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Abstract

Understanding the mechanisms underlying human vi-
sual attention is an important research problem in cogni-
tive neuroscience and computer vision. While existing mod-
els predict salient regions (i.e., saliency maps) and tempo-
ral sequences of eye fixations (i.e., scanpaths) in images,
their designs often partially follow theoretical frameworks.
Here, we introduce ScanpathNet, a deep learning model in-
spired by the latest theoretical model in neuroscience. It is
"guided’ by a dynamic priority map influenced by semantic
content and fixation history. The model leverages convo-
lutional neural networks to extract rich semantic features,
convolutional long short-term memory networks to model
the inhibition of return mechanism and sequential depen-
dencies of fixations, and mixture density networks to predict
probability distributions of fixations for each pixel. Sim-
ulated human scanpaths can then be generated by sequen-
tially sampling the output of the proposed model. Despite its
simplicity, ScanpathNet showed promising qualitative and
quantitative scanpath prediction performance in extensive
experiments on numerous eye-tracking benchmark datasets.

1. Introduction

The human visual system acts as an information process-
ing bottleneck. It ensures that humans’ limited processing
resources are allocated to the most informative region of
the environment. When looking at a scene, we sequentially
shift our attention to the most relevant regions. Afterwards,
we perform further analysis in our high visual acuity fovea.
What attracts and drives human visual attention are impor-
tant research questions in the field of cognitive science and
computer vision. They are relevant to understanding the
cognitive processes underlying knowledge acquisition and
mental health [18, 19]. In addition, they provide technical
contributions to many multimedia applications, such as im-
age and video retargeting, multimedia compression, percep-
tual quality assessment and medical imaging [42].

Over the past decade, researchers have developed com-
putational models of visual attention that predict the proba-
bility distribution of fixations (i.e., saliency map). Saliency
prediction can be considered a mature field with various
benchmark datasets and new models published annually.
However, saliency models lose temporal information by ag-
gregating fixations into a single saliency map, neglecting
the fact that visual attention is a dynamic process. This
work models the rapid change of human visual attention
recorded as a temporal sequence of fixations (i.e., scanpath).

Over the last few years, there has been a substantial in-
crease in the number of scanpath models inspired by the
well-known Feature Integration Theory [57]. It suggests
that a set of topographic feature maps containing basic fea-
tures (e.g. colour and orientation) can be extracted from a
scene. Within each map, different spatial locations com-
pete for attention, allowing for the location with the highest
value to be attended. A seminal paper [34] where a static
saliency map is computed and fed into a “winner-takes-all”
network to sequentially select locations in order of decreas-
ing saliency advocated this approach. A simple inhibition
of return mechanism was used to select the next fixation lo-
cation [32]. There have been numerous improvements to
this approach to achieve state-of-the-art performance.

Despite the success of computational models that utilise
static priority maps, recent evidence suggests that during
scene exploration, visual attention is ”guided” by a dynamic
priority map influenced by different factors, such as seman-
tic information and fixation history. Attention is then allo-
cated to the peak in the current priority map. The idea that
various “guidance” factors could be used to deploy visual
attention was the reason for the term ”Guided Search” (GS).
Since its introduction in 1989, the GS model has undergone
numerous revisions [62—-07]. In light of new research, GS6
proposes that attention is guided by both classical top-down
and bottom-up features as well as other new types of guid-
ance, including the history of fixations, value and scene
guidance. Since this work focusses on free-viewing tasks
where no top-down features are used for deployment of at-
tention, a modified GS6 model is presented in Section 3.
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Our contributions are three-fold. First, we present the
first deep learning model inspired by GS6, making our
model simpler, more interpretable and intuitive than exist-
ing scanpath models. Second, our proposed model implic-
itly learns the inhibition of return mechanism observed in
humans instead of direct computation from the dataset as
required by previous models. Third, qualitative and quanti-
tative results show the promising human-level performance
of our model on scanpath generation during free-viewing.

2. Related Work

Despite the significant increase in the number of saliency
map models (see [10,33] for a review), there are still consid-
erably fewer scanpath models. In this section, related work
on scanpath prediction is provided (see [38] for a review).
Existing scanpath models can be broadly categorised into
traditional and deep learning-based approaches.

2.1. Traditional Approach

The earliest computational scanpath model is inspired by
the early primate visual system [34]. It relies on multiscale
image features extracted using dyadic Gaussian pyramids.
The fixation locations are simulated using a winner-takes-
all strategy with an inhibition-of-return (IOR) mechanism.

Human scanpaths were modelled previously as a
stochastic process with non-local transition probabilities
similar to a phenomenon of random walks known as Levy
flights [9, 12]. This has also been combined with low-level
feature saliency and semantic content using Hidden Markov
Model (HMM) with a Bag-of-Visual-Words descriptor [46].

Numerous computational models extract different infor-
mation (e.g. Incremental Coding Length [28], Residual Per-
ceptual Information [59] and Super Gaussian Component
response [54, 55]) from each visual feature in an image.
Afterwards, human scanpaths are generated by sequentially
selecting features with maximum information response.

Another computational model utilises kernel density es-
timation to infer saliency and applies stochastic filtering
to simulate human scanpaths [56]. Attention mechanism
has also been simulated using handcrafted parameters [20]
and optimised parameters [50]. Bottom-up saliency maps,
oculomotor biases and IOR inferred from eye-tracking data
have also been used to model scanpaths [43,45] and even
simulate age effects [44]. A least-squares policy iteration
method [36] and a probabilistic saccadic flow model [16]
have been used to model the visual exploration of humans.

A biologically inspired model takes into account the ef-
fects of foveation, saccadic bias and IOR mechanism to pre-
dict human scanpaths [60]. Inspired by the neurophysiology
of the superior colliculus, another model [1] simulates the
blur around the fovea, projects information into the supe-
rior colliculus space and chooses the next fixation location
using averaging operations similar to brain computations.

The Gravitational eye movement laws (G-eymol) [76]
model scanpaths as a dynamic process similar to the laws
of mechanics. Here, attention is subject to a gravitational
field driven by the gradient of brightness, optical flow and
an IOR potential. Unlike existing models, G-eymol does
not compute the saliency map directly but integrates the po-
sitions of interest over time to predict scanpaths.

A Bayesian approach was used to fit a generative scan-
path model based on the model’s likelihood function [47].
This allows switching between two attentional states, simi-
lar to the exploration-exploitation dilemma. Due to its mini-
mal set of assumptions, it is numerically efficient. However,
it does not currently incorporate longer fixation history due
to the nature of the Markov process.

2.2. Deep Learning Approach

An iterative representation learning framework to learn
the saliency from an image has been proposed [09, 70]. A
deep autoencoder is employed to reconstruct the input scan-
path sequence and learn a reconstruction residual that esti-
mates the saliency map. A centre bias is then applied to the
computed saliency map and combined with an IOR mech-
anism to compute a priority map. Finally, the fixations are
chosen as the locations with the highest priority values.

DeepGaze I [39] and II [4 1] are one of the best perform-
ing saliency models. Recently, DeepGaze III [40] has been
proposed for scanpath prediction. It extracts features from
a convolutional neural network (CNN) [52] and computes
a spatial saliency map using a readout network. Scanpath
history is then combined through a series of convolutions to
yield fixation distributions.

SaltiNet is a deep neural network that uses a temporally-
aware representation of saliency information for scanpath
prediction on 360°images [4, 5]. PathGAN, a deep neural
network trained on adversarial examples, was developed for
both traditional images and omnidirectional images [3, 48].

Another model combines features (e.g. saccadic ampli-
tude, CNN output) and memory bias to predict human scan-
paths [51]. Instead of a recurrent neural network, a mathe-
matical model was used to encode short-term and long-term
memory. CNN [26, 52], long short-term memory (LSTM)
[27] and convolutional LSTM (convLSTM) [72] were also
used to generate saccade sequences [49, 58].

An extension of the Selective Tuning Attentive Refer-
ence model Fixation Controller (STAR-FC) [61] processes
the input image in two streams: a peripheral stream com-
putes low-level features while a central stream extracts fea-
tures using CNNs. Both streams are combined with the fix-
ation history to generate a priority map. The next fixation is
selected from the maximum value in the priority map.

A deep convolutional saccadic model predicts fixation
locations and durations [06]. Another model uses CNN,
atrous spatial pyramid pooling [13] and a semantic segmen-
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Figure 1. (left) A modified GS6 model where visual attention is guided by a dynamic priority map influenced by semantic content and
fixation history. (right) ScanpathNet architecture includes three major modules: (1) Visual System (VS), (2) Visual Working Memory
(VWM) and (3) Priority Map Generation (PMG). The input image is first downsampled and preprocessed with the VGG-16 network. The
extracted feature representation is upsampled, multiplied by a spatial mask centred around the previous fixation location and passed to
the convLSTM layer. The hidden representation from the convLSTM is flattened and passed to the MDN layer to learn the probability
distribution of fixations. The MDN is sampled to identify the next fixation location.

tation module [25]. CNNs have also been used in conjunc-
tion with a variational autoencoder [22] and an SVM [71].
IOR-ROI-LSTM [15] uses CNN and LSTM to model
phenomena such as IOR and gaze shift behaviour simulta-
neously by using a dual LSTM unit. Further improvement
was achieved by including semantic segmentation masks
from Mask¥ -RCNN [53]. An MDN layer was also added
to model fixation location and duration distributions.
GazeGenNet [78] using LSTM and Mixture Density
Network (MDN) [8] was proposed to generate a large
amount of data for eye-tracking classification tasks. The
main difference is that it is stimuli-agnostic while our Scan-
pathNet generates eye-tracking data given an input image.
There are also models that generate scanpaths during
task-driven search, such as categorical search [1,74,75,77],
target-based search [68], goal-directed search [2, 31] and
visual question answering [14]. Another related work is
multi-duration saliency in which saliency maps are gener-
ated for different durations [21]. While this work does not
address the task-driven search problem, ScanpathNet can be
extended by incorporating "top-down’ guidance in the cre-
ation of the dynamic priority map. Finally, the prediction of
fixation durations is currently out of the scope of this paper.

3. Method

Our proposed model, ScanpathNet, is a deep learning
model inspired by Guided Search 6 (GS6) [64], a theoret-
ical model of visual search in neuroscience. GS6 suggests
that a dynamic priority map is computed from a weighted
average of five sources of guidance, including two “clas-
sical” sources, top-down and bottom-up feature guidance,
and three additional sources of guidance: history, value and
scene guidance. In this work, we concentrate on the free-

viewing paradigm where top-down guidance is not consid-
ered (i.e., weight set to 0 in computation). Nevertheless, our
model allows extensions to allow for task-based search.

The modified GS6 is illustrated in Figure 1 left, with the
numbers referring to the following processes:

1. Scene information (e.g. contrast, colour, orientation
and brightness) is encoded into the visual system.

2. Due to the limited capacity of the brain, only one (or a
very few) objects can be attended to at a time. At this
point, selective attention is performed to determine the
regions in the image that will pass through the bottle-
neck. The selected target of attention is added to the
visual working memory.

3. Attention selection is rarely random. It is guided by
’bottom-up’ salience based on scene information and
the perceived value of the previously attended region.
It is also influenced by scanpath history as represented
in the visual working memory. These guidances are
combined in a weighted manner to generate a dynamic
priority map that represents the probability distribu-
tion of fixations. Selective attention is deployed to the
‘peaks’ of the distribution.

The proposed architecture is illustrated in Figure 1 right.
ScanpathNet consists of three major modules: Visual Sys-
tem (VS), Visual Working Memory (VWM) and Priority
Map Generation (PMG). The VS module is based on CNN
architectures trained for object recognition.
module mimics the IOR mechanism in humans using con-
vLSTM networks. Finally, the PMG module models the
stochastic nature of human scanpaths using MDN.
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3.1. Visual System (VS) Module

The theory of bottom-up saliency-driven attention sug-
gests that salient regions in an image are determined heavily
by visual characteristics. It has been shown previously that
CNN s trained for object recognition encode rich semantic
information that can be used for saliency prediction [30]. As
a result, the backbones of most state-of-the-art saliency and
scanpath models incorporate CNNs (e.g. VGG and ResNet)
to extract semantic information effectively. In this paper,
the VS module uses a modified VGG-16 [52] model trained
on the ImageNet dataset to produce feature representations
FO° with a downscale factor of 8, by removing the last fully
connected layers and the last max-pooling layer. In order to
maintain a suitable spatial resolution, one upsampling layer
is added, resulting in a feature map F!.

3.2. Visual Working Memory (VWM) Module

The IOR mechanism allows humans to inhibit process-
ing at recently visited targets to quickly analyse the environ-
ment. The VWM module utilises convLSTM [72] to simu-
late IOR mechanisms. ScanpathNet is different from other
convLSTM models because it utilises convLSTM to learn
spatio-temporal dependencies of the fixation sequence, in-
stead of using convLSTM to refine a saliency map. Exist-
ing scanpath models that use convLSTM networks to mimic
IOR mechanisms require a computation of inhibition maps
from datasets [15,53]. The novelty of ScanpathNet is that it
implicitly learns the IOR mechanism by directly inhibiting
features in the previous fixation locations.

The VWM module takes image features F'! as input and
multiplies it with a spatial map g centred around the previ-
ous fixation. The input to the convLSTM is defined as:

F} =F'®g(xi-1,y-1) (1)

where ® is defined as an element-wise product over the
feature map F'' from the VS Module. From Equation 1,
convLSTM receives feature representations with previously
visited fixation locations inhibited. Empirical tests revealed
that the spatial map controls the IOR mechanism. We com-
pared the performance of (1) a Gaussian spatial mask and
(2) a spatial mask with 0 values similar to [34,71]. The
model did not converge when setting 1 was used. Hence,
the TOR setting 2 was used for the succeeding experiments.
This design choice is grounded in GS6 [64] where opera-
tions seem to happen in the feature space (Figure 3 in [64]).

3.3. Priority Map Generation (PMG) Module

The PMG module uses an MDN to explicitly model the
stochastic nature of human attention. MDN generates prob-
ability densities of the next fixations using a mixture of K
Gaussians [8]. Recently, MDNs with RNNs have been used
for handwritten text generation [23], video saliency predic-
tion [7] and sketch generation [24].

The MDN takes flattened hidden representations of the
IOR module as input and produces a parameterised Mixture
of Gaussians y; as output, consisting of a set of means !,
standard deviations o, correlations p} and mixture weights
i, for the i-th component of K mixtures. Mathematically,
this can be represented as follows:

Y = ({N%vo—;apivﬂz}f{:1> (2)

The parameters of MDN are constrained and normalised
in order to obtain a valid probability distribution [23].

M% = My
o} = exp(6;)
pi = tanh(pl) (3)
i exp(i})

[y ¢ N
Zm:l el"p(ﬂn)

The probability distribution of the next fixation location
is given by:

K
P41, 441)) = Y TN (@41, Yol 0f, 01) - (4)
=1

where N is a bivariate normal distribution.
3.4. Training

ScanpathNet outputs a temporal probability distribution
(i.e. priority map) of fixations. To generate priority maps,
the 2D probability distributions of all Gaussians are com-
bined into a saliency map (refer to eq. 4). Instead of aggre-
gating all fixation locations from all subjects across all times
into a single fixation map, all fixations are aligned tempo-
rally and a Gaussian mask is applied to generate a temporal
sequence of priority maps. The number of priority maps per
image was chosen to be 6, similar to prior works [36, 46],
but could be easily extended and tuned to the application.

The loss function used to train the entire model is binary
cross entropy and is defined below:

N
Loce =~ D Sjlog(S)) + (1 - §)log(1 — §)

j=1

where S; and §j are the ground truth and predicted saliency
maps respectively.

3.5. Human Scanpath Generation

To generate the initial priority map, the model extracts
a rich representation from the image with a Gaussian blur
applied in the middle of the feature space. To generate
the next fixation location, the output probability distribution
(e, [(z1,11), (x2,Y2), ..., (K, yx )] is randomly sampled.
For the next fixation, the model uses the feature map F 1
where the fixation location (x;_1,y;—1) is masked.
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4. Experiments
4.1. Experiment Settings

Dataset. We performed our experiments on the OSIE
[73], MIT1003 [37] and CAT2000 [11] datasets. The OSIE
dataset consists of 700 natural indoor and outdoor scenes
with eye-tracking data collected from 15 participants. All
images have 600x800 resolution. The MIT1003 dataset
consists of 1003 images with eye-tracking data collected
from 15 participants. There are 779 landscape images and
228 portrait images with varying resolutions. Finally, the
CAT2000 dataset consists of 2000 training images and 2000
test images from 20 different categories containing 100 im-
ages. For the CAT2000 dataset, only the train set was used
since the eye-tracking data for the test set were held out.
No data augmentation was performed and scanpaths with
lengths less than the mean scanpath length recorded in the
dataset were discarded. The datasets were randomly split
into 80% training data and 20% test data.

Implementation details. All images were resized to a
resolution of 300x400 pixels. The VS module generates F°
with 512 feature maps of size 18x25. The upsampling layer
scales F five times, resulting in a feature map F'! of size
90x125. The spatial map g has the same resolution as F'!
and o value set to 5. The VWM module applies a 2x2 con-
volutional filter with a stride of 1 to the inhibited features
F2, resulting in a single channel representation. The num-
ber of Gaussians in the MDN layer was determined empir-
ically and their performances are reported. For the VWM
module, the pre-trained weights of the VGG-16 model on
the ImageNet dataset were fixed and only the convLSTM
and MDN layers were trained. The model was trained with
an Adam optimizer (learning rate = 0.001) in an end-to-end
supervised manner. Early stopping was performed.

State-of-the-art models. Comparison of results against
state-of-the-art traditional (e.g. Itti [34], SGC [54, 55],
STAR-FC) and deep learning approaches (e.g. SaltiNet [5],
PathGAN [3], IOR-ROI [53], VQA [14]) was conducted.
Default parameters and available pre-trained weights for all
models were used. MaskX -RCNN [29] with a threshold of
0.5 was used to compute semantic segmentation masks.

Evaluation Metrics. Different scanpath methods exist:
visual inspection [9, 12] and comparisons (statistics [20],
fixation density [55] and distance [17, 35]). In this paper,
ScanMatch [17] and MultiMatch [35] were used for evalu-
ation. Similar to previous works [14, 15,53], we used the
following evaluation strategy: 10 scanpaths with lengths
equivalent to the mean scanpath length of the dataset were
generated for each image. Each predicted scanpath was then
compared to all subjects’ recorded scanpaths. Human per-
formance was also computed by measuring the similarity of
every pair of ground truth scanpaths recorded in each im-
age. The reported results are the average metric scores.

4.2. Quantitative Evaluation

MultiMatch and ScanMatch scores on three widely-used
benchmark datasets are shown in Table 1. We performed
sensitivity analysis on K, the number of Gaussian compo-
nents. Table 1 shows that there is a slight variation in Mul-
tiMatch and ScanMatch scores of ScanpathNets with differ-
ent K values. Nevertheless, ScanpathNets with K = 15 to 25
reported the highest scores in most metrics in all datasets.
Since ScanpathNet does not predict fixation duration, the
Duration item of the MultiMatch metric is not reported.
Higher values on each item denote better performance. In
addition, scores close to the human performance suggest the
model’s ability to generate realistic human scanpaths.

Our model achieved similar MultiMatch performance
(with =~ 1 to 4% difference) to VQA [14] on OSIE. Our
model also scored highest in most MultiMatch metrics on
MIT1003 and CAT2000 datasets.The high scores achieved
by our model suggest that it generates scanpaths that have
the same shape similarity as the human scanpaths. It also
implies that the predictions have similar directions (i.e.,
small angular difference) as the human scanpaths. Further-
more, it denotes that our model generates proportional sac-
cade amplitude (i.e., small absolute difference between the
aligned predicted and ground truth). Finally, our proposed
model predicted fixation locations that are positioned near
the human fixation locations. This is evident when the Mul-
timatch scores are compared to human performance.

VQA [14] achieved the best ScanMatch score on OSIE.
Our model achieved similar ScanMatch performance (with
only a 0.3% difference in score) to IOR-ROI [53] on
MIT1003. Our model scored 3% higher on CAT2000 and
also close to human performance in terms of the ScanMatch
metric, suggesting the realistic prediction of our model.

4.3. Qualitative Evaluation

As mentioned previously, the number of Gaussian com-
ponents, K, slightly affects the scanpath prediction perfor-
mance. The generated scanpaths of different ScanpathNets
with different K values are illustrated in Figure 2. Here,
we observed that ScanpathNets with a lower value of K can
only attend to a small number of objects in the image. This
is evident in complex scenes where the generated fixation
locations are positioned in only a small number of regions
in the image. Higher K values allow the model to focus on
more regions of interest, resulting in better performance on
both simple and complex scenes.

What does the model see? To further examine the effect
of K on performance, we visualised the predicted dynamic
priority maps of different ScanpathNet as shown in Figure
3. To conduct a valid comparison, ScanpathNets with dif-
ferent K values are given the same image and same ground
truth scanpath. The rationale is that ScanpathNets should
generate priority maps similar to human priority maps.
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Table 1. MultiMatch (Vector (V), Direction (D), Length (L) and Position (P)) and ScanMatch (Value) results on different benchmark
datasets. Higher values denote better performance. Human performance is also reported. The best scores are in bold.

OSIE Dataset

MIT1003 Dataset

CAT2000 Dataset

Model \A

Dt Lt

P{ Valuet V4 Dt L%

Pt Valuet V4 Dt L%

P 1 Value 1

Human  0.940

0.697 0.928

0.853

0.439

0.925

0.706

0.920 0.852

0.374

0.950

0.699

0.939

0.834

0.494

0.855
0.922
0.931

Itti
SGC
Star-FC

0.631 0.810
0.644 0.903
0.662 0.910

0.704
0.719
0.777

0.239
0.223
0.334

0.848
0.911
0.917

0.628
0.632
0.642

0.819
0.886
0.902

0.701
0.700
0.781

0.212
0.177
0.299

0.903
0.948
0.949

0.604
0.646
0.655

0.875
0.929
0.936

0.658
0.663
0.817

0.287
0.341
0.406

SaltiNet
PathGAN
IOR-ROI 0.915

VQA 0.946

0.894
0.909

0.650 0.871
0.540 0.915
0.725 0.893
0.671 0.928

0.734
0.808
0.831
0.882

0.189
0.278
0.400
0.445

0.886
0.915
0.911
0.918

0.651
0.589
0.719
0.656

0.873
0.844
0.904
0.879

0.738
0.774
0.815
0.831

0.234
0.278
0.339
0.311

0.924
0.926
0.924
0.955

0.620
0.556
0.689
0.649

0.907
0.934
0.901
0.936

0.765
0.836
0.827
0.837

0.292
0.406
0.389
0.217

Ours (K=5) 0.924
Ours (K=10) 0.921
Ours (K=15) 0.916
Ours (K=20) 0.918
Ours (K=25) 0.931

0.655 0.909
0.669 0.903
0.672 0.897
0.673 0.900
0.663 0.916

0.793
0.811
0.812
0.813
0.837

0.312
0.337
0.339
0.350
0.322

0.912
0.908
0.904
0.920
0.906

0.680
0.685
0.689
0.675
0.684

0.825
0.894
0.890
0.906
0.893

0.784
0.823
0.823
0.831
0.822

0.330
0.332
0.330
0.336
0.329

0.944
0.942
0.950
0.938
0.945

0.651
0.650
0.658
0.639
0.659

0.929
0.929
0.938
0.922
0.933

0.833
0.827
0.838
0.797
0.833

0.408
0.399
0.431
0.438
0.408

5 Gaussians

10 Gaussians

15 Gaussians

20 Gaussians

25 Gaussians

Figure 2. Each row represents an image with corresponding generated scanpaths of different ScanpathNets on each column.

ScanpathNet with K=5 can only attend to a few regions
of interest and have Gaussian components with high stan-
dard deviations. As the value of K increases, the attended’
area increases and the standard deviations of each Gaussian
component decreases to 'fit’ more components into the im-
age. As a result, ScanpathNets with higher K values gen-
erate priority maps that are closer to the ground truth, sup-
porting the quantitative results. While there are Gaussian
components that seem to be misplaced, their mixing coef-
ficients (7) have smaller values. This explains why Scan-
pathNets with higher K values perform better quantitatively
and qualitatively on both simple and complex scenes.

Figure 3 shows that the IOR mechanism in humans
and ScanpathNet output appears to be weak (i.e., there is
saliency around previously attended objects), suggesting
that there is an alignment between our model and GS6 and
also with human behaviour. In fact, GS6 abandons the idea
of sampling without replacement [64], allowing previously
attended locations to be revisited. In contrast, most exist-
ing scanpath models seem to prioritise exploring the scene
first than revisiting fixation locations, as shown in Figure 4.
While more experiments are necessary to confirm this, our
results suggest that GS6 provides a good theoretical frame-
work to advance the development of scanpath models.
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Figure 3. Row 1: Input image with human scanpath. Row 2: Input image masked with aggregate human priority maps at different time
points. Rows 3-5: Input image masked with predicted priority maps of different ScanpathNets at different timepoints.

Comparisons against the state-of-the-art. Different
images with human and generated scanpaths are shown in
Figure 4 (extensive comparisons are in the supplementary
material). The images are arranged by increasing scene
complexity and the number of dominant objects in the im-
age. The human scanpaths were randomly chosen. The gen-
erated scanpaths that achieved the highest ScanMatch score
were selected. The ScanpathNet with the best K value for
each dataset was chosen. Fixation locations are numbered
in temporal order starting from 1 until the last fixation.

Our model closely resembles the ground truth scanpath
in terms of fixation locations and order, as shown in Fig-
ure 4. VQA [14] performs similarly but sometimes tends
to fixate on a few regions of the image. Since the IOR-
ROI [53] uses semantic segmentation masks as an input, it
can capture objects that may attract human attention. This
is generally effective but fails in cases where there are a few
dominant objects in a complex background (images 1 and
3), or where there may be no objects available (image 6).
This may explain its lower performance on the CAT2000
dataset, where some images fall under categories, such as
Art, Fractal and Pattern, that may not have any detected se-

mantic segmentation masks. Similar to previous published
qualitative results [53], PathGAN [3] generated scanpaths
subjectively different from the human scanpaths. Although
better than PathGAN, SaltiNet [5] still generates fixation
locations that do not subjectively align with the most dom-
inant object in the image. Star-FC [61] and SGC [54, 55]
generate plausible scanpaths on less complex images but
tend to fixate on only one or two parts on complex images.
Finally, Itti’s model [34] generates scanpaths that visit re-
gions of interest without revisiting previous fixations. This
results in scanpaths that span the whole image.

Limitations. Quantitative and qualitative results show
that the performance of ScanpathNet is sensitive to the value
of K, the number of Gaussian components. This sensitivity
seems to depend on scene complexities in a given dataset.
Nevertheless, experimental results revealed that Scanpath-
Net with K values from 15 to 25 still performed better
or close to state-of-the-art scanpath models. While our
model did not consistently score the highest in all metrics
against the other existing scanpath models on all datasets,
our model is simpler, more interpretable and intuitive to un-
derstand compared to most existing scanpath models.
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Figure 4. Visualisation of the generated scanpaths from each scanpath model on images with increasing complexity.

5. Conclusion

In this work, we presented ScanpathNet, a deep learn-
ing model inspired by Guided Search 6 (GS6). This lat-
est framework in neuroscience suggests that visual search
is "guided’ by different factors: the classical top-down and
bottom-up guidance, fixation history, value and scene guid-
ance. Since this paper focusses on free-viewing tasks, a
modified GS6 model with no top-down guidance was pre-
sented. ScanpathNet is composed of three major modules:
(1) a Visual System modelled by a CNN extracts rich infor-

mation from a given image (2) a Visual Working Memory
is implemented using convLSTM that takes in the output of
the Visual System and inhibits previous fixation locations
and (3) a Priority Map Generation Module is modelled us-
ing MDNs that combine the semantic information and fix-
ation history to generate a dynamic priority map. Human
scanpaths are generated by sampling this dynamic priority
map. Experimental results show that ScanpathNet gener-
ates scanpaths that are similar to human scanpaths. Despite
its simplicity, ScanpathNet has shown promising qualitative
and quantitative results in scanpath prediction.
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