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Abstract

This paper proposes a whole new face image-based eye
gaze estimation network to solve low generalization perfor-
mance. Due to the high variance of facial appearance and
environmental conditions, conventional methods in gaze es-
timation have low generalization performance and are eas-
ily overfitted to training subjects. To solve this problem, we
adopt a self-attention mechanism that has better general-
ization performance. Nevertheless, applying self-attention
directly to an image incurs a high computational cost. Thus,
we introduce a new projection that uses convolution in the
entire face image to accurate model the local context and
reduce the computational cost of self-attention. The pro-
posed model also includes deconvolution that transforms
the down-sampled global context to the same size as the
input so that spatial information is not lost. We confirmed
through observations that the new method achieved state
of the art on the EYEDIAP, MPIIFaceGaze, Gaze360 and
RT-GENE datasets and achieved a performance increase of
0.02° to 0.30° compared to the other state of the art model.
In addition, we show the generalization performance of the
proposed model through a cross-dataset evaluation.

1. Introduction

Gaze is a typical nonverbal expression that is used as
an effective clue to read a person’s intention and social re-
lationships. Estimating the gaze from an image has been
trying to be used as an interface in HCI [25], AR/VR [16],
or autonomous driving [18].

Among the various approaches [14, 31, 32] to estimate
the gaze of an image, several effective methods [5, 22, 33]
have recently been proposed based on facial appearance us-
ing deep learning techniques. In particular, methods based
on the holistic appearance of the face learn the function of
mapping the gaze from the appearance of the whole face
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[22,33]. However, the faces are diverse according to the
individual or environmental factors such as gender, race,
head, and lighting, so the model is affected by the unique
feature of the individual, making it difficult to generalize
the estimation of gaze [30].

To improve the generalization performance of gaze esti-
mation, many methods have attempted to estimate gaze by
separating the eyes from the face [2, 3, 20]. These meth-
ods consist of a module for segmenting an eye area from a
face and a module for inferring a gaze from the segmented
eye region. Although this minimizes the influence from per-
sonal appearance and environmental factors when inferring
gaze, the following problems remain: 1) To segment the
eye in the image, it requires additional labeling such as eye
position or head posture, as well as ground truth about the
gaze [8, 14,32]. 2) If the module to isolate the eye area from
the face cannot work properly (i.e., extreme head posture,
dark shading, etc.), the subsequent gaze inference module
will also not work [2, 8, 20]. 3) Since the eye region seg-
mentation module and the gaze inference module are in-
dependently trained, and then each module is sequentially
combined to construct a system, it does not guarantee that
the training result is the globally optimal solution for the
entire gaze estimation system [30].

On the other hand, methods have been proposed to in-
fer gaze by using the information of the entire face, such
as head posture and global illumination, without having to
separate the eyes from the face [4, 33]. In [4], gaze in-
ference was attempted using a transformer capable of dy-
namic attention to effectively learn data with a high variance
while considering the entire face’s global context, and it
showed higher performance than existing CNN-based meth-
ods. However, although the transformer can effectively re-
flect various information from the face related to gaze infer-
ence, there is still a problem in directly applying it to this
field. When applying the transformer to the vision field, it
is difficult to solve the high computational cost of calculat-
ing self-attention in the image. A method for embedding
images [6] was proposed to address this problem, but they
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Figure 1. The overall framework of the proposed method. The Stem is a layer introduced for the convenience of training similarly

to [26].
getting abstracted.

may inevitably lose the information necessary to infer gaze
from the image.

Since gaze is largely affected by the spatial interpretation
where eyes are located on the face, the self-attention mod-
ule [27] that utilizes the spatial context of an image effec-
tively improves the generalization performance of gaze in-
ference. Some methods include a down-sampling layer by
modeling local information to reduce the amount of com-
putation in self-attention [6]. However, the existing em-
bedding that applied a linear function after dividing the im-
age into non-overlapping patches does not consider the po-
sitional information of the internal pixels when projecting
the patch. Although these methods can be suitable for gen-
eral classification problems where the similarity between
patches is important, they are not effective for gaze infer-
ence problems where important information such as the lo-
cation of the iris may exist inside the patch.

In this paper, we propose a new face image-based eye
gaze estimation method using spatial context information,
which effectively solves low generalization performance is-
sues. Before applying self-attention directly to the input im-
age, we obtain a global context in which the local context is
effectively modeled while significantly reducing the amount
of computation through convolution projection. The convo-
lution projection removes individual features irrelevant to
gaze inference in the local context to focus on information
for gaze inference. Then, we apply deconvolution to the re-

In the early stages, the eyes and face information are extracted, and in the following later stages, the extracted information is

sult of self-attention to have the same dimensions as the in-
put and keep original with the skip connection. As a result,
we could largely reduce the computational cost compared
to the direct application of self-attention. and preserve fine
features that may have been lost in embedding. Moreover,
since all these processes are performed through end-to-end
learning, a globally optimal solution for gaze inference can
be learned.
Our main contributions are as follows:

* We propose a new self-attention module with convolu-
tion projection and deconvolution layer to improve the
generalization performance of gaze estimation without
being affected by the individual characteristics of the
face. Furthermore, it can solve the problem of high
computational cost caused by applying self-attention
naively to image data for gaze estimation.

* We design the convolution to filter irrelevant informa-
tion for gaze estimation effectively and the deconvolu-
tion for high-resolution activation, which improves the
accuracy of gaze estimation by maintaining detailed
image features.

2. Related Work

Several deep learning-based methods have been pro-
posed to automatically estimate gaze from facial images.
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Figure 2. CADSE block. In the CADSE block, CAD learns the lo-
cal context by convolution layer achieving a significant computa-
tion reduction and learns the global context by self-attention. The
SE explicitly applies channel attention to spatial attention learned
in CAD.

Appearance-based methods can be largely divided into two
paradigms, depending on what information the network is
based on to infer eye gaze. One is a way to pre-process the
eye areas or the information that is considered essential for
gaze inference in the face, then transfer the information to
the gaze estimation network. The other is how the gaze esti-
mation network attempts to infer eye gaze directly from the
face.

Methods of learning the eye estimation model by sepa-
rating the eye area in the face image to prevent the gaze es-
timation model from over-fitting to the training data set and
to achieve a high estimation accuracy. In [14], they explored
the face, both eyes, and the face grid from the input image
and provided useful information to the gaze estimation net-
work. The method in [8] added independently trained net-
works to extract eye patches and head positions in front of
eye estimation networks, reflecting information about head
positions lost due to eye separation. However, these models
require a face alignment module [7, 1 0], which increases the
computational costs of the overall framework and results in
delays in data delivery between the modules. Furthermore,
the range (yaw from —90 ° to 90 ° as reported by Krafka et
al. [15]) of the head posture in the dataset [15,23] used sep-
arately to learn this module is limited, and the performance
of the model becomes vulnerable in different environments
from the training data set.

End-to-end learning-based methods have also been pro-
posed to perform eye estimation from facial images in a sin-
gle framework. In [13], the estimation of the gaze from the
image using LSTM was proposed assuming that the infor-
mation over time was essential for gaze inference. However,
it is computationally high and difficult to process in real-
time due to the input type of video unit and the characteris-
tics of RNNs that are processed sequentially. In [30], they

incorporated the existing face-eye separation paradigm into
end-to-end learning by allowing the model to learn how to
extract areas critical to gaze inference from images. How-
ever, the global context of the face image cannot be uti-
lized for gaze inference because gaze estimation still uses
information from patches separated from the image. Some
methods have also improved performance by applying the
concepts of attention [33] and self-attention [4], which are
actively utilized in computer vision tasks. However, these
methods also have limitations in effectively reflecting the
global context of images in gaze estimation, and the com-
putation for gaze estimation increases significantly.

3. Methodology

A complete pipeline of the proposed structure is shown
in Figure 1. The proposed method comprises a convolu-
tion stem [26] for convenience of training, three stages, each
consisting of N; (¢ = 1,2,3) CADSE blocks and a predic-
tion head. The CADSE block is a component that includes
a Convolution-Attention-Deconvolution (CAD) block and
a Squeeze-and-Excitation (SE) block. When a face im-
age is given as an input to the model, low-level features
are extracted in the first CADSE, and high-level features
abstracted for gaze estimation are extracted through subse-
quent CADSE blocks. The feature maps extracted from the
last CADSE are subjected to global average pooling (GAP)
to construct a flattened feature vector. Then, the feature vec-
tor is used as an input to the fully connected layer for gaze
prediction.

3.1. Preliminaries

The transformer responds well to long sequences by us-
ing the global computation and memory of the self-attention
layer, showing outstanding performance in natural language
processing [27]. Self-attention is a module proposed to use
information from the temporal context of natural language
effectively. ViT(Vision Transformer) [6] applied this idea
of self-attention to image data and showed effective results
in classification and object detection problems. Among the
encoders and decoders that make up the transformer, the
encoder is mainly used in computer vision task. The trans-
former encoder has three main components: multi-head
self-attention (MHSA), multi-layer perceptron (MLP), and
layer normalization (LN).

The self-attention is the essential module of the trans-
former, and it models the relationship between m -n patches
that embedded from a given image. Let us denote an input
as & € R™*"*4 consists of m - n patches, where d is the
number of channels of each patch. Self-attention can be
represented as follows:

QKT

Attention(Q, K, V') = softmaz( N
k

oo
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where @, K and, V are vectors that transform input = with
trainable weight matrices Wq, Wg and, Wy, respectively.
dj, means the dimension of K.

MHSA is an extension of the self-attention module for
multiple subspaces. MLP, located immediately after the
MHSA module, adjusted the dimensions and incorporated
nonlinearities into the network. In addition, LN is deployed
for stable and fast network learning. The transformer uses
the skip connection [! 1] for residual learning and its layer
can be formulated as:

x=LN(MHSA(X) + X) )

2= LN(MLP(x) + x) 3)

This module is easy to extend to multi-layer because the
output " usually takes the same dimension as input X, i.e.,
r € R™*™*? We applied the ability to extract the global
spatial context of self-attention to deal with spatial context
information from face images and extract features for esti-
mating gaze.

3.2. CAD Block: Self-Attention with Convolution
and Deconvolution

Figure 2 shows the structure of the proposed CADSE
block: 1) self-attention with convolution projection and
deconvolution architecture (CAD) and ii) squeeze-and-
excitation (SE). As shown in the figure, we place the self-
attention layer in between convolution and decovolution
layer. When a transformer is applied to an image, there is a
limit to reflecting the spatial context of the entire image be-
cause the amount of computation is hugely increased, and
the local information extracted from the individual pixel is
limited.

So, we reduced the amount of computation by perform-
ing convolution projection before applying self-attention. In
addition, we extracted the global spatial context that effec-
tively reflects local connectivity by moving the convolution
filters to overlap each other. For example, as shown in Fig-
ure 2, if a convolution with kernel size k and stride s is ap-
plied to a feature map X with a size of H x W, the down-
sampled query, key and value has a size of H/s x W/s.
Therefore, the operation cost in the self-attention can be
saved by approximately s2. Finally, the input X is con-
verted to x as follows:

x = Conv2D(X,k,s) “4)

Convolution, considering the inherent inductive bias in
the image, brings faster convergence and improved perfor-
mance than the linear function and helps eliminate posi-
tional encoding (PE) [28]. Furthermore, through the con-
volution layer, it can be learnt which features are related to
estimating gaze during training to improve the performance.

This prevents individual characteristics from being affected
in the self-attention process. The global context modeled
through convolution projection contains refined information
related to gaze, and self-attention is applied to this to obtain
similarity between entities and give weight to important in-
formation.

After computed self-attention, we add a deconvolution
layer to make the spatial dimension equal to the input and
extend the weighted features from the global to the local
level. In general, the transformer configures the shape of
the output of the layer to be the same as the input to stack
into multiple layers. However, in our model, since the input
of the self-attention module is down-sampled, the result be-
comes as downsized. When down-sampling the query, key,
and value to reduce self-attention operations [28], they pre-
serve the query as the original size so that the result is the
same size as the input. However, eyes, which contain im-
portant information for gaze estimation, occupy a small part
of the entire face. If they are pooled before they have suf-
ficiently abstracted, the feature of eyes may disappear from
low-resolution images. Therefore, to efficiently manage the
computational cost while maintaining the highest possible
resolution while abstracting the eyes, we down-sampled the
query and the attention map computed at the global level
through the deconvolution layer. Also, as shown in Figure
1, the input value is maintained by adding a skip connec-
tion. The following layer is designed to check both the ab-
stracted information and the information before it is lost.
We adopted the transposed convolution as follows to imple-
ment deconvolution layer:

x' = TransposedConv2D(MHSA(x), k,s) + X (5)

We can learn how to extend the attention calculated at the
global level to the same dimension as the input through this
process. Moreover, since the inductive bias of the image is
maintained in all processes, we could remove PE without
degrading performance [28].

3.3. SE Block: Squeeze-and-Excitation

The feature undergoes convolution and deconvolution
layer within the CAD block, and modeling related to spa-
tial information is performed, and the shape is adjusted. By
placing the SE [12] block after the CAD block, we weighted
for multiple channels created through the multi-head and re-
fined the feature map by reflecting the relative importance
of each channel.

The SE applies global average pooling to a feature map
to extract the values of every channel. The extracted values
are passed through the multi-layer perceptron (MLP) and
then converted into weights that represent the importance
of the individual channel. The weights are multiplied by
the feature map to decide which values are passed to the
next block.
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Table 1. Overview of the datasets used in experiments. We

show the number of subjects, the maximum head poses and gaze in

horizontal and vertical directions in the camera coordinate systems, the amount of data (number of images or duration of the video), and

image resolution.

Subjects Head Pose Gaze Data Resolution
EYEDIAP [9] 16 +15°, 30° +25°, 20° 237 min | HD & VGA
Gaze360 [13] 238 £90°, unknown | £140°, —=50° | 172,000 | 4096 x 3382
MPIIFaceGaze [33] 15 +15°, 30° £20°, £20° | 45,000 1280 x 270
RT-GENE [8] 15 +40°, £40° +40°, —40° | 122,531 | 1920 x 1080

Table 2. Gaze estimation errors in degrees on cross dataset evaluations. For direct comparisons, we put the results of ResNet50 and

the proposed model side by side: (ResNet50/Proposed)

Trar Test | EYEDIAP | Gaze360 | MPIIFaceGaze | RT-GENE
EYEDIAP : 33.7°124.6° | 15.7°/12.9° | 15.69/12.3°
Gaze360 | 11.3°/7.10° ; 10.0°/831° | 26.6°/17.7°

3.4. CADSE Block

The overall transformer structure composed of CAD and
SE modules can be expressed as follows:

¥’ = CAD(PreNorm(X)) + X (6)

1" = SE(PreNorm(z')) + ' (7

In addition, as in Figure 2, it is designed to learn residuals
and preserve the originals by adding skip connections after
each component.

We use layernorm [1] to normalize the input features.
The first transformer method [27] takes the post normaliza-
tion strategy which can be formulated as follows:

' = LayerNorm(F(f) + f) (8)

where f, f’ and Layer Norm(-) denotes feature map, nor-
malized feature map and layernorm, respectively. However,
pre-normalization [19] shows better performance and could
resolve the learning instability that may occur in a post nor-
malization due to the residual term. The pre-normalization
can be formed as:

f' = F(Layer Norm(f)) + f. 9)

Each stage of the network comprises N; CADSE lay-
ers, where [V, is the number of layers in the ¢-th stage. In
the early stages of the model, we maintain a high resolu-
tion to sufficiently abstract information about the eyes from
the face image. In the subsequent stage, we reduce spa-
tial information by pooling and increase channels to more
abstract features and increase the expressive power of the
model. Finally the features extracted in the last stage are
flattened through GAP and then transferred to a prediction
head composed of multi-layer perceptron.

4. Experimental Results

We performed three types of experiments to evaluate the
proposed algorithm. First, we performed a cross-data set
evaluation to check the generalization performance of the
CAD block. As a result, the generalization performance of
the proposed model is improved compared to CNN. Sec-
ond, we conducted an ablation study to confirm the effects
of the convolution and deconvolution layer to extract spa-
tial context using local connectivity in CAD. Finally, we
evaluated the gaze estimation performance of the proposed
model through a direct comparison with the state of the art
methods for gaze estimation.

Dataset for pre-training We used the ETH-XGaze [29]
dataset for pre-training. ETH-XGaze consists of 1.1M im-
ages obtained from 110 subjects. It is divided into train-
ing and evaluation sets, and we used the training set con-
taining 765K images of 80 subjects to pre-train the model.
The evaluation set is divided into within-dataset and person-
specific evaluations, each including 15 people. We used the
within-dataset as the test set for pre-training validation. The
dataset provides normalized data, and we fed it directly into
the model.

Dataset for evaluation To evaluate the gaze estimation
performance, we selected four datasets among the pub-
lic released datasets: EYEDIAP [9], Gaze360 [13], MPI-
IFaceGaze [33], and RT-GENE [8]. All datasets are labeled
for 3D gaze estimation. For more information about each
data set (see Table 1). The EYEDIAP dataset consists of 94
videos with a 237-minute duration obtained from 16 sub-
jects, and we used four-fold cross-validation to evaluate the
performance with this dataset. The Gaze360 dataset col-
lected 172K images from 238 subjects and has the most
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Table 3. Ablation Study. We can clearly see that deconvolution layer contributes a significant performance improvement, and convolution

projection layer is also crucial.

Dataset | BvEDIAP | Gaze360 | MPIIFaceGaze | RT-GENE
Method
Proposed method (w/ Conv/Deconv) 5.25° 10.70° 4.04° 7.00°
w/o convolution projection 5.62° 12.57° 4.76° 8.12°
w/o deconvolution 6.73° 14.80° 4.99° 9.21°

Table 4. Comparison with state-of-the-art methods. The proposed method achieves state-of-the-art results

Category | oo Datasel | pvERIAP | Gaze360 | MPIIFaceGaze | RT-GENE
FullFace [33] 6.53° 14.99° 4.93° 10.00°
RT-GENE [§] 6.02° 12.26° 4.66° 8.00°
A Dilated-Net [2] 6.19° 13.73° 4.42° 8.38°
Gaze360 [13] 5.36° 11.04° 4.06° 7.06°
CA-Net [3] 5.27° 11.20° 4.27° 8.27°
GazeTR-Pure [4] 5.72° 13.58° 4.74° 8.06°
B GazeTR-Hybrid [4] 5.33° 11.00° 4.18° 7.12°
Proposed 5.25° 10.70° 4.04° 7.00°
comprehensive head pose and gaze range. They prede- @ 3.40GHz, 256 GB RAM, and NVIDIA Tesla V100 GPU.

fined the data set into 129K images for training, 17K for
validation, and 26K for evaluation. We used this setup as
is. The MPIIFaceGaze dataset is based on the MPIIGaze
dataset and contains 45K images obtained from 15 subjects.
We used the leave-one-person-out evaluation method to es-
timate the performance with this dataset. The RT-GENE
dataset collected 123K images from 15 subjects and des-
ignated 13 subjects for training and two for verification.
Although the resolution provided is high, the problem be-
comes difficult because the distance between the camera
and the subject is far. Therefore, we used 3-fold cross-
validation to evaluate the performance of this dataset. The
EYEDIAP and MPIIFaceGaze datasets have the relatively
limited head pose and gaze and assumed benchmarks in a
controlled environment. Gaze360 and RT-GENE challenge
their relatively wide head pose and gaze range and show
performance in unrestrained environments.

Experimental settings The proposed method was imple-
mented with PyTorch [21] . All experiments were learned
with the training set specified in each data set and evalu-
ated by the test set for a fair experiment. The evaluation
method remain the same. We used angular error as an evalu-
ation metric that is commonly used in gaze inference. Since
the error is the angle between the predicted gaze and the
actual gaze, a model with a small error has better perfor-
mance. Experiments were conducted with Intel Xeon CPU

I'To ensure reproducibility, we will release the code when the paper is
accepted.

For all training sequences, the batch size was set to 128. All
networks (except for the pre-training module, facial land-
mark detection) were trained with RAdam [17], and the ini-
tial learning rate was set to 0.0001. The resolution of input
image is 224 x 224. The sizes of the features that supplied
to each stage are 112 x 112, 56 x 56 and 28 x 28, respec-
tively. In the proposed model, each stage has 64, 192, and
384 channels, respectively, and the Ny, Ny, and N3 are 1,
3, and 8, respectively. The kernel size and stride of the filter
for convolution projection are 11 and 8, respectively, and
the deconvolution is also the same. Dropout [24] with 0.2
was applied to the model.

4.1. Cross Dataset Evaluation

Cross-dataset evaluation on multiple datasets is fre-
quently used to measure the generalization performance of
gaze-inference models. In [29], they trained the off-the-
shelf ResNet50 and conducted cross-dataset evaluation in
various datasets. Following the same protocol, we trained
the proposed model on the EYEDIAP dataset to com-
pare cross-evaluation performance with the ResNet50. The
model was also trained with the Gaze360 dataset and eval-
uated with three other datasets. The results are presented
in Table 2. Our model obtained advanced results for all
datasets. When trained on the EYEDIAP dataset, we found
a performance improvement in the proposed model from
2.8 °t0 9.1 ° compared with ResNet50. In the case of the
Gaze360 dataset, the performance improved from 1.69 ° to
8.9 © than ResNet50. It shows higher accuracy when trained
on the Gaze360 dataset than EYEDIAP, which seems to be

4997



Table 5. Specification of the state-of-the-art models.

Method # of Params. | # of FLOPs | Running Time(ms)
RT-GENE [§] 82.0M 30.81G 467
Gaze360 [13] 14.6M 12.78G 276
GazeTR-Pure [4] 227.3M 58.32G 1280
Proposed 74.8M 19.75G 379

EYEDIAP Dataset

Image

GT

Prediction

Gaze360 Dataset

MPIIFaceGaze Dataset RT-GENE Dataset

Figure 3. Proposed method’s Gaze estimation results on various dataset face images. The first row images are input images, and the
second and third rows are the ground truth for the gaze and the estimation result by the proposed network, respectively. We can see that the
proposed method has good generalization performance, which can reliably estimate eye gaze from various kinds of dataset images.

because it has enough data to learn a wide gaze distribu-
tion. In other words, if we have enough data to train a
transformer, self-attention can show higher generalization
performance than convolution.

4.2. Ablation Study

To confirm the validity of our model design, we con-

ducted the following ablation study on the elements while
removing some components from the entire pipeline: a
qualitative comparison of ‘with convolution and deconvolu-
tion (proposed method)’, ‘without convolution projection’,
and ‘without deconvolution’ (See Table 3).
a) w/o convolution projection To investigate the effect of
the convolution projection on the performance, we removed
the convolution layer in the process of embedding the in-
put to make the query, key, and value. Instead, we use a
linear function on the non-overlapping patches for embed-
ding. We conducted experiments on four datasets to ensure
reliability, and the results are shown in Table 3. When the
convolution projection technique was applied, the perfor-
mance improved from 0.37 ° to 1.87 °, respectively, which
shows that the proposed method is very effective compared
to the alternative. It seems to be because convolution layer
extracts information more efficiently in modeling the local
context.

b) w/o deconvolution After calculating the attention score,
we need to up-sample the output because our model down-
samples queries, keys, and values. Otherwise, the resolu-
tion will remain small, and some spatial information will be
lost. To check the effect of deconvolution, we compared the
performance with the method [28] without up-sampling by
using the query in its original size. This experiments were
also carried out on four datasets, and, as shown in Table 3,
the influence of deconvolution layer is significant. It can
be seen that if we remove the deconvolution layer, the per-
formance is worse than when we eliminate the convolution
projection. We found degradation from 0.95 ° to 4.10 ° due
to the removal of the deconvolution layer for each dataset.
The performance degradation was particularly more signif-
icant in the Gaze360 and RT-GENE datasets than the other
datasets because these datasets assume an unrestrained en-
vironment, making it difficult for the model to find infor-
mation related to gaze inference. Additionally, the model is
likely to try to fit the subject when self-attention preserves
the spatial size of the query.

4.3. Comparison to the State-of-the-art Methods

We compared the performance of the proposed model
and the state-of-the-art methods, which showed competi-
tive performance in gaze estimation, with the EYEDIAP,
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Gaze360, MPIIFaceGaze and RT-GENE datasets. The re-
sults are presented in Table 4. In the table, methods cor-
responding to category A (FullFace [33], RT-GENE [&],
Dilated-Net [2], Gaze360 [13] and CA-Net [3]) are CNN-
or RNN-based gaze estimation models, and the methods in
category B are those that use a transformer.

Table 5 shows the number of parameters for each method
and the flops required to derive the result. As shown in
Table 4, the results of category B applying self-attention
estimated gaze more accurately than those of category A.
GazeTR-Pure [4] using ViT shows high accuracy compared
to category A, but the requested computational cost in-
creases rapidly as shown in Table 5. On the other hand,
the proposed method requires smaller resource than ViT ar-
chitecture and be estimated more accurately. In Table 5,
GazeTR-Pure shows approximately three times the param-
eter and 2.95 times the FLOPs difference compared to our
model. The running time also shows a proportional diver-
sity. It was shown that our method using convolution ef-
fectively suppresses the cost increase that may occur when
self-attention is applied with MLP embedding. The im-
provement is noticeable in the datasets in a more uncon-
strained environment. As shown in Table 1, the Gaze360
dataset contains a huge variance in head pose and gaze vari-
ance compared to other datasets. The performance of the
proposed model in the Gaze360 and RT-GENE dataset in-
creased from 0.30 ° to 4.29 ° and from 0.06 ° to 3.00 °
compared to other methods. The proposed model works
well on datasets where it is difficult to learn the mapping
between input and gaze. The results in the EYEDIAP and
MPIIFaceGaze datasets also increased from 0.02 ° to 1.28 ©
and from 0.02 ° to 0.89 °, respectively.

The proposed method’s generalization performance can
be seen in Figure 3. It visualizes some qualitative results
of gaze estimation on various face images from different
datasets.

5. Conclusion

This paper proposes a novel framework to solve the low
generalization performance of gaze estimation networks
with faces as input. We introduced self-attention with con-
volution and deconvolution that can handle global context
and has better generalization performance. Convolution
projection and deconvolution placed before and after self-
attention effectively modeled the local context and reduced
the amount of self-attention computation. Through rigorous
experiments on four public datasets (EYEDIAP, Gaze360,
MPIIFaceGaze, and RT-GENE), we validated that the pro-
posed model outperforms other methods that are either
CNN-based or transformer-based in terms of accuracy and
computational cost. We adopted the self-attention struc-
ture to increase the model’s generalization performance, but
there is still scope for improvement, such as to identify a

structure more suitable for removing individual characteris-
tics.
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