Supplementary Material: Learning-by-Novel-View-Synthesis for
Full-Face Appearance-Based 3D Gaze Estimation

1. Ablation Study with the Mask Model

Ablations\Datasets MPII-NV XGazeF-NV
Black 16.8 (1 35%) 12.0 (] 44%)
+ Color (1:1) 14.2 (} 20%) 11.5({ 39%)
+ Scene (1:1:3) 129 (L 10%) 9.0 ({ 30%)
+ Weak-light 12.7 (§ 9%) 8.3 (J 26%)

Table 1. Ablation study for analyzing the data augmentation.
The data augmentation components are evaluated using the mask-
guided model. The percentages indicate the error reduction from
the baseline network under the same conditions.

In the main paper, we showed an ablation study using
the baseline gaze estimation model trained on MPII-NV
and XGazeF-NV. We further show the ablation study results
using the proposed mask-guided model. Table. 1 shows
the gaze estimation errors trained with MPII-NV (tested on
the ETH-XGaze Train set) and XGazeF-NV (tested on the
ETH-XGaze Test set). The percentages indicate the error
reduction from the baseline network under the same con-
ditions. Compared with the baseline network performance,
it can be seen that the mask-guided model is more effec-
tive when there is only black-background training data. Al-
though the error reduction from the baseline gets smaller,
each data augmentation consistently reduces this error. This
proves again that the proposed method takes full benefit
from synthetic data together with the data augmentation.

2. Analysis of the EYEDIAP FT Dataset

As discussed in the paper, one of the limitations is that
our synthetic dataset did not outperform other real datasets
when tested on the EYEDIAP FT dataset. EYEDIAP FT
employs a floating physical gaze target and has large offsets
between head pose and gaze. I.e., participants tend to di-
rect their eyes to follow floating targets instead of heads in
EYEDIAP FT. As a visual explanation, Fig. 1 shows the
offset distributions of MPIIFaceGaze [4], EYEDIAP FT,
and ETH-XGaze. Since the offset distribution is expected
to be independent of the camera position, we visualize the
ETH-XGaze distribution using the frontal camera. It can be
seen that EYEDIAP FT has a wider offset range compared
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Figure 1. The offset distributions of (a) MPIIFaceGaze, (b) EYE-
DIAP FT, and (d) ETH-XGaze (single camera).

Training \ Test ETH-XGaze (Test)
MPII-NV (EYEDIAP FT) 17.5
MPII-NV (0 = 5) 20.8
MPIL-NV (o = 10) 18.4
MPIL-NV (o = 20) 20.3
MPII-NV (o = 30) 20.3
MPIL-NV (o = 40) 22.7

Table 2. Gaze estimation errors in degree tested on EYEDIAP FT
using the Baseline model.

to MPIIFaceGaze using screen-based gaze target. As dis-
cussed in the paper, therefore, the target gaze range cannot
be fully covered by synthesizing samples only according to
the head pose distribution. In contrast, since ETH-XGaze is
also collected using a screen-based target, its offset is wider
but still in a feasible range compared to MPII-N'V.

Table. 2 further shows the performance of the baseline
models trained on the datasets sampled from a normal dis-
tribution as Section 5.3 in the paper. While the performance
naturally degrades with the small 0 = 5, it does not im-
prove with the large o = 40, either. Considering the differ-
ence from ETH-XGaze, this indicates that the fundamental
issue is the lack of facial appearance corresponding to ex-
treme gaze directions. Although our approach can cover
the gaze range of EYEDIAP FT with large o, this results in
many extreme head poses which do not appear in the orig-
inal EYEDIAP FT. This facial appearance gap is likely to
lead to performance degradation.
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Figure 2. Architecture of our SImGAN baseline. The discrimina-
tor is based on ResNet-18 architecture, and the refiner consists of
a stacked convolution blocks.
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Figure 3. Architecture of our DANN baseline. We take the fea-
tures before the last FC layer of the ResNet-50 backbone, and use
three FC layers for domain classification and gaze estimation.

3. Baseline Implementation Details

SimGAN [3] Fig. 2 shows the architecture of our Sim-
GAN implementation. The discriminator is based on
ResNet-18 architecture, and the refiner is a stacked convo-
Iution blocks whose total depth is the same as ResNet-18.
To train the refiner, we use a loss function £ = L, + vL;,
where L, is adversarial loss, and £; is an /1 loss defined
between the source and refined images. We empirically set
the loss weight v = 8.0.

DANN 1] Fig. 3 shows the architecture of our DANN im-
plementation. We used the ResNet-50 backbone and three
FC layers for both domain classification and gaze estima-
tion. We also used batch normalization and ReL.U activa-
tion layers between FC layers. The reverse layer indicates
the operation to multiply —1 with the gradient of domain
classification loss, which is a cross entropy loss between
predicted domain label and domain label d. Therefore, the
feature extraction network is trained in an adversarial way
to the domain classification loss. To train this model, we use
a loss function £ = L, + vLg, where L is an /1 loss for

gaze estimation, and L is a cross entropy loss for domain
classification. We empirically set the loss weight v = 1.0.

PADACO [2] Our PADACO implementation has the
same network architecture as DANN but a different sam-
pling method for the source dataset. The network is first
pre-trained with gaze estimation loss on the source dataset
and outputs predictions from target samples. We then cal-
culate the sampling probabilities of each source data based
on the gaze prediction results on the target data. We count
the 10 nearest source samples for each target prediction and
define the sampling probability according to the number of
times each source sample appears in the neighborhood. Fi-
nally, the whole network is trained with both source and
target data, where the source data is sampled according to
the sampling probabilities. We use the same loss function
as DANN, and empirically set the loss weight v = 0.9.
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MPII-NV for ETH-XGaze Train

Figure 4. Same random augmentation for the compared datasets.



