and download processes are different, they are listed sepa-
rately in the following format: upload/download.

Framework parameters Fashion-MNIST Cifar-10

FedAvg Weights 18.62 M 27.69 M
XorMixFL Simples/Weights 0.1 M/18.62 M 0.03 M/27.69 M

FAug-Standalone Simples/Weights 0.1 M/47.79 M 0.03 M/47.93 M
FedAD-Standalone Knowledge 0.02 M 0.02 M

IID data. Further analysis from Table 2 and Table 3 shows
that FedDA performs well in both datasets, and can be
adapted to a large-scale distributed learning paradigm.

4.5. Communication Overhead

We investigate the shared bits in each global iteration and
total communication overhead when the pre-trained classi-
fier achieves some accuracy. The model weights and at-
tention vectors occupy equally the 32 bits, while the pixel
parameter of the sample consumes 8 bits. The experiments
are carried out with IR = 12.

The approximate data of shared bits in each global iter-
ation are recorded in Table 4. It can be observed that the
weighted bits shared by FedAvg are much larger than the
bits of knowledge shared by FAug-Standalone. Compared
with FAug-Standalone and XorMixFL, FedDA-Standalone
share less bits.

The total shared bits in Fashion-MNIST are calculated
and shown in Table 5, the analyses are made as follows. (1)
For reachable accuracy, FedAvg transmits the maximum to-
tal bits. (2) Compared with FedAvg, FedDA-FedAvg not
only achieves higher accuracy, but also shares fewer pa-
rameters. This result suggests that FedDA has a positive
effect on the task of classifying on Non-IID data. (3) Com-
pared with FedAvg, FedDA-Standalone achieves higher ac-
curacy, with fewer parameters to transfer. (4) During the up-
load process, FAug-Standalone and XorMixFL share more
bits than FedDA-Standalone. (5) For FAug-Standalone and

Figure 4. Visualisation of Genentated Samples by FedDA on
Fashion-MNIST.

XorMixFL, there are much more bits to download than to
upload. Besides, FedDA-Standalone uploads a few more
bits than FAug-Standalone and XorMixFL, as the raw (in
FAug-Standalone) and the embedding of local samples (in
XorMixFL) are not shared. In addition, the bits downloaded
by FedDA-Standalone are much smaller than those down-
loaded by FAug-Standalone and XorMixFL. The reason is
that FedDA-Standalone only downloads the attention-based
knowledge while FAug-Standalone and XorMixFL down-
load the bits of the models.

4.6. Visualisation of Generated Samples

We visualize generated samples of FedDA on Fashion-
MNIST with Q = 5, IR = 12. The generated samples are
shown in Fig. 4. It is obvious that those generated samples
are of high quality and close to the real samples. Those sam-
ples can effectively supplement the missing data and create
an IID data foundation for the classifier.

4.7. “Reality” of Generated Samples

We measure the “Reality” of generated samples on
Fashion-MNIST with Q = 5, IR = 12. We trained the
Standalone classifier on IID data, and they have 95.2% ac-
curacy on the test set. This classifier is deployed on each
device and is applied to evaluate whether the generated
samples contain the correct classification information. We
record the times when the classified label of generated sam-
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Table 5. The total bits of training process in Fashion-MNIST. For FAug-Standalone and XorMixFL, due to the different information in the
upload and download processes, the bits are listed separately. “U”, ‘D” and “-” are short for “Upload”, “download” and “Unattainable”.

Dataset Accuracy
Standalone FedAvg XorMixFL FAug-Standalone FedDA-Standalone FedDA-FedAvg

U/D U/D U D U D U/D U/D

Class: 5
86 - - 0.01 M 18.62 M 0.01 M 47.79 M 1.53 M 410.30 M
84 - 353.87 M 0.01 M 18.62 M 0.01 M 47.79 M 1.20 M 205.15 M
82 - 279.37 M 0.01 M 18.62 M 0.01 M 47.79 M 0.93 M 130.55 M

Class: 8
84 - - 0.01 M 18.62 M 0.01 M 47.79 M 1.71 M 876.55 M
82 - 949.87 M 0.01 M 18.62 M 0.01 M 47.79 M 1.48 M 578.15 M
80 - 875.37 M 0.01 M 18.62 M 0.01 M 47.79 M 1.13 M 447.60 M

Class: 9
82 - - 0.01 M 18.62 M 0.01 M 47.79 M 1.91 M 1920.94 M
78 - - 0.01 M 18.62 M 0.01 M 47.79 M 1.58 M 1566.59 M
74 - - 0.01 M 18.62 M 0.01 M 47.79 M 1.25 M 1249.54 M

Table 6. “Reality” Score of CNN-4 on Non-IID data.

Dataset FAug XorMixFL FedDA

Class: 5
IR = 3 89.72 87.37 86.54
IR = 6 86.36 84.21 83.86
IR = 12 82.58 80.14 79.27

Class: 8
IR = 3 86.31 81.15 83.46
IR = 6 82.82 77.45 80.25
IR = 12 77.43 73.14 76.17

Class: 9
IR = 3 79.73 75.12 77.46
IR = 6 76.21 72.34 74.65
IR = 12 72.67 68.53 70.39

ples is the same as the conditional label, and describe it as
the “Reality” time. We calculate the “Reality” score based
on the “Reality” time and the total generated samples. The
higher the score, the more realistic the generated samples
are.

The “Reality” score is recorded in Table 6. Compared
with XorMixFL, FedDA achieve higher score when the
Non-IID data becomes more extreme. Although the “Re-
ality” score of FedDA is lower than that of FAug, FedDA
avoids sharing raw data.

4.8. Ablation Study

We conduct a detailed ablation study to analyze the ef-
fectiveness of FedDA’s components. We transform FedDA
into the following variants by deleting or replacing particu-
lar constraints and compare classification performance with
FedDA. (1) FedDA-V1: without distribution alignment for
the mean value of latent variables. (2) FedDA-V2: replac-
ing the attention-based knowledge as Per-label hidden-layer
feature-based knowledge. The experiments are conducted
on Fashion-MNIST with IR = 12. The results are pre-
sented in Table 7. It can be seen that the introduction of dis-
tributed alignment and attention-based knowledge is bene-

Table 7. Shared bits in each global iteration.

Framework Class:5 Class:8 Class:9

FedDA-V1-Standalone 87.08 83.96 73.41
FedDA-V2-Standalone 85.74 81.58 70.33

FedDA-Standalone 88.26 85.12 76.17

ficial for classification tasks of Non-IID data. By compar-
ing the three approaches, we observe that the application of
attention-based knowledge contributed most to the perfor-
mance improvement.

5. Conclusion

In this paper, a generative models-based federated data
augmentation strategy (FedDA) is proposed to implement
Federated learning on Non-IID data with communica-
tion efficiency. In FedDA, the Conditional AutoEncoder
(CVAE) is employed as the generator to generate the miss-
ing samples on Non-IID datasets. To achieve Federated
learning, the Knowledge Distillation Mechanism is intro-
duced. Instead of model weights or gradients, knowledge
is shared between devices and servers. The knowledge is
designed based on the hidden-layer features to reduce the
communication overhead and protect data privacy. Mean-
while, to generate cross-class samples that are easy to clas-
sify, the mean value of latent variables for each class is con-
strained and the attention mechanism is introduced.
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