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Abstract

We present a method for unsupervised gaze representa-
tion learning from multiple synchronized views of a person’s
face. The key assumption is that images of the same eye
captured from different viewpoints differ in certain respects
while remaining similar in others. Specifically, the absolute
gaze and absolute head pose of the same subject should be
different from different viewpoints, while appearance char-
acteristics and gaze angle relative to the head coordinate
frame should remain constant. To leverage this, we adopt a
cross-encoder learning framework, in which our encoding
space consists of head pose, relative eye gaze, eye appear-
ance and other common features. Image pairs which are as-
sumed to have matching subsets of features should be able
to swap those subsets among themselves without any loss of
information, computed by decoding the mixed features back
into images and measuring reconstruction loss. We show
that by applying these assumptions to an unlabelled multi-
view video dataset, we can generate more powerful repre-
sentations than a standard gaze cross-encoder for few-shot
gaze estimation. Furthermore, we introduce a new feature-
mixing method which results in higher performance, faster
training, improved testing flexibility with multiple views,
and added interpretability with learned confidence.

1. Introduction
Understanding where people look and why is an impor-

tant aspect of understanding and interacting with humans
in many different settings. Gaze estimation, in both 2D
(e.g. on a screen) and 3D (e.g. in the world), has therefore
received a lot of attention from computer vision and human-
computer interaction researchers (see [7] for a historical
survey). Appearance-based gaze estimation is an attrac-
tive solution to gaze estimation, because it is unobtrusive,
places no strong requirements on hardware, and is data-
driven, imposing very few assumptions on the structure of
the data. Neural networks were first applied to appearance-
based gaze estimation in the early 1990s [1], but in the past

Figure 1. Overview. We extend recent work on single-view un-
supervised gaze representation learning [27] to take advantage of
synchronized multi-view gaze video datasets, such as EVE [16].
Our approach assumes an eye image can be losslessly com-
pressed into a structured representation comprising features for
head pose, eye appearance, gaze direction (relative to head pose),
and common appearance features. We introduce a method to learn
from unlabelled pairs of images sampled from multi-view face
video sequences, forcing consistency among features depending
on whether the images are sampled across camera viewpoint, left
or right eye, or time.

decade, such early efforts have been reworked and super-
charged through the application of modern deep learning
techniques on large labeled datasets [11, 14, 24, 30, 31].

However, the cost of creating such datasets scales lin-
early with size, and numerous methods have been explored
to avoid the need for them altogether, including synthetic
data [22, 26, 28] and other forms of freely available super-
vision [13, 25, 27, 29]. Here, we explore a method in the
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latter category: we seek to learn gaze representations from
unlabeled data in an unsupervised (or self-supervised) man-
ner. The representations we learn are designed to encode
information from four key factors of variation which gov-
ern the eye image: the underlying head pose, the gaze di-
rection of the eye relative to the head pose, the appearance
of the eye (governing details like eye lash thickness, or iris
color, which are independent of gaze direction altogether),
and factors common across all views (glasses, lighting, and
skin color). After pre-training on an unlabelled dataset, the
representations can be used for few-shot training to produce
3D gaze estimation models. We adopt a “cross-encoder” ap-
proach inspired by the recent work of Sun et al. [27]. Pairs
of images are encoded into features, swap various subsets
of features which are assumed to be shared, and then are
decoded back into images to compute reconstruction loss.
For example, comparing the two left-most columns in Fig-
ure 1, an image of the same eye taken at the same time in
different cameras (A and B) can be expected to share the
same appearance feature, the same relative gaze feature, but
a different head pose feature (since the cameras are from
different unknown viewpoints). By selecting image pairs
where certain features are expected to stay constant while
others are expected to differ, the model learns to both esti-
mate and disentangle the main factors of variation behind
appearance-based gaze.

Our work makes the following contributions:

• We extend the work of Sun et al. [27] to take advan-
tage of uncalibrated multi-view image streams. This
requires reformulating the structure of the gaze fea-
ture: rather than learning a feature directly for gaze
direction, we learn features for head pose and relative
gaze, combining them to estimate gaze direction, as
described in Sec. 3.2. Although more camera views
are supported, this training can be accomplished with
only a stereo pair.

• We propose a new form of feature augmentation, de-
scribed in Sec. 3.4, which leads to better explainability,
computational efficiency, flexibility, and performance.

• Through careful experimentation with the EVE [16]
multi-view video dataset in Sec. 4, we show that our
method can boost the performance of the learned rep-
resentation at in-domain few-shot gaze estimation, and
that it successfully disentangles various factors of vari-
ation in the data and improves data explainability.

• To support further research in this direction, we make
our code available upon publication.1

1https : / / github . com / ToyotaResearchInstitute /
UnsupervisedGaze

2. Related Work
Gaze Estimation. Building large labeled datasets for gaze
estimation [11, 14, 24, 30, 31] is time-consuming and ex-
pensive. It is particularly challenging to do well outside of
lab settings, which is problematic since many applications
of gaze tracking exist outside of lab settings, or “in the
wild”, where nuisance factors such as lighting, occlusions
and pose may have stronger influences. Thus, various
techniques have been proposed to reduce the effort required
to build such datasets, and more fundamentally, to reduce
the reliance on them to create performant gaze estimation
systems. For example, synthetic datasets has been created
or used in novel ways [22, 26, 28]. Appearance-based
models have had strong inductive priors injected into their
representations, such as intermediate pictorial structure [18]
or a more explicit separation of head pose [4], to help train
more robust models from the same data. Zheng et al. [32]
introduced an encoder-decoder model for semi-supervised
gaze redirection which can learn to encode extraneous
factors such as head pose in a self-supervised manner,
and can be used to augment training data to improve
sample efficiency for gaze estimation. Gaze models have
also been personalized or calibrated to individuals with
minimal supervision [15, 17]. In addition, other forms
of (weak) supervision have been found - particularly by
trying to model the likely target of a human subject’s eye
gaze. This has been attempted through the estimation of
scene saliency [2, 16, 20] or through direct estimation by
leveraging the prior that people tend to lock gaze with one
another [13].

Unsupervised Gaze Representation Learning. Our
work is most closely related to recent efforts to learn gaze
representations from unlabelled eye images alone. Yu
and Odobez [29] recently showed the strong potential of
self-supervised gaze representation learning by using gaze
redirection as a pretext task. Their approach extracts a
two-dimensional representation from each eye image in an
input pair which are assumed to have similar head pose, and
uses the difference vector to condition a gaze redirection
network which attempts to reconstruct one image from
the other. To solve this task well, the two-dimensional
vector learns to closely resemble gaze pitch and yaw.
Subsequent work by Sun et al. [27] proposed a method to
take advantage of additional weak assumptions that exist in
eye gaze datasets. Their method, the cross-encoder, uses a
latent-code-swapping mechanism on image pairs which are
assumed to be consistent in either gaze (e.g. left and right
eyes of the same face), or eye appearance (e.g. left eyes of
the same face at different times). Each eye patch is encoded
into a gaze feature and an eye appearance feature, and the
cross-encoder reconstructs images in the eye-consistent
pair according to their own gaze features and the other’s
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eye appearance features, and in the gaze-similar pair
according to their own eye features and the other’s gaze
features. They show that their approach improves on two
recent, popular contrastive learning methods, SimCLR [3]
and BYOL [6], which are not specifically designed or
pre-trained for gaze representation learning, but rather for
learning more general visual features. Our work builds on
the cross-encoder, by introducing a further form of natural
supervision: consistency across multiple views. To benefit
from this supervision, we take inspiration from Deng and
Zhu [4] and further sub-divide the representation space
to include a camera-relative head pose feature, which is
known to be different across camera views but is assumed
to stay roughly consistent in nearby times (since high-speed
head motions are uncommon in natural movement).

Multi-View Representation Learning. Leveraging
information from other viewpoints for representation
learning has been explored in numerous other works
outside gaze estimation. For example, in a supervised
context, multi-view bootstrapping has been successful
for propagating ground truth across viewpoints in order
to learn more robust keypoint detectors [23]. In the
self-supervised and weakly-supervised settings, various
works have shown how multi-view consistency can be
used to learn geometry-aware body representations from
unlabelled multi-view images [10,21]. Our work is the first
attempt to leverage unlabelled multi-view images for gaze
representation learning.

3. Approach

3.1. Data Sampling Strategy

Much of our ability to learn meaningful features from
eye patches without supervision is based on our ability to
sample them in a structured manner. As shown in Figure 1,
we select one anchor view and seven complementary eye
patch views for each sample in the dataset. These consist
of two different camera views, two different eyes (left and
right), and two different times within the same sample clip
– resulting in eight combinations. We assume that dataset
clips are sufficiently short that they may have changing rel-
ative gaze but have relatively stable head orientation. These
other seven views are selected randomly during training,
but are held constant during validation and feature extrac-
tion. Because of the shortness of the clips, many pairs do
not have substantially different relative gaze. Despite this,
the model is able to build a disentangled representation for
eye patch reconstruction. Future work could explore how to
more efficiently sample for more consistently diverse pairs.

Occasionally it is not possible to have all valid views
– for example, if a left eye patch is present but the right
eye patch is absent due to an occlusion or missed detec-

tion. In these cases, we simply input Gaussian noise in its
place to the training pipeline and treat it as any other view.
However, we zero out any loss that is calculated using the
invalid view. All images are converted to grayscale and are
histogram-equalized, as in [27], to reduce the effect of light-
ing variation.

3.2. Feature Encoding and Decoding

Given an eye patch image I , we train an encoder neural
network to extract four feature vectors, as seen in Figure 2:

1. Head pose feature fh – containing information to dis-
cern head orientation relative to the camera.

2. Eye appearance feature fa – information about eye
identity within a particular eye patch (eye shape).

3. Relative gaze feature fg – to capture gaze angle rela-
tive to the head pose.

4. Common feature fc – general appearance information
about a subject that is common across all times, cam-
eras, and spatial regions (glasses, lighting, skin color)
within a sample.

These features are then concatenated and passed through
a decoder network to reconstruct the original grayscale im-
age. While the final reconstruction is based on L1 distance,
we explore two different losses which differ in how they al-
ter the features before passing them through to the decoder.

3.3. Pairwise Loss

For our baseline loss, we extend the method proposed
in the cross-encoder [27] for a multi-camera system. While
the original cross-encoder employs eye appearance and (ab-
solute) gaze features, we break the latter to cover head pose
and relative gaze information separately, and add common
features for information common across all views in an in-
put sample. We form three sets of pairs from the eight input
views shown in Figure 1. Each set of pairs compares four
views to another four views where all but one feature type
is held constant – either head orientation, eye appearance,
or relative gaze. Figure 2 depicts the case where the input
images are taken from different cameras, but at the same
time instance and from the same side eye. Because of this
selection of pairs, only the head features should be differ-
ent between images while all others should be similar. To
enforce this similarity, we swap all features except for the
head features. We then reconstruct the images using the de-
coder and calculate L1 loss. We calculate this pairwise loss
for each of the three dimensions and then sum them to get
the overall loss.

Given eight input views, this requires eight total passes
through the encoder network and 24 passes through the de-
coder (8 inputs × 3 pairwise losses). In practice, we find
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Figure 2. Pairwise loss requires exchanging all but one feature between image pairs. In this example, the images I0 and I1 are sampled
from different cameras but at the same time and from the right eye, so are known to share eye appearance, relative gaze and common
features. The head feature, however, is different, so it kept constant while all other features are exchanged. The input images are passed
through an encoder network, E, to compute the feature representations, while input images are reconstructed using a decoder and the L1

loss is calculated versus the original. When using pairwise loss, we employ two other sets of input pairs – keeping all inputs except the
relative eye gaze consistent and keeping all inputs except the eye appearance consistent.

that we can achieve similar performance and faster training
by only passing one view from the pair through the decoder
and calculating reconstruction loss. This requires 12 passes
through the decoder, or 1.5 times the input number of views.

3.4. Basis Features and Loss

For our other loss, we observe that across the eight sam-
pled input views there is much redundant information. For
example, while there are four different views of a left eye,
there should only be one set of features that encodes the
appearance of a left eye. The same is true for the two times-
tamps used to elicit two different relative gazes and the two
camera views used to show two different head orientations.
We call these features that should be independent of other
input view factors the basis features.

To extract the basis features, we first encode all eight in-
put views into the feature space using an encoder, as shown
in Figure 3. We use a summary function (S) to combine to-
gether features that share a similar source – for example, the
appearance features all from the left eye. In our initial ex-
periments, we explore two possible options for S: (i) taking
the mean, and (ii) using a confidence weighted mean, simi-
lar to the multiview confidence mechanism proposed in [5].
The confidence weighted mean should allow for the pipeline
to better correct for missing or obstructed views and allow
for better interpretability without annotation.

The summary function produces two different basis fea-
tures for each dimension – B0

h and B1
h for each head orien-

tation due to camera view, B0
a and B1

a for each eye appear-
ance, and B0

g and B1
g for each relative gaze time instance.

There is only one common basis feature Bc extracted for
the whole sample, as the features are defined as those traits
consistent across all views. We improve the generalizabil-
ity of our system to varying numbers of available views by
randomly dropping out between zero and M−1 views from
consideration for each feature, where M is the total number
of available views.

Once extracted, combinations of these basis features
should be able to recreate any of the input images by passing
the combinations through the decoder. For example, to re-
construct a left eye taken from camera A at time 1, we con-
catenate the left eye appearance feature (B0

a), the camera
B head pose feature (B0

h), the time 1 relative gaze feature
(B1

g ), and the common basis feature (Bc). In this way, train-
ing can be re-framed as learning to arrange the feature space
to form better basis features. Finally, we calculate the re-
construction loss on each of the eight predicted images and
the originals. This means the basis loss is more memory-
efficient per training batch, versus the pairwise loss, which
requires 50% more passes through the decoder.

3.5. Implementation

We use a ResNet18 [8] for the encoder, following the
cross-encoder work [27]. However, we append a two-layer
MLP to the encoder output for each feature type. We use a
feature size of 12 for the head and relative gaze features and
64 for the appearance and common features. Unlike Sun et
al., which uses four DenseNet [9] deconvolution blocks, we
use six transposed convolution layers as our decoder to al-
low for faster training. In common with their work, the nov-
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Figure 3. Basis features shown with L1 loss calculated for two views. The eight input views are first passed through the encoder, depicted
by the gray arrows, to extract the four feature types – head, eye appearance, relative gaze, and common appearance. Due to the sampling
strategy shown in Figure 1, each view should be similar to three other views, when considering a certain feature type (or all other views, in
the case of common features). To enforce this similarity, we combine all view features from the same source using the summary function
S. This results in two different basis features for each dimension, except for common features – which are consistent over the whole sample
and produce only one basis feature. We then concatenate all combinations of these features back together, pass them through the decoder,
and calculate L1 reconstruction loss with the associated input view.

elty of our method is not the network itself, but the sampling
strategy and feature mixing mechanism. As such, other net-
works could instead be used as the encoder or decoder.

When training, we compute a held-out validation loss ev-
ery 100 batches and save the model with the lowest valida-
tion loss. This best model is then used to extract features for
train, validation, and test sets. When using basis features,
the same summary function can be used to share informa-
tion available at test time between different views. The ba-
sis feature dropout can also be used during gaze estimation
to potentially improve robustness, but we default to using
one camera, one time instance, and both eye patches as the
available views at final gaze estimation at test time.

For final gaze estimation, we train a four-layer MLP with
hidden layer sizes of 128, 64, and 32 to predict pitch and
yaw. We then convert this to a vector representation and
calculate angular error – both as our training loss and eval-
uation metric. Unless otherwise specified, we only use the
head and relative gaze features for gaze estimation. We use
a subset of N training samples to train the MLP and 64 val-
idation samples to determine the best model. We then cal-
culate our final test performance metrics on this best model.

We implement our pipeline using PyTorch [19]. We use
a batch size of 96 for pairwise loss experiments and 128 for
basis loss experiments when using eight views, due to the

better memory-efficiency of the basis method. We scale the
batch size to account for varying numbers of views in other
experiments. Due to the small model and feature size dur-
ing gaze estimation, we are able to fit all training samples in
one batch. We optimize our models using Adam [12] with a
learning rate of 10−4 for gaze estimation. For feature learn-
ing, we use a base learning rate of 10−4, which is multiplied
by the batch size. We run each experiment on a Tesla V100
SXM2 with 16GB of memory. We perform feature training
for 10 epochs and gaze estimation for 2, 000 epochs. Fea-
ture training takes approximately 2 hours using the pairwise
losses and 1 hour using the basis loss, when head features
are used for each.

To account for variability, we train four different feature
representations for each experiment using a different ran-
dom seed. We then perform eight different 100-shot exper-
iments with different data subsets for each of these feature
representations. We compute the mean over these 32 runs
for the final experiment performance.

When used, confidence is learned for each feature type
as a two-layer MLP on top of the ResNet output. The hid-
den layer is set to the same dimensionality as the feature
type and the output is a single neuron. A softmax function
is applied to all confidence predictions from views with the
same attribute (e.g. the appearance features for the four left
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eye views). These confidences are then used to weight the
contribution of each view to the final basis feature. In prac-
tice, we found that it was best to first multiply the input
to the softmax by a scaling factor of 103. This makes the
output confidences more sparse, which has the effect of se-
lecting the view with the maximum estimated confidence in
a differentiable way.

4. Experiments
4.1. Dataset

We adopt the EVE dataset for our experiments, as
it contains video recordings synchronized over multiple
views [16]. Instead of only containing samples with ex-
plicitly targeted gaze, EVE contains more naturalistic stim-
uli, including images, videos, and Wikipedia entries. The
dataset contains a total of 54 participants, although only
a subset of 44 are provided with ground truth gaze labels.
Because of this, we define our own subject folds for our ex-
periments. We use train01-train30 as the train set, train31-
train39 as the validation set, and val01-val05 as the test set.
Our train, validation, and test sets contain 49,404, 15,712,
and 7,676 video clips, respectively.

Each EVE stimuli lasts 3 seconds and is recorded simul-
taneously on four cameras. We resample the videos to 10
Hz, resulting in 30 total frames per clip. Each clip includes
a face frame and two eye patches, pre-extracted using facial
landmarks. Each video is sampled once per epoch, select-
ing a random frame, eye patch, and camera as the anchor
view. Other complementary views are then sampled from
the same clip, as described in Sec. 3.1.

4.2. Baselines

We consider four different systems in our analysis – (1)
baseline cross-encoder, using only gaze and appearance fea-
tures and a single camera view with pairwise loss; (2) cross-
encoder with added head features; (3) basis loss with mean
summary function; (4) basis loss with confidence-weighted
mean summary function. We also examine the impact of
adding the common appearance features to the pipeline.
The latter three systems use the head and gaze features for
gaze estimation, while the baseline uses only gaze features.
Note that all systems have access to the same data from
all cameras – they only differ in how the data is grouped.
An oracle mean baseline system performance is also shown,
where the mean test gaze is calculated and used for all pre-
dictions. All quantitative results are given in mean angular
error (degrees).

4.3. Quantitative Results

4.3.1 Ablation Experiment

Table 1 shows the results of gaze estimation with 100 train-
ing samples after feature learning using each system. Over-

Without Common With Common

Mean Baseline 22.7 22.7

Cross Encoder (CE) 9.6 (0.5) 12.3 (1.0)
CE with Head Feature 7.6 (0.3) 7.8 (0.3)

Basis Loss (mean) 7.9 (0.5) 7.5 (0.4)
Basis Loss (confidence) 7.6 (0.5) 7.3 (0.4)

Table 1. EVE results with 100-shot gaze estimation. We show
the performance with and without the use of common features,
as they benefit the basis loss and hurt pairwise loss performance.
Basis loss with confidence and common features performs the best
of all systems.
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Figure 4. Gaze estimation performance under N -shot training.
The addition of head features and multi-view self-supervision to
cross-encoder training uniformly improves few-shot gaze estima-
tion performance by a significant margin (20% on average), while
using confidence-weighted basis features improves performance
still further (24% on average).

all, common appearance features benefit the basis loss and
hurt the pairwise loss methods. This is likely because ba-
sis features are actually calculated using all sample inputs,
so the common features are more representative. Further-
more, in the case of the baseline cross-encoder, the com-
mon features may be capturing head rotation, resulting in
a worse gaze feature for final estimation. If common fea-
tures were also used during gaze estimation, a performance
of 8.8 could be achieved for the baseline. We discuss this is-
sue more in Sec. 4.3.2. For this reason, all further analyses
use common features for basis loss methods and exclude
them from pairwise loss methods. Overall, the basis loss
system with confidence performs the best, with a mean an-
gular error of 7.3 degrees. We therefore use confidence for
the remainder of our basis loss analyses.

Figure 4 shows the effect of gaze estimation with vary-
ing amounts of data in the training set. The basis features
outperform other methods consistently in all cases – show-
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Method Features Rel. Gaze Head Rot. Cam. Gaze

Mean Baseline N/A 10.9 26.0 22.7

Cross Encoder App 11.5 10.3 12.5
Gaze 9.8 13.2 9.6
All 9.5 10.1 9.0

Cross Encoder App 11.4 21.7 21.2
with Head Feat. Gaze 9.3 24.8 21.3

Head 11.2 9.2 11.1
Gaze+Head 9.3 8.9 7.6
All 9.0 9.2 8.0

Basis Loss App 12.1 25.5 23.3
with Confidence Gaze 9.4 25.5 21.4

Head 11.3 8.7 11.0
Subject 12.3 26.1 23.0
Gaze+Head 9.0 8.4 7.3
All 8.6 8.6 7.6

Table 2. Disentanglement analysis on EVE. We show the ability
of each feature learning method to disentangle features from their
intended task. Bolded numbers show the best performance within
each method and underlined numbers are the best overall.

ing the benefit of using them irrespective of the training set
size. The remaining experiments focus on the N=100 case.

4.3.2 Feature Disentanglement Analysis

We next investigate how well each method disentangles its
learned features for their intended task. Besides estimat-
ing absolute gaze (in the camera coordinate frame), we also
show the system’s performance on relative gaze estima-
tion and head rotation estimation. Table 2 shows the re-
sult of each feature combination on each task. Overall, ba-
sis loss best disentangles the features and provides the top
performance for each task. While individual features often
have good performance on their own, the combination of
gaze+head gives the best performance. Notably, the base-
line cross-encoder method has better performance when ap-
pearance features are used alongside gaze features. This is
likely because without head features being explicitly disen-
tangled, there is no guarantee that they will be present in the
gaze feature.

4.3.3 Flexibility to More Views

One benefit of the basis feature loss is that it allows for a
flexible number of views at train and test time. The follow-
ing experiments examine the impact of varying the amount
of views during training and testing for each of the three
feature types. Besides the varied dimension, we still use
two cameras, two gaze instances, and two eye patches dur-
ing feature learning and one camera, one gaze instance, and
two eye patches during gaze estimation.

More Cameras: We first examine the impact of using
more cameras per sample when training and testing. Ta-

Number of Test Cameras per Sample
Train 1 2 3 4

1 9.6 (0.6) 10.1 (1.1) 10.5 (1.5) 10.6 (1.6)
2 7.3 (0.4) 7.0 (0.3) 6.7 (0.3) 6.6 (0.2)
3 7.5 (0.2) 7.1 (0.2) 6.8 (0.2) 6.7 (0.2)
4 7.6 (0.3) 7.2 (0.2) 6.7 (0.2) 6.9 (0.2)

Table 3. Training and testing on different numbers of cameras
used when forming each sample. Adding more than two cameras
into the sample views hurts performance, while more cameras at
test time reduces error.

Number of Test Gaze Instances per Sample
Train 1 2 3 4

1 8.9 (0.6) 8.6 (0.7) 8.5 (0.5) 8.6 (0.7)
2 7.3 (0.4) 7.0 (0.3) 7.0 (0.3) 7.0 (0.3)
3 7.4 (0.3) 7.0 (0.3) 7.1 (0.3) 7.1 (0.3)
4 7.4 (0.3) 7.1 (0.3) 7.1 (0.3) 7.2 (0.3)

Table 4. Training and testing on different numbers of gaze in-
stances used when forming each sample. Adding more than two
gaze instances to training hurts performance, but increasing the
number of gaze instances at test time gives better performance.

Patches Used for Test
Train Patches L L+R L+R+F

L (1 view) 9.4 (0.7) - -
L+R (2 view) 7.8 (0.6) 7.3 (0.4) -
L+R+F (2 view) 7.8 (0.5) 7.3 (0.3) 7.2 (0.3)
L+R+F (3 view) 8.2 (0.6) 7.7 (0.4) 7.4 (0.4)

Table 5. Adding face patches (F) to the left (L) and right (R)
eye patches. Adding face patches to training and testing improves
performance. However, the best performance is achieved when
training on only two patch views per sample.

ble 3 shows the performance of each combination. While
training on more than one camera allows for the system to
learn head orientation, more than two cameras per sample
hurts performance. This may be because more cameras does
not necessarily add additional information, but “blurs” the
basis features with more views. All four camera views are
still present in the dataset and two views are sufficient to
learn head rotation. However, more cameras at test time
does yield improved performance, likely due to an improved
relative gaze feature.

More Gaze Instances: Table 4 shows the performance
of the basis loss pipeline with varying amounts of gaze in-
stances during train and test. Similar to the previous re-
sult, more than two views at train time is harmful, but more
views for test improves results. The improvement during
test is likely due to better estimates of head pose, based on
increased numbers of instances with similar head pose.

Adding Face Patch: We lastly examine the impact of
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(a) High confidence appearance features. (b) Low confidence appearance features.

(c) High confidence relative gaze features. (d) Low confidence relative gaze features.

(e) High confidence head features. (f) Low confidence head features.

Figure 5. Confidence analysis. We show the most and least confident inputs and their reconstructions for each subject.

adding face patch inputs to the model in addition to eye
patches. However, we only consider the left and right eye
patches during final gaze estimation test metrics, to keep it
comparable to the other systems. Table 5 shows the per-
formance for increasing types of patches available during
training and testing. The face patches provide a slight boost
to performance to 7.2 degrees, likely due to the information
they provide about head rotation. Similar to the other exper-
iments, it is better to sample two random patches per view
instead of all three when training.

4.4. Confidence Analysis

We finally examine the interpretability of the confidences
estimated within the basis loss pipeline. We use the features
learned during the previous face patch experiment so that
we can better examine the impact of different types of in-
formation provided to the system. Figure 5 shows the views
from each validation subject with the most and least confi-
dence for appearance, relative gaze, and head features.

Appearance confidence (top row) seems to be mostly
related to eye openness. Because the appearance feature
is used to reconstruct the same eye in other timestamps, a
closed eye would potentially need to reconstruct an open
eye. Due to this missing information, the model would
likely favor selecting views with open eyes.

Relative gaze confidence (middle row) is high for
clearly zoomed eye patches and low for face patches. This
is likely because face patches have less resolution for iris lo-
cation and ambiguity about which gaze to encode between
the two eyes. Notably, eye openness does not seem to im-
pact confidence, or possibly even improves it. Because the
relative gaze feature is used to reconstruct eyes in the same
time instant, it is likely that other patches would also be
closed except for a relatively rare wink. Therefore, gaze

features must also encode openness and do not need to en-
code direction when closed, making them more confident.
Notably the one validation subject wearing glasses had the
lowest mean relative gaze confidence of all subjects.

Head orientation confidence (bottom row) behaves the
opposite of relative gaze confidence. Because head posi-
tion can be determined more clearly from face frames, these
have high confidence. Eye patches are more difficult to de-
termine head direction and have low confidence.

5. Discussion
We present a new approach for multi-view gaze repre-

sentation learning. By explicitly disentangling the head ori-
entation in the feature space and incorporating multi-view
training, we are able to improve the mean absolute error of
a baseline cross-encoder [27] 20% in few-shot learning, and
by 24% through the use of our basis loss pipeline. While
this is a modest improvement, it comes with many other
advantages. The basis pipeline is more flexible, allowing
for additional camera views, gaze instances, and cropped
regions to be added at test time to improve performance
even further. Basis features are also more computationally
efficient – taking only half the time to train a comparable
model. The pipeline with confidence can also improve in-
terpretability, even in the absence of labels.

Although we acknowledge that 3D gaze technology can
potentially be misused in harmful ways for society, we be-
lieve there are many useful applications of gaze estimation,
particularly in the promotion of joint attention in human-
computer interaction (HCI) and human behavioral under-
standing. We hope that our method will be useful to HCI
practitioners who wish to fine-tune gaze models to their par-
ticular domains using simple-to-collect, synchronized, un-
calibrated, multi-view face video.
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