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Abstract

Adversarial attack perturbs an image with an impercepti-
ble noise, leading to incorrect model prediction. Recently, a
few works showed inherent bias associated with such attack
(robustness bias), where certain subgroups in a dataset (e.g.
based on class, gender, etc.) are less robust than others.
This bias not only persists even after adversarial training,
but often results in severe performance discrepancies across
these subgroups. Existing works characterize the subgroup’s
robustness bias by only checking individual sample’s proxim-
ity to the decision boundary. In this work, we argue that this
measure alone is not sufficient and validate our argument
via extensive experimental analysis. It has been observed
that adversarial attacks often corrupt the high-frequency
components of the input image. We, therefore, propose a
holistic approach for quantifying adversarial vulnerability
of a sample by combining these different perspectives, i.e.,
degree of model’s reliance on high-frequency features and
the (conventional) sample-distance to the decision bound-
ary. We demonstrate that by reliably estimating adversarial
vulnerability at the sample level using the proposed holistic
metric, it is possible to develop a trustworthy system where
humans can be alerted about the incoming samples that are
highly likely to be misclassified at test time. This is achieved
with better precision when our holistic metric is used over
individual measures. To further corroborate the utility of the
proposed holistic approach, we perform knowledge distilla-
tion in a limited-sample setting. We observe that the student
network trained with the subset of samples selected using
our combined metric performs better than both the compet-
ing baselines, viz., where samples are selected randomly or
based on their distances to the decision boundary.

1. Introduction
Deep neural networks (DNNs) are becoming increasingly

ubiquitous across a plethora of real-world applications such
*equal contribution.
Webpage: https://sites.google.com/view/sample-adv-trustworthy/

as object detection [33, 37], speech recognition [13, 24],
remote sensing [18, 38], etc. However, these models are
extremely brittle, as they yield incorrect predictions on sam-
ples corrupted by carefully crafted perturbations that are
imperceptible to humans, popularly known as adversarial
samples [8, 19, 29]. Vulnerability towards adversarial exam-
ples (adversarial vulnerability) in state-of-the-art DNNs is
particularly worrisome in safety-critical applications such
as medical imaging [1, 26], facial recognition [30, 35], self-
driving cars [4, 22], etc. For example, adversarially manipu-
lated traffic signs can be misclassified by a self-driving car
leading to severe implications like loss of human life.

Recently, researchers have demonstrated [23, 25] that the
notion of adversarial robustness also coincides with fairness
considerations as certain subgroups (often corresponding to
sensitive attributes like gender, race etc.) in a dataset are
less robust in comparison to the rest of the data and thus
are harmed disproportionately in case of an adversarial at-
tack. A subgroup can broadly be defined as categorization
of input-space into disjoint partitions based on certain cri-
teria of interest such as class labels, sensitive attributes, etc.
Nanda et al. [23] in their work, formulated the phenomena
of different levels of robustness exhibited by different sub-
groups as ‘robustness bias’. Moreover, robustness bias is
present (and sometimes even amplified) [2, 34] after sup-
posedly making the model ‘robust’ using state-of-the-art
adversarial defense methods like adversarial training. Ide-
ally, a fair model should ensure each (and any) subgroup in
the dataset is equally robust. For example, in a face recogni-
tion system, the model should perform equally well across
different ethnic subgroups.

Accurately measuring the adversarial vulnerability of a
sample is the first step towards designing generalizable de-
fense framework that can mitigate robustness bias, as the
notion of subgroups may vary significantly depending on
the tasks and datasets. Traditionally, this is achieved by
using distance to decision boundary (DDB) as a proxy to
quantify sample robustness i.e. samples that are farther away
from decision boundary are assumed to have higher robust-
ness and vice-versa. Proximity to the decision boundary
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Figure 1. Comparison of existing methods vs our methods: Existing methods characterise robustness bias only via distance to decision
boundary (DDB) as the only factor for describing adversarial vulnerability whereas our objective is to incorporate mutlitple perspectives
which considers multiple factors (frequency and DDB). Subgroups (shown in pink and blue colour) lying at a similar distance to decision
boundary has lower robustness bias compared to subgroups having different DDB (one subgroup lies closer while the other lies farther). Our
hypothesis is that even samples lying at similar DDB can have high robustness bias if they are dominated by high frequencies.

is an intuitive measure as samples lying closer to the deci-
sion boundary would naturally be more prone to cross the
decision boundary after perturbation, eventually leading to
misclassification. However, in our analysis (Sec. 4), we find
that the samples with similar DDB values can have different
adversarial vulnerabilities, i.e., such instances can require
varying minimal steps (by an iterative adversarial attack)
to fool the model. We observe this trend to be consistent
across adversarial attacks. Furthermore, we also provide
explanations about these observations (Sec. 5). Hence, un-
like [23], we argue based on experimental observations that
DDB (although important) alone cannot be the only factor to
measure adversarial vulnerability, motivating us to propose
a holistic view for estimating adversarial vulnerability by
(also) taking other factors into consideration.

Another perspective to quantify adversarial robustness
is based on a trained model’s reliance on high-frequency
features in the dataset. While humans primarily rely on low-
frequency (LF) features [32], the DNNs, on the contrary, not
only focuses on LF features but can also extract ‘useful’ pre-
dictive features from the high-frequency (HF) components
in the data to maximize their performance [31]. Interestingly,
many state-of-the-art adversarial attacks primarily perturb
the HF component of a sample in order to force erroneous
predictions. Thus, the reliance of DNNs on HF features

for better generalization makes them highly vulnerable to
adversarial attacks [32]. These observations indicate that
robustness to adversarial attacks is not only dependent on
the distance to decision boundary but also on the nature of
the features learned (discussed in Sec. 6).

This work aims to investigate the adversarial vulnerability
of a sample from two distinct perspectives, i.e., a) proximity
to decision boundary, b) reliance on high-frequency features.
Our objective is to provide a holistic estimation, as only
relying on proximity to decision boundary might give a false
sense of robustness. The difference between existing works
and ours is also shown in Figure 1.

Based on the above perspectives, we propose the idea of
a trustworthy systems (Figure 5) where the trained models
would also have provision to yield trust score besides regular
class label predictions. The trust score (quantified using both
DDB and HF factor) indicates the reliability of a model’s
prediction. A test sample is clustered either into ‘Trust’ or
‘Non-Trust’ cluster based on its trust score. The predictions
are reliable only when the sample falls in the Trust cluster.
Otherwise, samples in the Non-Trust cluster can be surfaced
to a domain-expert for further inspection and annotation.

An analysis of multiple factors for quantifying adversarial
vulnerability can also be utilized for different applications
such as knowledge distillation. Specifically, a student net-
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work can be trained efficiently in a limited-data setting by
selecting the samples based on adversarial vulnerability fac-
tors (viz., distance to decision boundary and reliance on
high-frequency). We empirically observe better performance
by selecting samples based on our proposed criterion, com-
pared to random-baseline and conventional methods (details
in Sec. 9).

Our overall contributions are summarized as follows:

• We show that the traditional notion of quantifying ad-
versarial vulnerability, i.e., ‘proximity to the decision
boundary’, is insufficient, leading to a false sense of
robustness. We verify it across multiple adversarial
attacks and architectures, and provide suitable justifica-
tion for the same.

• We incorporate multiple perspectives (distance to deci-
sion boundary and reliance on high frequency) to char-
acterize robustness bias and thereby provide a more
holistic view to estimate adversarial vulnerability. This
is still unexplored to the best of our knowledge.

• We build a trustworthy system that predicts the sample-
level trust scores based on the multiple factors of sam-
ple vulnerability. We further demonstrate that our pro-
posed system alerts the human domain experts when
the samples are highly likely to be misclassified (i.e.
non-trustable) with better precision than the system
designed by using individual factors only.

• As a case study on the task of knowledge distillation
under limited data setting, we show the utility of multi-
ple perspectives of adversarial vulnerability in sample
selection for composing better transfer set. We obtain
improvements in Student’s performance across differ-
ent low-data settings against multiple baselines and this
trend remains consistent even when the hyperparame-
ters (e.g. temperature in distillation loss) are varied.

2. Related Works
Several hypothesis for explaining the existence of ad-

versarial samples have been proposed in recent years
[5–7, 12, 32]. Most prominently, researchers [12] have at-
tributed the presence of adversarial samples to useful yet
brittle i.e. non-robust features in the data that can be easily
latched on to, by DNNs. On similar lines, Wang et al. [31]
demonstrated that a DNN can learn well-generalizable fea-
tures from high-frequency components in the data. These
high-frequency components are shown to be most prone to
perturbations (i.e. higher adversarial vulnerability) in case
of state-of-the-art adversarial attacks [32].

Fairness approaches aim to ensure that no subgroup is
disproportionately harmed (or benefited) due to decisions
taken by an automated-decision making system [11, 21, 36].

Recently, Nanda et al. [23] demonstrated that adversarial
robustness is closely connected to the notion of fairness as
different subgroups possess different levels of robustness
(robustness bias) leading to unfair scenarios in downstream
applications. Furthermore, robustness bias persists [2, 34]
even after making the model robust using adversarial de-
fenses like adversarial training.

Traditionally, distance to decision boundary (of a sample)
is used as a proxy for measuring it’s adversarial vulnerabil-
ity [23]. However, we argue that such a measure is inade-
quate as a sample could be adversarially vulnerable due to
other factors as well. Thus, our objective is to holistically
estimate such adversarial vulnerability by combining mul-
tiple perspectives (namely proximity to decision boundary
and reliance on high-frequency features) and further show it
as a better measure than the individual factors alone.

3. Preliminaries
Notations: The model M is trained on a labelled dataset

D = {(xi, yi)}Ni=1 using a standard cross entropy loss (Lce).
The dataset D contains images from p different classes i.e.
the image set I = {Ick}pk=1 and Ick represents set of images
from kth class. Each class contains equal amount of samples
i.e. N/p. M(xi) denotes the logits and the class prediction
by the model M on the ith input (xi) is represented by
argmax(softmax(M(xi))).

Aadv contains a set of s different adversarial attacks i.e.
Aadv = {Aj

adv}sj=1. An ith adversarial sample (i.e. x̂i) is
obtained by perturbing the sample (xi) with an objective to
fool the network M .

The Discrete Cosine Transform and its inverse operations
are denoted by DCT and IDCT respectively. An ith spatial
sample (xi) has f i as its representation in frequency space.

The model M is made trustworthy where the trust score
(denoted by T ) of a sample is computed at test time and
humans are alerted if the sample falls in the non-trustable
cluster.

Threat model: The perturbations added via an adver-
sarial attack Aj

adv ∈ Aadv (also called adversarial noise) is
constrained in a Lp norm ball to make them human impercep-
tible i.e.

∥∥x̂i − xi
∥∥
p
≤ ϵ. L∞ and L2 are the two popular

threat models. Besides the constraint on δ, the other objec-
tive is to enforce the model M to change its prediction on
adversarial sample x̂i i.e. argmax(softmax(M(x̂i))) ̸=
argmax(softmax(M(xi))). To achieve these, different
optimization procedures are followed leading to different
adversarial attacks such as PGD [19] and Deepfool [20].

Adversarial Training: At every iteration, the batch of
samples from dataset D is augmented with corresponding
adversarial samples, and together they are used to optimize
the model parameters by minimizing the loss to obtain a
robust model (M̂ ). In PGD adversarial training, the loss
taken is the standard cross-entropy loss.
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Figure 2. Plots of Distance to Decision Boundary (DDB) vs Steps to attack (Steps) for different attacks, DeepFool (left) and PGD (right) for
CIFAR10 dataset on ResNet18 architecture. Even at a similar distance to decision boundary, number of steps required for the adverserial
attack may vary from sample to sample.

Distance to decision boundary (DDB): The accurate
estimation of the distance from the nearest decision boundary
df (x

i) of a trained classifier (M or M̂ ), for any input sample
xi ∈ D, is an extremely challenging task. The strategy
adopted by Nanda et al. [23] for computing df (x

i) is to
perturb xi with the aim of transporting it in the input space
to a different category than the original. This can be precisely
achieved by a standard adversarial attack setup, wherein an
adversarial attack Aj

adv ∈ Aadv computes the adversarial
sample x̂i. The difference in predicted labels for xi and x̂i

by the model indicates that the decision boundary is atmost
δi =

∥∥x̂i − xi
∥∥
2

distance away from xi, establishing δi as
a reliable estimate of df (xi).

Discrete Cosine Transform (DCT): DCT is used to trans-
form the sample from spatial domain to frequency domain
i.e. an ith sample of D (xi) gets converted to f i. Unlike
Discrete Fourier Transform which outputs a complex sig-
nal, DCT outputs only a real-valued signal which makes
the analysis of images in the frequency domain much easier.
In the frequency transformed image f i, the top left corner
represents the low-frequency content of the image, and the
bottom right corner represents the high-frequency contents.
In order to retrieve the spatial sample (xi) back from its
corresponding frequency domain representation in (f i), we
use the Inverse Discrete Cosine Transform (IDCT).

Flipping Frequency: In order to quantify the reliance
of a sample on high-frequencies, we progressively remove
high-frequency bands until the model changes it’s prediction
(w.r.t the prediction on original sample). For instance, if
model predicts correctly on the sample containing frequency
content till (k + 1)th band, and mis-classifies on kth band,
this implies that model is dependent on (k + 1)th band to
make the correct prediction. Hence, if the flipping frequency
band (k + 1 in this case) is high it means that the model
relies more on high-frequency content, if flipping frequency
is low it means that the model relies on low-frequency.

4. DDB is insufficient to characterize robustness

Fig. 2 contains the plots for model M (Resnet-18) trained
on CIFAR-10 dataset. The x-axis represents the minimal
steps required by the adversarial attack to change the model
prediction. Here, we also varied the adversarial attacks
(s = 2 i.e. Aadv = {PGD,Deepfool}) which are used
to compute steps to attack for each sample in the dataset.
The y-axis represents the DDB values for all the samples
i.e. df (xi)Ni=1. We can observe that samples having similar
DDB values can require a varying number of attack steps
(an instance is highlighted using a rectangular box in green
color). This observation is consistent across different attacks.

More the number of steps taken by the adversarial attack
to fool a network, the harder the sample is to attack. In
other words, more steps imply less adversarial vulnerability
(more robust) and vice versa. This along with preceding
discussion also implies that the samples with similar DDB
(either in close or far regions), can have different adversarial
vulnerabilities. This contradicts the traditional assumption
that samples that are far from the decision boundary would
always be less vulnerable to adversarial attacks and samples
with same DDB cannot have varying vulnerabilities. Hence,
in contrast to that assumption, even samples far off from
decision boundary can require fewer steps to attack (less
vulnerable). Moreover, the correlation between DDB and
steps to attack is low. Thus, it suggests that DDB is not a
sufficient factor to characterize the robustness/vulnerability
associated with a sample.

5. Explanation for DDB as an unreliable esti-
mate of adversarial vulnerability

To compute DDB of a sample xi (i.e. df (x
i)), δi =∥∥x̂i − xi

∥∥
2

is chosen as an estimate of DDB. (Refer to
Sec. 3). However, as shown in Figure 3, samples having
similar δ values can take different optimization paths while
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generating adversarial samples through adversarial attack (as the
path can be highly non-linear), Hence such samples can have diff
adv vulnerabilities even after having similar DDB values.

estimating the minimal steps to flip the label via adversarial
attack. Hence, samples with similar δ can have different
counts of steps to attack, resulting in different adversarial
vulnerabilities. We also note that DDB can become a good
estimate if the sample path during optimization is linear. But
in general, this is rather strong and improbable assumption
and the optimization path is highly likely to be non-linear. So,
intuitively it may seem that DDB may characterize robust-
ness of a sample, but practically it is not a reliable estimate
for deep networks.

6. Different Perspective: Model Reliance on
High Frequency Features

In contrast to humans, DNNs heavily rely on high-
frequency (HF) features in the data, which makes them sus-
ceptible to adversarial attacks [31, 32]. Along similar lines,
Xu et al. [34] demonstrated that the vulnerability of certain
classes (that are inherently more-vulnerable/less-robust to
adversarial perturbations) is amplified after adversarial train-
ing. We hypothesize that such robust DNN must be relying
more on high-frequency features for classes most vulnerable
to adversarial attacks.

We empirically validate our hypothesis by calculating the
average high-frequency bands required by the model in order
to have predictions identical to those original samples for
the most and least vulnerable classes (refer Table 1). For
instance, class-3 (most-vulnerable class) of the CIFAR-10
dataset, on average, requires 32 (i.e. the maximum frequency
band - kmax) to ≈ 9 HF bands to have predictions identical
to those on original (full-frequency spectrum) samples. On
the contrary, class-1 (least-vulnerable class) requires 32 to
≈ 1. Thus, the highly-vulnerable class primarily requires
high-frequency information, whereas the least-vulnerable
class relies more on low-frequency content. We perform

additional analysis (refer Figure 4) to evaluate a robust
model’s performance on multiple high-frequency bands, i.e.,
we gradually add frequency bands, starting from the maxi-
mum frequency component (i.e. kmax = 32) to the lowest
(kmin = 0). In line with our previous observations, we note
that the robust model achieves fairly decent performance
on the class-3 (most vulnerable) with only high-frequency
content, compared to class-1 (least vulnerable), which also
leverages low-frequency information to predict accurately.

Class Clean
Accuracy

PGD
Accuracy

Avg. HF
Band Req.

Class-1
(Least Vulnerable) 92.50 64.80 1.06

Class-3
(Most Vulnerable) 48.30 16.40 9.44

Table 1. Performance of least-vulnerable and most-vulnerable class
for a Robust ResNet-18 model on the CIFAR-10 dataset. There is
significant discrepancy in clean and adversarial performance of both
the classes. The more-vulnerable class relies on high-frequency
information to predict consistently (w.r.t original samples), whereas
the least-vulnerable class relies on low-frequency content.
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Figure 4. Evaluating robust ResNet-18’s performance on multiple
frequency bands by gradually adding high-frequency content from
the maximum frequency component to the lowest.

7. Combined Study of DDB and Frequency
In the previous sections (Sec. 4, 5 and 6), we motivated

the use of different perspectives such as DDB and Frequency
towards vulnerability analysis. In order to come up with a
more holistic measure to quantify adversarial vulnerability
of a sample, we introduce a combined score (T ) that appro-
priately combines the contribution from both the factors.

We first obtain the DDB df (x
i) and Flipping Frequency

F (xi) ∀i ∈ {1, N} (Refer Sec. 3). Since df (x
i) and F (xi)

can be of different range depending on datasets and other
various factors, we therefore normalise both the metrics to
a common range [0, 1]. We call these normalized values
as Normalised DDB and Normalised Flipping Frequency
respectively.
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Normalised Distance to Decision Boundary: To obtain
Normalised DDB or d̂f (xi) we simply scale the DDB value
between 0 to 1 by using Eq. 1.

d̂f (x
i) =

df (x
i)−min(Df (x))

max(Df (x))−min(Df (x))
(1)

Here min(Df (x)) and max(Df (x)) denotes minimum
and maximum DDB values respectively, where Df (x) =
{df (x1), df (x

2), · · · , df (xN )} for a dataset. Sample far-
thest from the decision boundary will have d̂f (x

i) = 1 and
sample nearest to decision boundary will have d̂f (x

i)) = 0.
Samples having d̂f (x

i) values close to 0 would generally be
more prone to adversarial vulnerability.

Normalised Flipping Frequency: A higher value of
Flipping Frequency F (xi) represents that the sample is more
dependent on high frequency components and hence is more
vulnerable (Refer Sec. 3). This is in contrast to DDB metric
where higher value of DDB implies less vulnerability. To
have a similar effect in case of frequency aspect as well (i.e.
higher value representing lower vulnerability), we define
a metric named Reversed Normalised Flipping Frequency
which can be computed using Eq. 2).

F̂ (xi) = 1− F (xi)−min(F̃ (x))

max(F̃ (x))−min(F̃ (x))
(2)

where F̃ (x) = {F (x1), F (x2), · · · , F (xN )}. F̂ (xi) would
be close to 0 for samples which majorly depends on high
frequency components and are more prone to adversarial
attacks. Similarly, the value of F̂ (xi) would be 1 if it is
more adversarially robust.

Combined Score: The essence of computing a combined
score T is to capture robustness information from both fre-
quency and DDB. For any sample xi, the combined score
T (xi) can be simply computed using the harmonic mean of
Normalised Distance to Decision Boundary d̂f (x

i) and Re-
versed Normalised Flipping Frequency F̂ (xi) (Eq. 3). Here
ϵ = 10−5 is a small quantity to ensure numerical stability.

T (xi) =
2× d̂f (x

i)× F̂ (xi)

d̂f (xi) + F̂ (xi) + ϵ
(3)

The combined score T follows a similar trend compared
to other metric, i.e. higher combined score means a lower
adversarial vulnerability. We claim this score to be superior
than its individual counterparts (verified experimentally in
Sec. 8) as the harmonic mean is able to captures the com-
bined effects of fluctuations between these two quantities
and hence gives a better estimate of adversarial vulnerability.

8. Building Trustworthy Systems
The combined score as discussed in the previous section

is used to quantify the combined effect of both the factors

(DDB and frequency). As these factors can better describe
adversarial vulnerability of a sample, hence they can be used
to determine the trustworthiness of a sample.

High combined score implies high normalized DDB d̂f
(i.e. far from decision boundary) and high reverse normal-
ized flipping frequency (F̂ ) (i.e. more dependency on low
frequency features), which in turn leads to high trust. Hence
combined score T can be treated as trust score. Keeping this
in mind, we design a trustworthy system (shown in Figure 5)
where the model is allowed to only predict when the samples
have high trust (i.e. ensuring reliable predictions from the
model). If the trust score is low, the system raises an alert
signal to human for further investigation.

To achieve the above objectives i.e. separating out high
and low trust samples, we simply use K-means cluster-
ing [17] with 2 clusters. The samples with high combined
score (trust score) are clustered into the ‘trust’ cluster and
samples with low trust score are assigned to ‘non-trust’ clus-
ter. Moreover, this approach allows easy integration with
any pretrained model.

Overall, during test time, combined score (trust score)
is computed for the test sample using which it gets clus-
tered into one of the clusters (either trust cluster or non-trust
cluster). If the test sample belongs to trust cluster, then the
model outputs the prediction, otherwise the sample falls into
non-trust cluster and alert signal is raised to human domain
expert for investigation.

To validate our system, we perform experiments on
CIFAR-10 [15] (containing 10 classes). We conduct exper-
iments by estimating d̂f using different adversarial attacks
(i.e. PGD and DeepFool). We also vary the architectures
for robust (Resnet-18, obtained via adversarial training) and
non-robust (Resnet-18 and VGG) settings.

We also compare our performance (combined multiple
perspectives) against the trustworthy system when designed
using only one factor (i.e. single perspective of adversarial
vulnerability such as DDB).

We evaluate our method and other baselines using flag-
ging accuracy which is defined as:

The number of incorrect samples in ‘non-trust’ cluster
Total number of samples in ‘non-trust’ cluster

× 100 (4)

A higher flagging accuracy is desired. This implies that
most of the samples that are sent to humans were wrongly
predicted by the model. This can help in reducing human
effort and time as human in loop would mostly get those sam-
ples which the model can’t handle. The results are reported
in Table 2. We can observe that T-Score consistently out-
performs its individual counterparts by a significant margin
across different attacks (PGD and DeepFool) and architec-
tures (Resnet-18 and VGG-11). Moreover, on an average
over different attacks and architectures, our method flags
nearly 77% of incorrect predictions which is ≈ 10% higher
than the average performance observed on normalized DDB.
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Figure 5. Detailed steps involved in our proposed design of trustworthy systems. (Top Row) Method to remove high frequency components
using DCT and IDCT. The image is first transformed to frequency domain using DCT and then a binary mask is applied which selects
the required frequencies. (Bottom Row) For a test sample we compute Reversed Normalized Flipping Frequency (Eq. 2) and Normalized
Distance to Decision to Boundary (Eq. 1). Finally, Trust score (Eq. 3) is computed, based on which the test sample is clustered either into
“Trust cluster” or “Non-Trust Cluster”. Samples that fall into trust cluster are allowed to predict by model, and sample which fall in non-trust
cluster are sent to human in form of alert signals for further investigation.

Scores PGD DeepFool

d̂f 23.5 32.7
F̂ 29.8 29.8
T (Ours) 35.2 36.2

(a) Robust Resnet-18

Scores PGD DeepFool

d̂f 8.6 11.5
F̂ 11.7 11.7
T (Ours) 12.4 13.9

(b) Resnet-18

Scores PGD DeepFool

d̂f 10.2 12.2
F̂ 14.3 14.3
T (Ours) 17.6 14.6

(c) VGG-11

Table 2. Flagging accuracy across various architectures (DDB estimated using PGD and DeepFool adversarial attacks) for Normalised DDB
(d̂f ), Reversed Normalised Flipping Frequency (F̂ ) and T-score (T ) on CIFAR10 dataset. It can be observed that T-score outperforms other
metrics by a significant margin across various settings.

9. Time Efficient Training of Lightweight mod-
els using Knowledge Distillation

Knowledge Distillation (KD) is a common technique to
transfer knowledge from a deep network (called Teacher) to
a shallow network (called Student). This is done by matching
certain statistics between Teacher and Student networks. The
statistics can be logits [3], temperature raised softmaxes [10],
intermediate feature responses [27], Jacobian [28] etc. It has
been popularly used in model compression for classification
tasks. The networks after compression become lightweight
(less memory footprint) and suitable (less computation and
less inference time) to be deployed onto the portable devices.

Most of the existing works use the entire training data to
conduct knowledge transfer. As a consequence of this, the
training time is quite high. This problem becomes even com-
pounded when large scale training sets are used for training
on large architectures. Many times in such situations, sophis-
ticated hardware would be needed for training. Moreover,
finding the optimal hyperparameters by running the model
several times can become infeasible at times. Therefore,
there is a need to do fast training to overcome such issues.

A child quickly learns from just a few examples. Based
on this analogy, one way of reducing time required is to
do training with few selected samples. But if we randomly
select those samples, it can result in a significant drop in
performance. Therefore, we need to intelligently select the
required samples so that we can optimally trade off between
training time and distillation accuracy. In other words, our
goal is to do “Quick Training for Fast Knowledge Distillation
by only utilizing few training samples”. There are few works
where distillation is performed using few training examples
by modifying the Student’s architecture [16] or augmenting
pseudo data with few training samples [14]. But unlike these
works, we do not aim to modify Student’s architecture or
generate pseudo samples which may bring good performance
at the cost of large training time.

L =
∑

(x,y)∈D̂

(1−λ)Lkd(St(x; θS , τ), T e(x; θT , τ))+λLce(ŷS , y)

(5)
Let the optimal transfer set (D̂) contain the selected training
samples which is k% of entire training data such that the car-
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dinality of entire dataset (D) would be much greater than the
cardinality of D̂ i.e. |D|≫|D̂| = k% of D. The distillation
can then be performed on samples of D̂ as in eq. 5. Here,
Te and St denotes Teacher and Student networks with pa-
rameters θT and θS respectively. We use a robust ResNet-18
network as our Teacher model (Te) and MobileNet-V2 as
our Student network (St). Lkd represents distillation loss
while cross entropy is denoted by Lce. The temperature (τ )
and λ are hyperparameters.

In order to carefully select only a subset of training sam-
ples and use them as a transfer set to conduct the distillation,
we take into account the factors discussed in previous subsec-
tions i.e. sample’s distance to decision boundary and model’s
frequency reliance on that sample for its prediction. For a
limited data budget, we rank all the samples in the training
data according to our trust-score metric (described in Sec 8 ;
with respect to the teacher model) and select a fixed amount
of most-trustworthy samples for each class. The student
model is then trained on those trust-worthy samples directly
using standard distillation losses (described in Eq. 5). We
adopt a (uniform) random sample selection strategy as our
baseline, where we randomly select a fixed number of sam-
ples from each class. Furthermore, the samples lying close
to the teacher model’s decision boundary are often important
for the student network to successfully mimic the teacher’s
decision boundary [9]. Hence, we also report the student
model’s performance when the samples closest (for each
class separately) to the decision boundary are selected. We
perform experiments with multiple sample selection budgets
(i.e. 100, 120 and 150 samples per class).

In Table 3 we observe that our proposed trust-worthy
sample selection strategy consistently outperforms both the
random baseline and the conventional distance to decision
boundary across multiple sample selection budgets. In
Figure 6 we further analyze the flagging accuracy perfor-
mance (normalized DDB and our trust score metrics) for
the best performing Student models (i.e. models distilled
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Figure 6. Flagging accuracy comparison for (Normalized) DDB
score v/s (Our Proposed) Trust-Score (flagging) metrics across
various attacks (PGD and DeepFool) and multiple per-class sample-
selection budgets (100, 120, 150) for the model trained via our
Trust Score based sample selection strategy.

via our trust-worthy sample selection strategy) across dif-
ferent sample-budgets. We observe that even on a specific
application (KD in this case), our flagging accuracy using
trust score is consistently better (or atleast similar) than the
performance on normalized DDB. Apart from this, even the
models trained via suboptimal sample selection strategies
(such as random and closest to DDB), we obtained better
performance. For instance, we notice an improvement in
flagging accuracy from 74.0% to 75.83% on random base-
line and 73.41% to 75.94% on closest to DDB (estimated
using PGD) with a budget of 100 samples per class. Similar
trend is followed across other sample budgets.

Samples Selection
(Per Class)

Sample Selection
Criteria

τ = 30.0
λ = 0.2

τ = 8.0
λ = 0.2

100
Random 27.06 25.42

Closest to DDB
(Conventional) 24.19 23.4

Ours
(Trust Score based) 41.63 36.65

120
Random 37.48 22.98

Closest to DDB
(Conventional) 24.34 20.90

Ours
(Trust Score based) 44.64 44.52

150
Random 46.10 41.59

Closest to DDB
(Conventional) 22.87 24.92

Ours
(Trust Score based) 50.38 50.73

Table 3. Performance of Student (MobileNet-V2) when different
budgets of samples (per-class) are selected, using different sample
selection strategies on CIFAR-10 dataset.

10. Conclusion
We presented the traditional factor for quantifying ad-

versarial vulnerability (i.e. distance to decision boundary)
and discussed its limitations (i.e. samples having similar
distance from decision boundary can have different vulnera-
bilities). To overcome this, we proposed a holistic view by
considering other factors such as model reliance on high fre-
quency features for its prediction. We combined the multiple
perspectives to propose a holistic metric that can be used
to quantify sample trust. Hence, we designed trustworthy
systems using the holistic metric that yields reliable pre-
dictions and provides alert signals to human domain-expert
whenever encountering non-trustable samples with better
precision than individual factors considered alone. We also
showed the utility of multiple factors that characterise adver-
sarial vulnerability in a knowledge distillation setup, where
the student network can be trained efficiently in a limited
data-setting using the samples selected based on the vulnera-
bility factors. In the future, we plan to extend this work by
exploring other aspects of adversarial vulnerability beyond
distance to decision boundary and high-frequency reliance,
and investigating their utility across different applications.
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