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Abstract

Machine Learning models based on Deep Neural Net-
works behave unpredictably when presented with inputs that
do not stem from the training distribution and sometimes
make egregiously wrong predictions with high confidence.
This property undermines the trustworthiness of systems de-
pending on such models and potentially threatens the safety
of their users. Out-of-Distribution (OOD) detection mech-
anisms can be used to prevent errors by detecting inputs
that are so dissimilar from the training set that the model
can not be expected to make reliable predictions. In this
paper, we present PyTorch-OOD, a Python library for OOD
detection based on PyTorch. Its primary goals are to acceler-
ate OOD detection research and improve the reproducibility
and comparability of experiments. PyTorch-OOD provides
well-tested and documented implementations of OOD de-
tection methods with a unified interface, as well as training
and benchmark datasets, architectures, pre-trained models,
and utility functions. The library is available online1 under
the permissive Apache 2.0 license and can be installed via
Python Package Index (PyPI).

1. Introduction
Due to their versatility and performance, Machine Learn-

ing models based on Deep Neural Networks (DNN) [29, 43]
are increasingly deployed in products and intelligent ser-
vices across a wide range of fields, including healthcare [13],
automatic content filtering [49], collaborative robotics [26],
and financial services [9]. However, despite their remark-
able performance in controlled environments, DNN-based
models are demonstrably not robust to shifts in the data gen-
erating distribution, and as a result, their predictions can
not always be trusted. In safety-critical applications, un-
detected errors can pose a threat to the psychological and
physical well-being of humans and, consequentially, have

1https://gitlab.com/kkirchheim/pytorch-ood

to be avoided. Out-of-Distribution (OOD) detection, which
is concerned with detecting inputs that have low probability
under the training distribution, has gained remarkable atten-
tion in recent years. There are several closely related fields,
like Open Set Recognition (OSR) [16], Uncertainty Estima-
tion [15], Novelty Detection [38], Anomaly Detection [39],
and Outlier Detection [1], and the terms are sometimes used
interchangeably.

In this work, we present PyTorch-OOD, a library for Out-
of-Distribution detection in high dimensional data based
on the PyTorch deep learning framework [37]. PyTorch-
OOD aims to provide modular, well-tested, and documented
implementations of OOD detection methods with a unified
interface, as well as training and benchmark datasets, pre-
trained models, and utility functions. Since the boundaries to
adjacent fields, like OSR, are sometimes blurred, the library
also covers methods from closely related fields.

The remainder of this paper is structured as follows: The
goals of PyTorch-OOD are described in Section 2. The
design decision and fundamental assumptions are presented
in Section 3. An overview of the library’s content is given in
Section 4. A study of several state-of-the-art OOD detection
methods and datasets is presented in Section 5. In Section 6,
we briefly survey related work and close with a conclusion
and an outlook on future work in Section 7.

2. Goals
PyTorch-OOD is designed with the following goals:

Promoting Reproducibility Recent works in several ma-
chine learning domains have noted difficulties in reproduc-
ing experiments, including supervised classification [4, 45],
reinforcement learning [35], and unsupervised OOD detec-
tion [27]. These difficulties are attributed, among others, to
intrinsic and extrinsic sources of nondeterminism. Intrinsic
sources include all factors that can lead to different results
when using otherwise identical code, for example, parame-
ter initialization, dropout, the shuffling of training data, or
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the sampling of datasets. While intrinsic nondeterminism
can theoretically be controlled by setting a fixed random
seed (or disabling nondeterministic operations in the case
of low-level libraries like cuDNN [6]), such an approach
may also reduce the validity of conclusions to this random
seed [4], as minor differences in the initial conditions can
cause significant differences in experimental outcomes [45].
By providing a library with well-tested and documented
implementations of existing methods, we aim to mitigate
the effects of extrinsic sources of nondeterminism. Apart
from detection methods, there are many different bench-
mark tasks used in the academic literature that currently lack
access through a unified interface. By providing easily ac-
cessible and unified implementations, we hope to encourage
researchers to subject newly proposed methods to a broader
range of benchmarks tasks and comparison with existing
methods, which will provide a more comprehensive picture
of their performance.

Accelerating Research PyTorch-OOD aims to increase
the speed with which research hypotheses can be tested by
facilitating fast prototyping. This requires minimizing man-
ual intervention for tasks that can be automated, maintaining
consistent interfaces, and ensuring compatibility with other
software frameworks. Furthermore, PyTorch-OOD aims to
eliminate boilerplate code without making too strong as-
sumptions on OOD detection experiments.

3. Design
PyTorch-OOD makes the following assumptions:

Binary Classification PyTorch-OOD casts OOD detection
as binary classification with the goal to discriminate between
in-distribution (IN) and out-of-distribution (OOD) data. This
detection is performed in addition to other tasks, like classi-
fication or segmentation. Thus, it is assumed that each OOD
detector produces outlier scores, where high values indi-
cate greater outlierness. While these are strong assumptions
that some detectors, like OpenMax [2], might not adhere to,
we argue that most methods can be reformulated in such a
fashion.

Workflow PyTorch-OOD adopts a workflow that is mo-
tivated by the empirical observation that many scientific
publications follow a three-staged approach when training
and evaluating OOD detection methods:

1. A DNN is trained on some dataset(s) for some task(s),

2. an OOD detector is constructed based on the DNN. The
detector might require fitting to some dataset(s), and
finally

3. the detector is evaluated on some dataset(s).

This workflow is illustrated in Figure 1. In PyTorch-OOD,
all of these steps are decoupled. PyTorch-OOD makes no
assumptions about the DNN architecture or the used training
procedure.

Labeling PyTorch-OOD assumes that all IN samples have
positive class labels ≥ 0 and all OOD samples negative ones.
This allows to efficiently discriminate such samples dynam-
ically at runtime, making it possible to work with datasets
containing both IN and OOD data. Furthermore, this as-
sumption allows to design DNN modules that automatically
handle OOD data differently between training and testing,
without the need for complex branching or redundancy that
would be required otherwise.

Interface PyTorch-OOD uses PyTorch abstractions where
possible and a Scikit-Learn-like interface everywhere
else [5]. In particular, PyTorch-OOD does not imitate more
extensive frameworks that facilitate scalability, but aims to
integrate with them seamlessly. Generally, an OOD detector
has two methods:

• detector.fit(data)

• detector.predict(batch)

The optional fit method is used to fit the detector to a
specific dataset, for example, to determine the parameters of
an underlying statistical model. Examples of such methods
that require fitting after the initial network optimization in-
clude the Mahalanobis OOD Detector [30] and the OpenMax
Layer [2]. The predict method takes a batch of data and
returns a tensor with outlier scores. This interface design
allows for interoperability with the PyTorch software ecosys-
tem, for example, PyTorch Lightning2 and TorchMetrics3.

4. Library Content
This section provides an overview of the libraries content

at the time of writing.

4.1. Objective Functions

NNs are often used to learn a hierarchy of increasingly
lower dimensional representations of the data. Their train-
ing usually involves searching for a set of parameters that
empirically minimize the expected value of some objective
function. PyTorch-OOD provides implementations of sev-
eral objective functions that have been proposed to learn
representations that allow to discriminate between IN and
OOD data more effectively. Objective functions are loosely
categorized into unsupervised and supervised. Examples are
listed in Table 1.

2https://www.pytorchlightning.ai
3https://torchmetrics.readthedocs.io
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Figure 1. Depiction of PyTorch-OODs workflow, showing how components of the library can be used throughout the different stages: (1) A
DNN is optimized in order to learn a lower dimensional representation of the input data. (2) A OOD detection model is constructed, based
on the DNN and optionally a dataset. (3) The OOD detection model is tested on a dataset to discriminate between IN and OOD samples.

Unsupervised Unsupervised objective functions only use
IN data during training. In our implementation, they auto-
matically ignore OOD inputs. This allows composing more
complex objective functions from supervised and unsuper-
vised objective functions without the need for additional
modification.

Supervised Supervised objective functions use both IN
and OOD data during training, usually with the goal to pre-
serve the discriminability of IN and OOD data in the lower
dimensional output space of the DNN. Often, they consti-
tute supervised generalizations of unsupervised objective
functions such that they can be implemented as a linear
combination of several objective function modules.

4.2. Detection Methods

After the DNN has been trained, an OOD detection model
is created. This can be seen as constructing a model of nor-
mality, for example, a density model of normal representa-
tions, a model of distances from some class prototypes, or a
model of reconstruction errors. For some instance x, these
methods then yield an outlier score Df (x). A threshold τ
can be applied to this score in order to discriminate samples
into OOD and IN:

outlier(x) =

{
1 if Df (x) > τ

0 else
. (1)

A selection of the implemented detectors is listed in Table 2.

4.3. Datasets

Data is an essential ingredient for Machine Learning, but
downloading and preparing datasets can be tedious. While

Table 1. Selection of implemented objective functions.

Objective Function Note

Unsupervised

Cross-Entropy
II Loss [18] Class Prototype-based
Center Loss [47] Class Prototype-based
CAC Loss [33] Class Prototype-based

Supervised

Deep SS-SVDD [41] One-Class Method
Energy Regularized [32] Maximizes Energy Score gap

between IN and OOD
Entropic Open-Set [11] Minimizes ∥f(x)∥22 for

OOD
Objectosphere [11] Increases difference of

∥f(x)∥22 for IN and OOD
Outlier Exposure [24] Reduces Softmax Score for

OOD data

PyTorch provides code that automates these tasks for several
datasets, at the moment, several datasets that are commonly
used in OOD detection benchmarking have to be manually
set up. PyTorch-OOD does not introduce new benchmark
datasets, but instead provides easy access to different datasets
that are frequently used throughout the literature, by eliminat-
ing the need to manually download the data and writing code
for loading it. Currently, PyTorch-OOD includes datasets
for Computer Vision and Natural Language Processing that
can be used for pre-training, as well as for benchmarking
OOD detectors. Access to pre-training can support research
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Table 2. Selection of implemented OOD detection methods.

OOD Detector Note

Softmax [22] Baseline Method
OpenMax [2] Distance-based
Mahalanobis [30] Distance-based
Odin [31] Preprocessing Method
Deep SVDD [40] Distance-based One-Class

Method
Energy-based [32]
Monte Carlo Dropout [15] Probabilistic

on supervised objective functions. Furthermore, since OOD
detection methods are usually tested agains many different
datasets, having access to a larger collection of benchmark-
ing datasets allows researchers to evaluation their methods
on a broader range of benchmark tasks in order to provide
a more comprehensive picture of the performance of newly
proposed methods. An overview of the datasets is provided
in Table 3. Datasets can be roughly divided into natural,
corrupted and synthetic.

Natural Achieving state-of-the-art performance often re-
quires pre-training or supervision on large quantities of real-
world data, like the ImageNet [10]. A dataset commonly
used for supervised methods, the TinyImages database [46],
has recently been taken down due to ethical concerns [3].
Consequentially, several OOD detection methods can not
be reproduced [48]. PyTorch-OOD provides code for the
automatic set up of alternative datasets, including a cleaned
version of the original TinyImages database provided by [24]
that consists of 300.000 images.

Corrupted Several datasets include corrupted versions of
natural data, for example, images overlaid by noise or more
complex corruptions, that can be used to benchmark model
robustness [21]. While corruptions could also be applied
dynamically at runtime, using static datasets is advisable
considering reproducibility.

Synthetic Several datasets include fully synthetic data.
These can be sampled from some generative model, for
example, different kinds of noise, or created by other means
like evolutionary algorithms [36].

4.4. Deep Neural Networks

The objective function and the detection method often
constitute the central innovation of publications in the OOD
literature. Often, the conducted experiments build on exist-
ing DNN architectures, and sometimes, methods also reuse
weights from other publications. However, at the moment,

Figure 2. Examples of Out-of-Distribution Images from different
benchmark datasets for CIFAR models.

Figure 3. Examples of Out-of-Distribution Images from different
benchmark datasets for ImageNet models.

implementations of architectures and pre-trained weights
used for OOD detection are scattered across different code-
bases.

Architectures While PyTorch provides standardized im-
plementations of several models, OOD experiments often
involve custom implementations of DNNs, making it dif-
ficult to reproduce exact numerical results without access
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Table 3. Selection of supported datasets. The DL column indicates
automatic download capability.

Dataset Note DL

Pre-Training

TinyImages 300k [46] A cleaned version of the
80 Million Tiny Images
Dataset with 300.000 im-
ages.

✓

ImageNet-DS [7] A downsampled version
of the ImageNet.

✗

Benchmark

MNIST-C [34] Corrupted MNIST ✓
ImageNet-A [25] Natural Adversarial Ex-

amples
✓

ImageNet-O [25] OOD for ImageNet ✓
ImageNet-R [20] Rendition Images ✓
ImageNet-C [21] Corrupted ImageNet ✓
CIFAR 10-C [21] Corrupted CIFAR 10 ✓
CIFAR 100-C [21] Corrupted CIFAR 100 ✓
Fooling Images [36] Synthetic Images ✓
Textures [8] Images used in [30–32] ✓
TinyImageNet Crop Images used in [30–32] ✓
TinyImageNet Resize Images used in [30–32] ✓
LSUN Crop Images used in [30–32] ✓
LSUN Resize Images used in [30–32] ✓
Noise Gaussian, Uniform, .... ✓
Newsgroup-20 Texts used in [21] ✓
Reuters-52 Texts used in [21] ✓
Multi30k Texts used in [21] ✓
WMT16 Texts used in [21] ✓
WikiText-2 Texts used in [24] ✓

to the original code. For example, several publications use
custom implementation of a WideResNet [50] with 40 Lay-
ers [22, 23, 30, 32]. PyTorch-OOD, therefore, provides code
for DNN architectures that are frequently used but not in-
cluded in other packages to facilitate comparability and re-
producibility of results.

Pre-Trained Weights Several publications provide
weights for DNNs that are pre-trained on large datasets of IN
or OOD data. Having access to such models serves several
purposes. Firstly, pre-trained models can be used to easily
compare newly proposed methods or to reevaluate methods
on new datasets. Secondly, pre-trained feature encoders can
be used for subsequent finetuning on downstream tasks.
It has been shown that pre-training on large datasets can
significantly increase the robustness of models [14, 23], and
[23] argues that pre-training should be used consistently in

Table 4. Selection of architectures. The PT column indicates the
availability of pre-trained weights.

Model Note PT

WideResNet A Wide Residual Network used by
[22, 23, 30, 32]

✓

ViT Vision Transformer used by OOD-
Former [28]

✓

Base GRU GRU-based model as used in [24] ✗

OOD detection.
Since pre-trained models tend to converge faster, publicly

available weights can also reduce training time, which sup-
ports small research labs that do not possess the necessary
resources to pre-train large models from scratch. Shorter
training times can also help to decrease the considerable en-
ergy consumption of deep learning, which has implications
from an economic and environmental perspective [44].

4.5. Evaluation

The evaluation of OOD detectors is often performed by
treating the original test set as IN data and testing the discrim-
inative power against one or several different OOD datasets.
Upon deployment, one would have to determine a specific
threshold value τ for the discriminator in Equation (1). Us-
ing a larger threshold will reduce the recall while increasing
the precision of the detector. On the other hand, a lower
threshold will increase the recall while reducing the preci-
sion. There are several established metrics to measure the
performance on binary classification tasks at all possible
thresholds simultaneously. The AUPR measures the area
under the curve obtained by plotting precision and recall
against each other for all possible values of τ . Two versions
of the AUPR exist: one treats OOD samples as positive,
and one treats them as negative. Furthermore, performance
can be measured with the AUROC, which is the area under
the curve that characterizes the tradeoff between the false
positive rate and the true positive rate.

Metrics PyTorch-OOD provides helper functions for the
evaluation of models and also implements some OOD spe-
cific metrics that are not available in other packages at the
time of writing, such as the expected calibration error de-
scribed in [17], or the calculation of the accuracy at a specific
true positive rate (usually 95%).

Open Set Simulations Open Set Simulations constitute an
alternative evaluation protocol for OOD detector that is more
commonly employed in the Open Set Recognition domain.
The concept includes repeatedly

1. splitting the classes of a dataset into IN and OOD,
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2. training a DNN on the IN classes, and

3. testing the OOD detectors’ ability to discriminate IN
from OOD classes on a test set.

A detailed description is provided in [27]. PyTorch-OOD
provides a generator to create Open Set Simulations from
datasets dynamically. The generator can be seeded to pro-
duce reproducible splits.

4.6. Contributing

Contributing custom implementations that extend the
functionality of PyTorch-OOD is usually as easy as imple-
menting one of several interfaces. For example, to implement
a custom OOD detection algorithm, one has to implement
the interface api.Detector, which contains the fit and
predict methods described in Section 3. Training- as
well as benchmark datasets, are provided in the form of
torch utils.data.Datasets, which allows access to
individual samples via the indexing operator []. Objec-
tive functions and DNN architectures are implemented as
torch nn.Modules with a forward methods that support
automatic differentiation.

5. Experiments
In this section, we evaluate the performance of a number

of methods on several benchmark tasks, including Computer
Vision as well as Natural Language Processing.

5.1. CIFAR

We first present a benchmark of several models on the
CIFAR 10 or CIFAR 100 dataset. As DNN, we used a
WideResNet-40 and optimized its parameters by minimiz-
ing several supervised and unsupervised objective functions.
Where provided, we used pre-trained weights. Furthermore,
we also fine-tuned a Vision Transformer (ViT) [12] that was
pre-trained on the entire ImageNet 21k dataset with standard
cross-entropy. We applied a variety of different OOD de-
tectors to both DNNs and evaluated each of them against
Textures, TinyImageNet Crop, TinyImageNet Resize, LSUN
Crop, and LSUN Resize. Samples from these datasets are
depicted in Figure 2.

The results are depicted in Figure 4. DNNs optimized
with supervision (i.e., Outlier Exposure, Energy Regular-
ization, Objectosphere) and the ViT provide the best re-
sults. On the CIFAR 10, the performance of supervised
models seems to have converged and matches or surpasses
the transformer-based model’s performance. However, on
the more challenging CIFAR 100 dataset, the pre-trained
transformer outperforms the WideResNet-40-based models,
even when used with the Softmax baseline method. The
performance is further increased when the transformer is
combined with Energy-based OOD detection. These results

confirm the general notion that high-capacity models trained
with additional data can outperform more advanced methods
for out-of-distribution detection.

5.2. ImageNet

In this section, we present benchmarks on the large-scale
ImageNet datasets with 1000 classes [42]. As DNNs, we
used a ResNet-50 [19] trained on the 1000 classes ImageNet
and a ViT, pretrained on the 21k ImageNet Database [10]
and subsequently fine-tuned on the ImageNet. Both models
were optimized by minimizing the cross-entropy. As OOD
detectors, we used the Softmax Baseline [22], as well as
Energy-based OOD detection [32].

Hendrycks et al. propose several benchmarks for testing
the robustness of ImageNet classifiers and OOD detectors.
ImageNet-A [25] is a collection of images from ImageNet
classes that standard DNNs frequently misclassify with high
confidence. It can be used to test input data distribution
shifts. ImageNet-O [25], on the other hand, is an out-of-
distribution dataset that contains anomalous images from
classes that are not part of the 1000 class ImageNet dataset.
Therefore, it can be used to test label distribution shifts.
ImageNet-R is a dataset of renditions (e.g., painting) of im-
ages from ImageNet classes with 30.000 images. While
these images are natural, their underlying distribution di-
verges so much from the ImageNet distribution that most of
them are misclassified. The Fooling Images dataset [36] is
comprised of 10.000 synthetic images generated by an evo-
lutionary algorithm. An example image from each dataset is
provided in Figure 3.

In our evaluation, we tested the ability of the models to
discriminate between the ImageNet 2012 validation set as
IN data and each of ImageNet-R, ImageNet-O, ImageNet-
A, and Fooling Images as OOD data, respectively. The
results are depicted in Figure 5. The combination of ViT
and Energy-based OOD detection again delivers the best
performance across all datasets and metrics.

5.3. Newsgroups

In this section, we present results on sequential data for
a Natural Language Processing task. The 20 Newsgroups
dataset is a collection of 20.000 texts from 20 different online
newsgroups. The task is to predict the origin newsgroup for
a given document. We trained a word-level classification
model based on multi-layer gated recurrent units (GRU) as
used in [24]. For supervised objective functions, we used the
Wikitext-2, that contains a sample of texts from the English
Wikipedia, as OOD dataset.

In our evaluation, we tested the ability of the models
to discriminate between the test set of the 20 Newsgroups
dataset and several other text datasets that have all been used
in other works for OOD detection on text data [22, 24]. The
Reuters News 52 dataset includes samples of news articles

4356



Figure 4. Scores for different OOD detection models based on a WideResNet 40 on a benchmark task including 5 OOD Datasets. Models
trained with supervision (i.e., Outlier Exposure, Energy Regularization, Objectosphere) outperform unsupervised models (i.e., Softmax,
Energy-Based OOD detection, Monte Carlo Dropout). On the more challenging CIFAR 100 dataset, the high capacity model based on the
transformer architecture combined with the baseline method outperforms models trained with supervision.

Figure 5. Scores for different OOD detection benchmark tasks for a ResNet-50 model and a Vision Transformer (ViT) [12]. For ViT+Energy,
we used Energy-based OOD detection [32] with a transformer architecture, which significantly increased the performance across most
metrics and datasets.

from 52 different topics. The Multi30k dataset contains en-
glish descriptions of images. The WMT16 contains example
sentences from a machine translation task. Results can be
found in Figure 6. We again observe that, while Energy-
based OOD detection increases the performance over the
baseline, supervised methods incorporating auxiliary data
achieve the best results.

6. Related Work

Existing frameworks like PyOD, PyTOD, and ADTK
focus on classical shallow methods for comparably low di-
mensional data points, time series, or streams. For tasks
involving large quantities of high dimensional data, like
Computer Vision and Natural Language Processing, deep
models constitute the state-of-the-art, among others, due to
their scalability. However, as of now, OOD detection meth-
ods for deep models are not sufficiently covered by existing

libraries.
For example, PyOD [51] provides well-tested and doc-

umented implementations for a large number of classical
Outlier Detection methods, such as k-Nearest Neighbors,
and also some methods based on Neural Networks, like
AutoEncoders. However, at the time of writing, there is
minimal overlap between the detection methods provided
by PyTorch-OOD and PyOD since the latter focuses more
on classical methods such as those described in [1]. Neu-
ral Network architectures, pre-trained weights, and datasets,
which constitute essential components required to reproduce
results of the most recent publications in the OOD detection
domain, are not in the scope of PyOD.

7. Conclusion & Future Work

We presented PyTorch-OOD, a library for Out-of-
Distribution detection based on PyTorch. PyTorch-OOD
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Figure 6. Scores for different OOD detection methods based on a multi-layer GRU model trained on the 20 Newsgroups dataset. For
supervised objective functions, we used the Wikitext-2 dataset as OOD data. We again observe that Energy-based OOD detection outperforms
the Softmax-baseline, and models trained with supervision yield the best performance.

provides implementations of several OOD detection meth-
ods and objective functions, datasets, and DNN architectures
used in recent academic literature to achieve state-of-the-
art results. PyTorch-OOD makes minimal assumptions on
the training and evaluation procedure, which allows it to be
used in conjunction with other frameworks that facilitate
scalability, like PyTorch Lightning.

In the future, PyTorch-OOD can be extended by addi-
tional methods and datasets. In particular, providing easily
accessible datasets can potentially facilitate OOD research
on audio and video data which is, to our knowledge, not
as developed as a field. We encourage others to contribute
objective functions, detection methods, architectures, and
datasets.
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