
Learning-by-Novel-View-Synthesis for
Full-Face Appearance-Based 3D Gaze Estimation

Jiawei Qin, Takuru Shimoyama, Yusuke Sugano
Institute of Industrial Science, The University of Tokyo

{jqin, tshimo, sugano}@iis.u-tokyo.ac.jp

Abstract

Despite recent advances in appearance-based gaze es-
timation techniques, the need for training data that cov-
ers the target head pose and gaze distribution remains a
crucial challenge for practical deployment. This work ex-
amines a novel approach for synthesizing gaze estimation
training data based on monocular 3D face reconstruction.
Unlike prior works using multi-view reconstruction, photo-
realistic CG models, or generative neural networks, our ap-
proach can manipulate and extend the head pose range of
existing training data without any additional requirements.
We introduce a projective matching procedure to align the
reconstructed 3D facial mesh with the camera coordinate
system and synthesize face images with accurate gaze la-
bels. We also propose a mask-guided gaze estimation model
and data augmentation strategies to further improve the es-
timation accuracy by taking advantage of synthetic train-
ing data. Experiments using multiple public datasets show
that our approach significantly improves the estimation per-
formance on challenging cross-dataset settings with non-
overlapping gaze distributions.

1. Introduction

Gaze estimation has been considered an important re-
search topic in the computer vision community with many
applications. Vision-based techniques have the potential to
bring the ability to estimate gaze to arbitrary cameras. How-
ever, despite recent advances in machine learning-based ap-
proaches [34, 44, 59, 62, 63], it is still challenging to accu-
rately predict gaze directions under extreme head poses and
diverse lighting conditions.

One of the fundamental difficulties is the requirement
of an appropriate training dataset. Many efforts have been
made to create diverse in-the-wild gaze datasets [12, 26, 27,
62]. However, it is not a trivial task to construct a dataset
covering all crucial factors including head pose and gaze
distribution, illumination environment, background appear-

Figure 1. We propose a learning-by-synthesis appearance-based
gaze estimation approach based on single-image 3D face recon-
struction. Our projective matching procedure aligns the recon-
structed face with the ground-truth gaze position for generating
precise training data.

ance, demographic diversity, imaging properties, and accu-
rate gaze labels.

As actively studied in other computer vision tasks [21,
38, 39, 43, 47, 52], one potential approach to obtain targeted
training data is the use of synthetic images. In the con-
text of appearance-based gaze estimation, accurate ground-
truth 3D gaze direction is required when synthesizing im-
ages. Previous approaches use either multi-view 3D recon-
structed data [15,44] or hand-crafted eyeball models [51] to
synthesize eye images for appearance-based gaze estima-
tion. However, it is still challenging to capture 3D recon-
struction data under various illumination conditions. While
hand-crafted computer graphics models can potentially ad-
dress this limitation, there is also a vast domain gap between
real and synthetic images [41]. These limitations become
more prominent for full-face gaze estimation [27, 59, 63].
Although generative neural rendering models are one of the
promising approaches to generate full-face images while
controlling gaze directions [65], it is not easy to ensure that
their labels are accurate enough to be used as training data.

This work proposes an alternative approach to learning-
by-synthesis full-face appearance-based gaze estimation via
single-image 3D face reconstruction. As illustrated in
Fig. 1, we reconstruct 3D facial shapes from existing gaze
datasets and synthesize novel views by rotating the recon-
structed faces. However, since most of the single-image
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3D face reconstruction methods do not provide physical
3D shapes in the camera coordinate system, it brings an-
other challenge of preserving accurate gaze labels under
novel views. To address this issue, we introduce a projec-
tive matching procedure to ensure that the reconstructed 3D
facial surface is associated with the original camera coordi-
nate system and the ground-truth gaze target position.

In addition, we propose a novel mask-guided gaze esti-
mation model. We take full advantage of the data synthesis
by obtaining a facial region mask during rendering process
and using it as an additional supervision. We also propose
rendering images with lighting and background augmenta-
tion to enhance the diversity of the image appearance. We
evaluate how the proposed approach can cover unseen head
poses and gaze directions by the data extrapolation task.
By combining our synthetic data and mask-guided estima-
tion model, we show that our approach can outperform the
gaze estimation results of other state-of-the-art synthetic-
and real-image training datasets.

The contributions of this work are threefold. (i) We
propose a novel approach for creating training data for ap-
pearance-based gaze estimation through monocular 3D face
reconstruction. To our knowledge, this is the first work
to prove that single-image face reconstruction outputs can
be used to train full-face appearance-based gaze estimation
models. (ii) We propose a novel mask-guided soft-attention
model for gaze estimation. Together with data augmenta-
tion, our gaze estimation method fully utilizes the nature
of synthetic training. (iii) Through experiments, we verify
that our approach can successfully extend the gaze range
of the source dataset, which provides better model perfor-
mance than other baseline training datasets using real and
synthetic images.

2. Related Work
Traditional model-based gaze estimation methods use

3D eyeball models with geometric features to infer 3D gaze
directions [17, 22]. On the other hand, appearance-based
gaze estimation methods directly map the image to gaze di-
rection [46]. Methods in this category have fewer hardware
restrictions and are more suitable for in-the-wild settings.

Most appearance-based methods take eye-only images
as input [44, 46, 49, 54, 56, 57, 62], and there have also
been some attempts to explore two-eye combination in-
puts [6, 8, 20, 33]. In contrast, some prior work demon-
strated that full-face input can improve the robustness and
accuracy of appearance-based gaze estimation [5,27,61,63].
While this work also focuses on the full-face appearance-
based gaze estimation task, we explore the potential of us-
ing single-image 3D face reconstruction to synthesize full-
face training data for the first time.

Gaze Estimation Datasets. Although some datasets
were collected using mobile devices during in-the-wild

daily-life situations under diverse illumination conditions,
they often suffer from limited ranges of gaze and head
pose [24, 27, 62–64]. Some datasets reached higher vari-
ety in head pose and gaze by using more complex record-
ing setups, but the environment and illumination are always
limited to controlled conditions [12, 14, 42].

Recent datasets have been collected with further ex-
tended diversity in head pose ranges and environment con-
ditions [26,59]. However, a significant effort is still required
to acquire training datasets that meet the requirement for
head pose and appearance variations in the deployment en-
vironment. This work aims to address this issue by provid-
ing a method for extending the head pose ranges of source
datasets as well as augmenting the environment diversity.

Learning-by-Synthesis for Gaze Estimation. To ad-
dress the limitations of real-world data collection, there
have been some efforts on creating synthetic training data
for appearance-based gaze estimation using multi-view
stereo reconstruction [44] or hand-crafted photo-realistic
computer graphics models [50, 53]. However, the multi-
view setup has the fundamental limitation that the environ-
ment is fixed to the laboratory conditions [44], and the do-
main gap between real and purely synthetic images is not
negligible [50, 53]. Zheng et al. proposed a neural network
for redirecting gaze and head pose, which can be also used
to generate synthetic training data [65]. However, such neu-
ral rendering models cannot guarantee that the facial ap-
pearance exactly matches the target gaze label. In this work,
we take yet another approach based on single-image 3D
face reconstruction for accurate data synthesis.

Domain Adaptation for Gaze Estimation. When us-
ing synthetic data, the domain gap between synthetic and
real images can be a critical issue. However, in the
context of appearance-based gaze estimation, there have
been few studies dealing with such an unsupervised, cross-
environment domain adaptation task. Fundamentally speak-
ing, there have been few research examples of domain adap-
tation for regression tasks [28, 45]. Shrivastava et al. [41]
proposed SimGAN, an unsupervised domain adaptation ap-
proach that refines synthetic eye images to be visually simi-
lar to real images. However, their method was designed for
eye images, and its effectiveness has never been validated
on full-face gaze estimation. Liu et al. [30] recently pro-
posed an unsupervised domain adaptation framework based
on collaborative learning. Although their work addresses
the full-face gaze estimation task, its effectiveness on syn-
thetic source data has not been evaluated. In contrast to
these methods taking domain adaptation approaches, we
propose a method that addresses the domain gap by fully
utilizing the characteristics of the synthetic training data.

3D Face Reconstruction. Monocular 3D face recon-
struction techniques have also made significant progress in
recent years [70]. While reconstructed 3D faces have also
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Figure 2. Overview of our data synthesis pipeline. We assume that 3D face reconstruction methods generate facial meshes under an
orthogonal projection model, and we convert the mesh via the proposed projective matching to align with the ground-truth gaze position in
the input camera coordinate system.

been used to augment face recognition training data [32,
58, 67], no prior work explored its usage in full-face
appearance-based gaze estimation. Methods based on 3D
morphable models [9, 48] usually approximate facial tex-
tures via the appearance basis [3, 29, 35, 36], and therefore
the appearances of the eye region can be distorted. To pre-
serve accurate gaze labels after reconstruction, this work
utilizes 3D face reconstruction methods that sample texture
directly from the input image [2,4,10,18,19,68,69]. In ad-
dition, since many prior works rely on orthogonal or weak
perspective projection models, we discuss how to precisely
align the reconstruction results with the source camera co-
ordinate system.

3. View Synthesis via 3D Face Reconstruction
Given an ordinary single-view gaze dataset and 3D face

reconstruction results, our goal is to synthesize face images
under unseen head poses while preserving accurate gaze di-
rection annotations.

3.1. Overview

Fig. 2 shows the overview of our data synthesis pipeline.
We assume that the source gaze dataset consists of 1)
face images, 2) the projection matrix (intrinsic parame-
ters) C of the camera, and 3) the 3D gaze target posi-
tion g ∈ R3 in the camera coordinate system. Most of
the existing gaze datasets contain 3D gaze position anno-
tations [27, 59, 62], and yaw-pitch annotations can also be
converted assuming a distance to the dummy target. State-
of-the-art learning-based 3D face reconstruction methods
usually take a cropped face patch as input and output a 3D
facial mesh, which is associated with the input image in
an orthographic projection way. Without loss of general-
ity, we assume that the face reconstruction method takes a
face bounding box defined with center (cx, cy), width wb,
and height hb in pixels and then resized to a fixed input size
by factor (sx, sy). The reconstructed facial mesh is defined
as a group of N vertices Vp = {v(i)

p }Ni=0. Each vertex is
represented as v(i)

p = [u(i), v(i), d(i)]⊤ in the right-handed
coordinate system, where u and v directly correspond to the

pixel locations in the input face patch and d is the distance
to the u-v plane in the same pixel unit. Many recent works
use this representation [4, 11, 18, 25, 68], and we can con-
vert arbitrary 3D representation to this way by projecting
the reconstructed 3D face onto the input face patch.

Our goal is to convert the vertices of the reconstructed
3D face Vp to another 3D representation Vc = {v(i)

c }Ni=0

where each vertex v
(i)
c = [x(i), y(i), z(i)]⊤ is in the orig-

inal camera coordinate system so that it can be associated
with the gaze annotation g. In this way, the gaze target lo-
cation can be also represented in the facial mesh coordinate
system, and we can render the facial mesh under arbitrary
head or camera poses together with the ground-truth gaze
direction information.

3.2. Projective Matching

Since u and v of the each reconstructed vertex vp are as-
sumed to be aligned with the face patch coordinate system,
vc must be on the back-projected ray as

vc = λ
C−1po

||C−1po||
= λ

C−1T−1p

||C−1T−1p||
, (1)

where po = [uo, vo, 1]
⊤ and p = [u, v, 1]⊤ indicates the

pixel locations in the original image and the face patch in
the homogeneous coordinate system, respectively, and

T =

sx 0 −sx(cx − w
2 )

0 sy −sy(cy − h
2 )

0 0 1

 (2)

represents the cropping and resizing operation to create the
face patch, i.e., p = Tpo. The scalar λ indicates scaling
along the back-projection ray and physically means the dis-
tance between the camera origin and vc.

Since Eq. (1) does not explain anything about d, our task
can be understood as finding λ which also maintains the
relationship between u, v, and d. Therefore, as illustrated in
Fig. 3, we propose to define λ as a function of d as λ = αd+
β. α indicates a scaling factor from the pixel to physical
(e.g., millimeter) unit, and β is the bias term to align αd
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Figure 3. Determining the location of Vc via parameters α and
β. α indicates a scaling factor from the pixel to physical (e.g.,
millimeter) unit, and β is the bias term to align αd to the camera
coordinate system.

with the camera coordinate system. Please note that α and
β are constant parameters determined for each input image
and applied to all of the vertices from the same image.

We first fix α based on the distance between two eye cen-
ters (midpoints of two eye corner landmarks) in comparison
with a physical reference 3D face model. 3D face recon-
struction methods usually require facial landmark detection
as a pre-processing step, and we can naturally assume that
we know the corresponding vertices in Vp to the eye cor-
ner landmarks. We use a 3D face model with 68 landmarks
(taken from the OpenFace library [1]) as our reference. We
set α = lr/lp, where lp and lr are the eye-center distances
in Vp and in the reference model, respectively.

We then determine β by aligning the reference landmark
depth in the camera coordinate system. In this work, we use
the face center as a reference, which is defined as the cen-
troid of the eyes and the mouth corner landmarks, following
previous works on full-face gaze estimation [60, 63], and
we use the same face center as the origin of the gaze vector
through the data normalization and the gaze estimation task.

We approximate β as the distance between the ground-
truth 3D reference location and the scaled/reconstructed lo-
cation as β = ||v̄||−αd̄. d̄ is the reconstructed depth values
computed as the mean of six landmark vertices correspond-
ing to the eye and mouth corner obtained in a similar way
as when computing α. v̄ is the centroid of the 3D locations
of the same six landmarks in the camera coordinate system,
which are obtained by minimizing the projection error of
the reference 3D model to the 2D landmark locations using
the Perspective-n-Point (PnP) algorithm [13].

3.3. Training Data Synthesis

Once we obtain the 3D face mesh Vc in the original cam-
era coordinate system, we can render it under arbitrary head
poses with the ground-truth gaze vector.

If our goal is to render a face image in a new camera
coordinate system which is defined with extrinsic param-
eters Re, te, the vertex vc and gaze target position g are
both projected to the new coordinate system as Revc + te
and Reg + te in the same manner. Similarly, if the goal is

to render a face image with a target head pose* Rt, tt in a
new camera coordinate system given the source head pose
Rs, ts, we can transform the vertices and gaze position as
Rt(Rs)

−1(vc − ts) + tt.
In this work, we further augment the images in terms of

lighting conditions and background appearances by virtue
of the flexible synthetic rendering. We set background to
random color or random scene images. Although most of
the 3D face reconstruction methods do not reconstruct light-
ing and albedo, we maximize the diversity of rendered im-
ages by controlling the global illumination. We randomly
reduce the ambient light intensity to render darker weak
light images. Fig. 4 shows examples of the synthesized im-
ages using MPIIFaceGaze [63] and ETH-XGaze [59].

3.4. Rendering Details

In the experiments, we applied 3DDFA [18] to recon-
struct 3D faces from the source dataset. After projective
matching, we rendered new images using the PyTorch3D
library [37]. We set the background to be a random RGB
value or scene image by modifying the blending setting. In
the PyTorch3D renderer, the ambient color [r, g, b] repre-
sents the ambient light intensity, ranging from 0 to 1, in
which 1 is the default value for full lighting. For weak-light
images, we set them to be a random value between 0.25
and 0.75. Overall, among all generated images, the ratio of
black, random color, and random scene are set to 1:1:3, and
half of them are weak lighting. Random scene images are
taken from the Places365 dataset [66] and we apply blurring
to them before rendering faces.

4. Mask-Guided Gaze Estimation
While the data synthesis process described above can

render realistic face regions with accurate gaze labels, there
still remains a huge synthetic-real appearance gap. We can-
not fully ignore the influence of background and non-face
(e.g., hair and clothes) regions in the full face estimation
task. Synthesizing invisible face regions of the original im-
age is difficult even with the state-of-the-art face reconstruc-
tion methods. In this section, we describe our mask-guided
gaze estimation model that addresses the domain gap issue
by additional supervision obtained from data synthesis.

4.1. Network Architecture

Fig. 5 shows the overview of the proposed mask-guided
gaze estimation network. When synthesizing the training
data, we propose to generate binary masks representing the
reliable regions of the reconstructed facial mesh, e.g., the
frontal face regions visible in the source image. In addition
to the base gaze estimation network, our proposed network

*Head pose is defined as the rotation and translation from the face
coordinate system to the camera coordinate system.
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MPIIFaceGaze ETH-XGaze

Figure 4. Examples of the synthesized images. The first row shows the source images from MPIIFaceGaze [63] and ETH-XGaze [59].
The second and third rows show synthesized images for MPIIFaceGaze, and pairs of real and synthesized images for ETH-XGaze. For
MPIIFaceGaze, the second and third rows show synthesized images in full-light and weak-light. For ETH-XGaze, the second row shows
the real images from the dataset, and the third row shows our synthetic images with the same head poses as the second row. For each
synthetic example, the three columns show the black, color, and scene image background in turn, and the red arrows indicate gaze direction
vectors.
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Figure 5. Architecture of the proposed mask-guided gaze esti-
mation network with an extra segmentation branch whose output
segmentation mask serves as a soft attention.

has an extra fully-convolutional branch [31] after the feature
extractor to predict segmentation masks corresponding to
such synthesized binary masks. The output segmentation
mask is then applied to the feature map, serving as a soft
attention [55] to enhance informative feature regions.

The network is trained in a multitask manner by combin-
ing two loss functions as L = Lgaze + γLmask, where Lgaze
and Lmask correspond to loss terms evaluating the gaze di-
rection and the segmentation mask, respectively. Follow-
ing [59], Lgaze is defined as an ℓ1 loss between the ground
truth and the predicted gaze direction. Lmask is defined as
a binary cross-entropy loss between the ground-truth region
mask and the predicted segmentation mask.

4.2. Implementation Details

Together with the synthetic face images, we also gener-
ated mask images to supervise the training. As most of the
reconstruction source images are nearly frontal faces, and
the reconstructed 3D surfaces are aligned with the input im-
age, we use the 2D landmark locations to define the face
region outline and filter out the 3D vertices outside the re-
gion. We also filter out the vertices with depth values larger
than that of the jaw-landmark, and finally obtain the face-

region-only vertices for rendering binary masks.
In the following experiments, we use ImageNet pre-

trained ResNet-50 [23] as the backbone network. We pre-
dict a two-class segmentation mask using a FCN head,
whose architecture is shown in Fig. 5. We resize its first
channel to 7× 7 and multiply it by the original feature map
element-wisely. We compute the binary cross-entropy loss
using the ground-truth face region mask with an extra bit-
wise inverted channel. The loss weight γ is set to be 0.5.

5. Experiments
We conduct experimental evaluations to show the feasi-

bility of our approach to synthesize training datasets. We
compare our method with existing real datasets and data
synthesis approach in terms of gaze estimation accuracy.

5.1. Experimental Settings

MPIIFaceGaze [63] consists of more than 38,000 im-
ages of 15 subjects. Since we use this dataset only as a
source for synthesis, we restricted the source images to be
nearly frontal and removed reconstruction failure cases. To
ensure subject balance for training, we randomly down-
sample or up-sample to 1,500 images for each subject.
ETH-XGaze [59] contains more than 1 million images of
110 subjects. For its nonpublic-label testing set, we use the
public evaluation server for evaluating the accuracy. EYE-
DIAP [14] consists of more than 4 hours of video data cap-
tured by VGA and HD cameras, using continuous screen
targets or 3D floating object targets. We treated the screen
target (CS) and floating target (FT) subsets separately and
sampled one image every 5 frames from the VGA videos
following the pre-processing by Park et al. [33]. GazeCap-
ture [27] consists of more than 2 million images crowd-
sourced from more than 1,300 subjects. We used the meta-
data provided by Park et al. [33] for data normalization.
Gaze360 [26] consists of indoor and outdoor images of 238
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(a) MPIIFaceGaze (b) ETH-XGaze (c) MPII-NV  
(ETH-XGaze) (d) EYEDIAP-CS (e) MPII-NV  

(EYEDIAP-CS) (h) Gaze360(f) EYEDIAP-FT (g) MPII-NV  
(EYEDIAP-FT)

Figure 6. Distributions of head pose (top row) and gaze direction (bottom row). (a) source MPIIFaceGaze, (b) target ETH-XGaze,
(c) synthesized dataset by extending MPIIFaceGaze for ETH-XGaze distribution, (d) target EYEDIAP (CS), (e) synthesized dataset for
EYEDIAP (CS), (f) target EYEDIAP (FT), (g) synthesized dataset for EYEDIAP (FT), and (h) Gaze360 (head pose not provided).

subjects with a very large head pose and gaze range. We
follow the pre-processing of Cheng et al. [7], which omits
the cases of invisible eyes, resulting in 84,902 images.

We apply the data normalization scheme commonly used
in appearance-based gaze estimation [59, 60]. Unless oth-
erwise noted, we follow the ETH-XGaze dataset [59]. We
directly render the 3D facial mesh in the normalized camera
space. We set the virtual camera’s focal length to 960 mm,
and the distance from the camera origin to the face center
to 300 mm. Face images are rendered in 448 × 448 pixels
and down-scaled to 224 × 224 pixels before being fed into
CNNs. 3D head pose is obtained by fitting a 6-landmark
3D face model to the 2D landmark locations provided by
the datasets, using the PnP algorithm [13]. We apply the
rotation matrix to rotate the 3D facial mesh to a normalized
target head pose. For some source images, there may exist a
misalignment between the estimated head poses and the 3D
facial mesh, which would result in an in-plane rotation after
rotating the mesh. We address this by applying an extra ro-
tation. Specifically, we determine the x, y, z-axis based on
the face mesh’s 3D landmarks. Equally, the extra rotation
is also multiplied on the gaze vector and the head pose to
update the labels consistently. Although this does not com-
pensate the misalignment, it ensures the rendered face has
no in-plane rotation, while keeping the gaze label correct.

As a simple baseline model against our mask-guided net-
work, we use a gaze estimation network with the ResNet-
50 [23]. This corresponds to the proposed network with-
out the segmentation branch and the attention mechanism,
which is evaluated as a baseline model in ETH-XGaze [59].

5.2. Dataset Extrapolation

We first focus on the dataset extrapolation cases where
the source MPIIFaceGaze dataset is extended to have a sim-
ilar head pose distribution as the target ETH-XGaze† and

†We used the training subset as the target head pose distribution.

EYEDIAP datasets. We use the head pose values obtained
through the data normalization process, and each source im-
age is reconstructed and rendered with 16 new head poses
randomly chosen from the target dataset. To avoid ex-
treme profile faces where the eyes are fully occluded, we
discarded the cases whose pitch-yaw vector norm is larger
than 80 degrees. As a result, the MPIIFaceGaze is extended
to three synthetic datasets for ETH-XGaze, EYEDIAP CS,
and EYEDIAP FT, respectively, all with 360,000 images.
We refer to these datasets as MPII-NV.

We evaluate how our data synthesis approach improves
performance compared to other baseline training data. As
a real image baseline, we used the Gaze360 dataset which
mostly covers the target gaze range. The head pose and gaze
distributions of the source and target real datasets (blue) and
the synthetic datasets (green) are shown in Fig. 6, together
with the gaze distribution of Gaze360 (head pose is not pro-
vided). Since we synthesized the data based on head pose
distribution, it can be seen that the gaze distribution does
not exactly match the target, but only roughly overlaps.

In addition, we use ST-ED [65] as a neural rendering-
based synthetic baseline. We used their pre-trained model
and multiplied the same rotation matrix on the head pose
and gaze embeddings, so that each image is rotated in the
same manner as MPII-NV. The dataset is named MPII-NV-
STED whose samples are shown in the bottom left of Fig. 7.
Since the pre-trained model of ST-ED can only output 128×
128 images, we downscaled the test images when evaluating
the model trained on ST-ED. We also show results of MPII-
NV downscaled to 128× 128 for a fair comparison.

The results are summarized in Table 1. The upper block
are real datasets, and the last four rows are extended syn-
thetic datasets. All are baseline model performance except
the last row being trained with the proposed mask-guided
model. The middle block corresponds to the 128 × 128
models for comparison with ST-ED [65].
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Source image 
(MPII)

Source image 
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Figure 7. Examples of the synthesized images. For each source
image, the first row is from our proposed method, and the second
row is from ST-ED [65].

Training \Test ETH-XGaze EYEDIAP
Train Test CS FT

MPIIFaceGaze [64] 32.5 33.0 14.3 24.5
ETH-XGaze Train [59] - - 8.8 13.0
Gaze360 [26] 17.5 18.2 7.6 12.6
MPII-NV-STED [65] 27.2 29.1 8.6 20.5
MPII-NV-128† 13.0 14.1 6.3 15.7
MPII-NV † 14.0 15.5 6.6 17.5
MPII-NV (Mask)† 12.7 13.8 5.6 16.4

Table 1. Comparison of gaze estimation errors in degree. Each
row corresponds to a training dataset, and the columns show the
mean angular errors for each test dataset. † indicates our approach.

MPIIFaceGaze has the narrowest gaze range and resulted
in the highest errors for all test datasets. Our proposed syn-
thetic dataset and model (last row) reduced these errors by
61%, 58%, 61%, and 33% for each test dataset, respectively.
ETH-XGaze and Gaze360 both contain a wider gaze range
and perform better on other datasets but are still inferior
to our synthetic data. While MPII-NV-STED has a wide
gaze range as our dataset, it does not effectively improve the
performance. This indicates the difficulty of maintaining
ground-truth gaze labels through neural rendering, while
our method faithfully reproduces the authentic gaze direc-
tion by sampling the original appearance. As a result, our
method achieved the best performance on ETH-XGaze and
EYEDIAP CS. Contrary to earlier reports [59], the lower
resolution model (MPII-NV-128) resulted in slightly better
performance in our setting.

The only exception was the EYEDIAP FT subset, where
better performance was obtained when using real data.
EYEDIAP FT has a larger offset between gaze and head
pose due to the use of physical gaze targets, and our data
synthesized based on head pose cannot fully reproduce the
target gaze distribution (Fig. 6). For further analysis, refer
to the supplementary material.

Further Comparison with ST-ED [65] As shown in
Fig. 7, ST-ED cannot preserve the identity of MPI-
IFaceGaze because its model was pre-trained on the Gaze-
Capture dataset. Thus, we further compare our approach
with ST-ED by using GazeCapture as the source dataset.

We randomly chose 1,000 out of the 1,374 subjects in

ETH-XGaze Train

EYEDIAP CS

Figure 8. The gaze estimation errors of both baseline and mask-
guided models with respect to the variance σ of Gaussian sam-
pling. The horizontal dashed lines correspond to the error reported
in Table 1 directly using the target head pose distribution.

GazeCapture and further randomly chose 30 images from
each subject. We used the 128 × 128 image resolution
and sampled 12 new head poses from ETH-XGaze for each
source image. The gaze estimation error of the baseline
model on the ETH-XGaze Train set was 20.6 and 26.3 de-
grees for our synthetic data and ST-ED, respectively. This
again proved that the neural rendering approach cannot yet
provide accurate image and gaze label pairs for training.

Effect of Head Pose Prior As discussed earlier, the head
pose distribution of the target dataset can be obtained from
unlabelled images. However, in practice, there may be
use cases where target environment samples are totally un-
known. To represent such cases, we further evaluate the per-
formance by synthesizing samples without relying on any
prior knowledge about the target dataset. Specifically, we
assumed a zero mean normal distribution for both the yaw
and the pitch of the gaze angle, and varied the standard devi-
ation σ from 5 to 40 degrees. Source data is MPIIFaceGaze,
and we tested on ETH-XGaze Train set and EYEDIAP CS.
We set the same random background augmentation, so that
these datasets only differ in the head pose.

Figure 8 shows the gaze estimation errors with respect
to σ for ETH-XGaze Train set and EYEDIAP CS. When
σ is very small, the synthetic dataset still cannot cover the
gaze distributions in both cases, so the models do not per-
form well. As σ increases, the head pose coverage also in-
creases and the performance approaches the best case sce-
nario. However, since EYEDIAP CS has a narrow gaze
range (Fig. 6) compared to ETH-XGaze, the errors start to
increase after σ = 20. This indicates that, although synthe-
sizing data over an excessively wide range may adversely
affect the performance, sufficient performance can be ob-
tained without prior knowledge on head pose distribution.
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Ablations\Datasets MPII-NV XGazeF-NV
Black 26.0 21.6
+ Color (1:1) 17.8 18.7
+ Scene (1:1:3) 14.4 12.9
+ Weak-light 14.0 11.2
SimGAN [41] 14.2 10.0
DANN [16] 13.6 19.1
PADACO [28] 13.2 28.7
Mask-guided (ours) 12.7 8.3

Table 2. Ablation study for analyzing the data augmentation and
models. The data augmentation components are evaluated on the
baseline model.

5.3. Ablation Studies

We evaluate the effect of data augmentation and mask-
guided model using MPII-NV (tested on the ETH-XGaze
Train set). We also use the frontal camera of the ETH-
XGaze Train set as another source dataset to see the up-
per bound performance of our approach on the ETH-XGaze
Test set. From the frontal image, we synthesize images un-
der head poses corresponding to all 18 cameras (XGazeF-
NV). In this within-dataset setting, the best performance us-
ing the real ETH-XGaze Train set is 4.5 degrees. In the first
four rows of Table 2, we can observe the performance gain
by adding random colors, random scene images, and weak
lighting. Black-only background tends to overfit and is ef-
fectively alleviated by adding random colors and random
scenes. We keep 40% color background images to avoid
poor generalization on simple background test data. Finally,
the increased diversity of lighting made the model more ro-
bust. For the data augmentation effect on the mask-guided
model, refer to the supplementary material.

In addition, we compare the proposed mask-guided
model with some existing domain adaptation methods in
the last four rows in Table 2. We use our implementa-
tions of SimGAN [41], DANN [16], and PADACO [28],
all using the architecture of the baseline gaze estimation
network. These implementation details can be found in
the supplementary material. Overall, these domain adap-
tation methods cannot consistently outperform the baseline
model (fourth row). In contrast, our mask-guided model
effectively reduced the error by benefiting from the syn-
thesis process. The best performance (8.3 degrees) using
XGazeF-NV is comparative with the result using the real
ETH-XGaze Train set, while indicating the effect of re-
maining domain gaps.

5.4. Comparison of Reconstruction Methods

We further analyzed the influence of different recon-
struction methods on the gaze estimation errors. We em-
ployed DECA [10], which reaches the state-of-the-art mean
shape reconstruction error on NoW benchmark [40]. While

3DDFA

DECA

Fitting

Figure 9. Examples of the synthesized XGazeF-NV datasets using
the three different reconstruction methods.

3DDFA and DECA are both learning-based, they are trained
with different 3D models: BFM [35] and FLAME [29], re-
spectively. As another baseline named 3DMM-Fitting, we
simply fit the BFM model [35] to the detected 68 2D facial
landmarks. Although the output formats of these methods
are different, we manually converted and aligned them to
meet the underlying assumption of our projective matching
procedure. We synthesized three versions of XGazeF-NV
simultaneously, under the same random augmentation con-
ditions, as shown in Fig. 9.

We used the baseline model and tested it on the ETH-
XGaze Test set. The gaze estimation errors are 11.83
(3DDFA), 11.29 (DECA), and 11.79 (3DMM-Fitting), re-
spectively. We can observe that the influence of the recon-
struction accuracy is relatively minor compared to other fac-
tors and even the simplest baseline works sufficiently well.

6. Conclusion
In this work, we presented a novel learning-by-synthesis

pipeline for appearance-based full-face gaze estimation.
Our approach utilizes 3D face reconstruction to synthesize
training datasets with novel head poses, while keeping accu-
rate gaze labels via projective matching. We also proposed
the mask-guided gaze estimation model with synthetic data
augmentation. Through experiments, our approach effec-
tively improved the model and achieved better performance
than the state-of-the-art neural rendering approach.

As discussed in the experiment, it is still difficult for our
method to extend the limited head-gaze offset distribution
in the source dataset. It is important future work to explore
learning-by-synthesis approaches to cover different data di-
versity requirements. All datasets used in this work were
collected with the approval of the IRB or the consent of
the participants [14, 26, 27, 59, 63]. Although the proposed
method creates synthetic faces, ethical issues are minimal
because the method cannot extend the diversity of human
faces by synthesizing new identities.
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