
Nerfels: Renderable Neural Codes for Improved Camera Pose Estimation

Gil Avraham1*, Julian Straub3, Tianwei Shen3, Tsun-Yi Yang3, Hugo Germain2,
Chris Sweeney3, Vasileios Balntas3, David Novotny4, Daniel DeTone3, Richard Newcombe3

Monash University1, École des Ponts2, Facebook Reality Labs3, Facebook AI Research4

gil.avraham@monash.edu, hugo.germain@enpc.fr
{jstraub, tianweishen, tsunyi, sweeneychris, vassileios, dnovotny, ddetone, newcombe @fb.com}

Abstract

This paper presents a framework that combines tradi-
tional keypoint-based camera pose optimization with an in-
vertible neural rendering mechanism. Our proposed 3D
scene representation, Nerfels, is locally dense yet globally
sparse. As opposed to existing invertible neural rendering
systems which overfit a model to the entire scene, we adopt
a feature-driven approach for representing scene-agnostic,
local 3D patches with renderable codes. By modelling a
scene only where local features are detected, our framework
effectively generalizes to unseen local regions in the scene
via an optimizable code conditioning mechanism in the neu-
ral renderer, all while maintaining the low memory foot-
print of a sparse 3D map representation. Our model can be
incorporated to existing state-of-the-art hand-crafted and
learned local feature pose estimators, yielding improved
performance when evaluating on ScanNet for wide camera
baseline scenarios.

1. Introduction
The choice of map representation used in Visual Si-

multaneous Localization and Mapping (Visual SLAM),
Structure-from-Motion (SfM) and Visual Localization sys-
tems is paramount as it effects the accuracy and power
consumption of the system [7]. Sparse feature-based ap-
proaches [3,31,34] detect feature points in images which are
matched and triangulated across multiple images to form
3D maps. These sparse representations are lightweight and
can be effectively used in low power systems like robotics
and augmented reality. At the heart of sparse representa-
tions is a geometric (also known as indirect) reprojection
error, used to optimise camera poses.

In contrast, direct methods work with the raw pixel in-
formation [33]. Dense-direct methods exploit all the in-
formation in the image, even from areas where gradients

*Performed while interning at Facebook Reality Labs

Nerfel code
Nerfel pose

Nerfel

Query Image
Reference Image

R,t ?

argmin
R, t

Figure 1. Camera Pose Estimation with Nerfels. (top) Nerfels
are detected and matched across two views. A local code and pose
is initialized for each Nerfel. (bottom) The unknown camera pose
is optimised with both a geometric and local photometric loss.

are small; thus, they can outperform feature-based methods
in scenes with poor texture, defocus, and motion blur [7].
These methods use a photometric alignment objective func-
tion similar that used in the well-known Lucas Kanade op-
tical flow algorithm [28]. Though dense-direct methods can
add robustness where sparse feature-based methods strug-
gle, they require good initial solution. This limits their per-
formance in wide-baseline localization where a good ini-
tialization is difficult to obtain. Additionally, representing
the scene densely results in a larger memory footprint of
the map, which can lead to higher power consumption for
embedded localization systems [32]. Thus deciding on the
density of the map representation for SLAM and SfM sys-
tems can result in trading off various characteristics of ac-

5061

curacy versus power consumption.
We focus our work at the intersection of sparse feature

based approaches and dense image alignment approaches
by representing the scene in a globally sparse but locally
dense manner. We aim to reap the benefits of a lightweight,
sparse model that doesn’t require good pose initialisation,
whilst using the power of generative models that leverage
image measurements to constrain the pose estimation. Our
approach is inspired by surface elements, also known as
Surfels [37], which are point primitives that model scene
attributes without explicit connectivity between elements.
Surfels are used to efficiently render complex geometric
shapes by modelling the scene locally as a small circular
plane, and have been used in SLAM systems such as Elas-
ticFusion [50]. In such works, the scene is modelled densely
by many Surfels: each individual Surfel models a very small
portion of the scene (i.e. one Surfel per pixel observed). An
interesting approach might be to use a sparse set of Surfels
with a larger extent, and integrate them into pose estimation.
However, as the baseline between cameras increases, the
local planarity assumption weakens for non-planar scenes,
and a simple planar representation does not accurately ex-
plain the 3D structure (demonstrated experimentally in 6.3).

Alternatively, neural rendering offers the promise of
novel view rendering for arbitrary 3D scenes. Methods
such as NeRF [30] can generate high quality, high resolu-
tion images for a limited scale of scenes given enough com-
pute and training views. Code conditioned neural rendering
presents an attractive way to train on different scenes and
learn generic representations that can work on related but
unseen 3D data. Related approaches demonstrate the use
of effective code-conditioning to learn re-usable priors of
the geometry and appearance [40, 43]. Follow up work has
shown that one can additionally invert such neural render-
ing approaches to optimise over the camera pose. How-
ever, rendering the scene densely for camera pose estima-
tion can be computationally expensive. One such approach,
iNeRF [26], shows that guiding the rendering to occur near
local features can significantly improve run-time. This begs
the question of whether it is necessary to keep a dense rep-
resentation of the scene for pose estimation with neural ren-
derers, or to use a more sparse representation with a lower
memory footprint.

To this end, we propose Nerfels, a hybrid sparse and
dense 3D representation designed for pose estimation that
is inspired by neural rendering approaches like NeRF, and
locally dense point primitives such as Surfels. Nerfels use
a code conditioned neural rendering network to represent
the local 3D sphere around a sparse 3D keypoint, resulting
in a locally dense yet globally sparse 3D scene represen-
tation. The use of code conditioning allows each Nerfel
to share memory and 3D priors though a single neural net-
work. Each Nerfel has a local pose in the global coordinate

frame, which can be explicitly optimized to result in the best
rendering across different views. Nerfels are capable of ren-
dering RGB patches around each 3D keypoint into arbitrary
views of the 3D scene, which can be used as an additional
constraint to a standard sparse 3D point cloud SLAM or
SfM pipeline. We believe that the Nerfels representation is
an effective compromise between sparse and dense repre-
sentations for embedded SLAM and SfM applications that
require high accuracy pose estimation with a small memory
footprint for their 3D representation.

Contributions. Our contributions are twofold: (1) We
present Nerfels, a novel representation of local shape and
appearance of 3D sparse maps that enhances keypoints to
be locally renderable; (2) An end-to-end camera pose esti-
mation system using Nerfels through joint optimisation of
reprojection error + photometric error, resulting in improve-
ment of wide baseline pose estimation for both hand-crafted
and learned local features.

2. Related Work
Sparse SLAM and SfM There is a large body of work

that tackle camera pose by simultaneously estimating a
sparse scene structure from keypoints detected in 2D im-
ages. Well-known SfM and SLAM works [1, 9, 22, 31] rely
on triangulated 3D interest points to build a sparse struc-
ture of the scene using handcrafted local features [16, 27].
Neural networks have been used to learn local features [10,
11, 41] that are more robust to challenging scene changes
such as lighting and viewpoint change. Our work is heav-
ily based on such pose estimation approaches. In challeng-
ing pose estimation scenarios however, the accuracy of such
approaches can degrade when few matches or inliers exist
between the map and the image to be localized. We argue
that by leveraging more local image information around the
matched keypoints, we can improve pose accuracy.

Semi-Dense and Dense SLAM Early image registra-
tion work [28] used image gradients to align multiple im-
ages. More recently, SLAM approaches use direct image
alignment [13, 14, 33] to jointly estimate a dense or semi-
dense scene representation in a real-time pose estimation
framework. Such approaches [19, 50] incrementally build
a map from multiple observations that is able to render
physically predictive representations of the scene. More
recently, dense neural pose estimation approaches learn a
lower dimensional code [6], basis function [46], or cost vol-
umes [52] for the depth of each keyframe and optimise the
depth jointly with the camera poses.

Neural Scene Representation Structure-less ap-
proaches [5, 21, 48] use a neural network to directly
estimate camera poses without modelling a map. The local-
ization of cameras is performed through a directly learned
mapping from images to poses. More recent works [4, 18]
similarly do not model 3D geometry but instead model a

5062

map through neural embeddings. Recent advances in im-
plicit representation learning have demonstrated the power
of coordinate-based multilayer perceptrons (MLPs) to map
known world coordinates to signed distance fields [20, 35],
occupancy grids [29] or RGB values [30,47]. Such systems
are capable of modelling physically predictive represen-
tations of 3D scenes. In one such work, NeRF, the pose
of each camera is computed offline using COLMAP [42].
Follow up works [25, 26, 49] relax this constraint by
optimising both the implicit function scene structure and
the camera pose. These works represent the full scene
with a single implicit function. The work of iMAP [44]
builds a real-time RGB-D slam system using an implicit
neural renderer. We extend this work by applying a similar
invertible NeRF framework to multiple smaller NeRF fields
simultaneously. Rather than train independent weights for
each NeRF field, we use a code conditioning mechanism
in an auto-decoder framework, similar to works such as
DeepSDF and others [35,40,43,44]. This helps to minimise
the memory cost of the neural scene representation.

3. Nerfels
We define a Nerfel as latent code c ∈ Rdc , to be a com-

pact representation of a continuous radiance field contained
in a 3D sphere with radius rs. In Figure 2, we show an
example of 4 Nerfels mind from a synthetic scene. Obtain-
ing a projection of an individual Nerfels’ radiance field to
an image canvas, Ī ∈ Rh×w×3, is obtained using a map-
ping function DNR which we call neural rendering decoder
and a given pose PN ∈ SE(3) that the sphere is viewed
from: Ī = DNR(PN , c). In addition, we define MR to
be the set of image coordinates where the integrated rays
over image Ī have an alpha α > 0. The orientation of a
Nerfel is defined by its own canonical coordinate system
and isn’t bound to any particular global coordinate frame.
This coordinate system is chosen so the Nerfels’ center of
mass is located at the origin, and the orientation is derived
by taking the Nerfels’ average normal vector and arbitrarily
choosing an up = [0, 1, 0]T vector. Given single 3D point
at the Nerfels’ origin, the Nerfels’ derived coordinate sys-
tem, the camera poses in which the Nerfel is observed and
the camera intrinsics, we can compute a set of canonical
poses for a single Nerfel. For illustration, the shelf look-
ing Nerfel (top left Nerfel) in Figure 2 was extracted from
a specific shelf of a synthetic frame after aligning the Ner-
fels’ pose to the shelf in the image. However, by changing
that Nerfels’ pose it can also align to any similar looking
shelf which share geometry and appearance. And thus, a
Nerfel can act as a reusable component for describing parts
of a scene; whilst one can think of a scene being sparsely
described by a collection of Nerfels with a specific pose per
Nerfel which aligns each one to that scene.

For the case of rendering a single Nerfel code, the de-

Figure 2. Examples of Learned Nerfels. 3D renderings of some
example Nerfels are depicted.

coder DNR follows the rendering procedure outlined in
[30]. In this procedure, a neural-network implicit function
parameterised by Θ maps the viewing pose PN together
with a 3D coordinate location (x, y, z) to an RGB value
r̂ ∈ R3 and density σ ∈ R+ and is followed by a differen-
tiable volumetric function that outputs the integrated RGB
value along the viewing ray from the image canvas. In ad-
dition to the viewing direction and 3D location, our decoder
also takes a code c which is concatenated to the location
positional encoding Lx, where the viewing positional en-
codings are defined by Lϕ [30, 45]. To ease notation we
describe the process of rendering a single Nerfel code in a
given pose by DNR(PN , c). We also define the operation
of rendering multiple Nerfels as: Ī = DNR(PN , c) where
each Nerfel ci ∈ c rendering provides an image coordinate
set MR,i; and the union of these sets is: MR =

⋃
MR,i. To

resolve overlapping Nerfels when obtaining the RGB value
in I , one can compute the average RGB value of overlap-
ping Nerfels, take a weighted average of Nerfels’ RGB and
alpha projections or as done in this work arbitrarily select
some Nerfels to proceed others (details in Section 6).

4. Mining Nerfels
We detail the process of mining Nerfel examples from a

collection of scenes and how these are used to train a neural
rendering decoder and a set of Nerfel codes. Specifically,
we denote a set Nc of Nerfel codes as C ∈ RNc×dc and the
decoder as DNR(PN , c). We note two important require-
ments on our set of codes and the coupled decoder. The
first, every code c should encode the associated 3D Nerfel
shape, meaning the decoder should be able to render a Ner-
fel for any given pose, or conversely recover the code (Sec-
tion 5.1) from any provided realisation of the code in an
image. The latter, the given set of codes C should encom-
pass a broad variety of general 3D shapes that are detected
with high probability by a given keypoint detector.

5063

Figure 3. Visualising Mined Nerfel Codes. A t-SNE plot of the
learned Nerfel codes is visualized with a ScanNet scene. Visually
similar parts of the scene learn similar codes.

Nerfel Examples For mining a set of Nerfel exam-
ples we assume to have access to a collection of differ-
ent scenes, where each scene has a set of RGB-D frames,
ID ∈ Rh×w×4, along with their ground-truth poses Pgt ∈
SE(3). In addition, we assume to have the intrinsic matrix
K ∈ R3×3 which is unique for every scene. The process of
collecting a set of Nerfel codes from a given scene is per-
formed by first extracting keypoints in every image within
the scene and running a process of retaining the keypoints
that can be matched and triangulated between the frames.
An example of a method that can extract such matches over
a set of frames is COLMAP [42]. These matches can also
be obtained by using the ground-truth poses and depth, as
done in this work. The result of this process is a set of
3D keypoints K ∈ RNkp×3 with an additional dictionary
of the indices of each keypoint’s frame. This representa-
tion allows us to sub-select a number of keypoints which
appear in more than tf frames and are viewed from a wide
variety of angles (selection of tf is discussed in Section 6).
By knowing the 3D location of the remaining keypoints,
we crop 2D regions around the keypoint within its observed
frames and obtain a collection of patches for each Nerfel in
a sequence. For each mined Nerfel, we store a set of image
crops Is ∈ Rhc×wc×3, where each crop has fixed dimen-
sions hc × wc. For each Nerfel with a set of image crops,
poses PN ∈ SE(3) are also extracted. Here, poses PN are
set to be in a canonical coordinate frame so that a Nerfel
becomes scene-agnostic.

Neural Rendering Decoder For constructing the neural
rendering decoder we make use of neural implicit functions
and a volumetric rendering technique discussed in Section
3. The implicit function is implemented by a MLP and is
parameterised by Θ while the Nerfel codes are initialised as
ci ∼ N (0, 1

dc
). The implicit function parameters and the

Nerfel codes are optimised as follows:

Θ̂, Ĉ = argmin
Θ,C

LD(Θ, C), C = {c ∈ Rdc

| ∥c∥22 = 1},

(1)
where LD is the NeRF [30] objective function modified
with a code-condition mechanism described in Section 3.
The RGB observations that are used in the optimisation pro-
cedure are the mined Nerfel crops Is together with the poses
PN . We note that in the optimisation of Equation 1 a coarse
to fine strategy is used; we refer the reader to [30] for further
details. While we follow the MLP architecture from [30],
the input to the implicit function is of dimension Lx + dc
where positional encodings and the Nerfel code are con-
catenated before being fed to the implicit function. We note
in Equation 1 the joint optimisation of the implicit function
parameters Θ and the set of codes C. By allowing the Ner-
fel codes to be optimised jointly, similar Nerfels collected
from the objects with similarities or partial spatial overlap
are pulled together (see Figure 3). In the procedure of min-
ing Nerfels, by adjusting the threshold tf , we can control
the minimal number of image patches per Nerfel.

5. Nerfels for Pose Estimation
The following sections detail how Nerfels are leveraged

for camera pose estimation. Figure 4 provides a high-level
diagram of our Nerfel-based camera estimation pipeline.

5.1. Optimising Nerfel Codes

For an incoming reference image with detected key-
points, Nerfel codes are also extracted and associated with
the extracted keypoints (In Figure 4 this is illustrated in 2).
In section 4 we constructed a set of codes C and a decoder
DNR in a process that is strongly coupled with the key-
points used to extract the Nerfels’ information for optimis-
ing the decoder. Following the work of [51] we perform
an inverted optimisation using the decoder DNR for recov-
ering the Nerfel code c and its canonical pose PN from an
RGB measurement of a matched keypoint k in the reference
image. This optimisation objective is formulated as:

P̂N , ĉ = argmin
PN ,c

Linv(PN , c),

Linv(PN , c) =
∑
i,j∈I

∥DNR(PN , c)[i, j]− Ik[i, j]∥2 ,
(2)

where Ik is an image patch taken around a keypoint k from
a reference frame. We note that the recovered code ĉ /∈ C
may not be a member of the set of training codes C.

For optimising Equation 2 we refer the reader to the
pose parameterisation discussed in [51] where the pose
PN = e[ϕ]θP0 is parameterised in exponential coordinates:
to ensure the pose is a valid SE(3) member. In practice,
to improve convergence, we optimise Equation 2 a fixed

5064

Reference

Query

Extract & Match
Keypoints

Optimise NeRFel
Codes

Nerfels with poses -

+

+

+

Reprojection
Error

Photometric
Error

Joint
Optimisation

Reference

Query

(

(

Query image Nerfels rendered at
current pose estimation

-
2

+

+

+

Decoder

+

*Current relative
pose1

2

3

MLP

Figure 4. System Overview of Camera Pose Optimisation with Nerfels. (1) Keypoints are extracted and matched across two views. (2)
the Nerfel codes and poses are initialised. (3) A joint pnp + photometric optimization is performed to get the resulting relative camera pose.

number of times by sampling different initial poses P0 on
a sphere. The pose parameters are initialized by drawing
ϕ ∼ N (0, 10e−6), and the Nerfel code c ∼ N (0, 1

dc
).

5.2. Joint PnP and Photometric Pose Optimisation

Given reference and query frames IR and IQ respec-
tively, we extract and match Nm keypoints kR and kQ.
When formulating the PnP problem [24], we assume a
model-based approach where the keypoints in the reference
frame represent a map with sparse 3D reconstruction; this
provides us with depth values zR associated with keypoints
kR. Given the matched keypoints kR,kQ, and kR’s Nerfel
codes c, we formulate the following optimization objective:

P̂ = argmin
P

LPnP+Photo(P,kR,kQ, (PN , c)), (3)

where LPnP+Photo is:

LPnP+Photo =

Nm∑
i=1

∥∥π(Pπ−1(kR,i, zR,i))− kQ,i

∥∥2 +
λPhoto

1

|MR|
∑

i,j∈MR

∥DNR(PPN , c)[i, j]− IQ[i, j]∥2 .

(4)

The operators π(·) and π−1(·) denote the perspective pro-
jection and unprojection operators respectively. The objec-
tive of Equation 4 is to recover the pose P ∈ SE(3) between
a reference and a query frame (In Figure 4 this is illustrated
in 3). The first component in this objective is the familiar
re-projection error used in PnP, where the reference frame
keypoints are projected to the query frame and the error is
computed between the keypoints in image coordinates. The
second component is a photometric error balanced with a

regularisation term λPhoto. The Nerfel codes c and their
canonical pose PN in the reference frame are jointly ren-
dered onto the query frame using the current pose estimate
P . The decoder DNR is a neural network with a differen-
tiable volumetric rendering, and hence recovering the pose
P from Equation 4 can be performed using gradient-descent
with modern Autograd libraries [36].

6. Experiments
We evaluate our proposed method on a synthetic dataset

using a simplified version of the method. This is followed
by a real world dataset Scannet [8] evaluation with the full
version of the method. When optimising the decoder, the
available training data is RGB-D with ground truth poses.
When evaluating, we use only RGB data with sparse depth
for the reference image keypoints. For details regarding the
network architecture used for the neural renderer decoder,
training and evaluation settings refer to the supplementary
material.

Hyperparameters For recovering the Nerfel codes
when computing Equation 2 per Nerfel code, we sample
16 pose initialisations on a sphere to maximise the prob-
ability of detecting the correct Nerfel pose PN . For each
reference image, we limit the number of Nerfel codes to
6 ≪ Nm, due to the expensive nature of storing the decoder
gradients for each Nerfel during the joint optimisation per-
formed in Equation 4. For sub-selecting Nerfel codes, we
use a similar strategy as done in [31] where we take a grid
of 8 × 6, select the highest scoring keypoint in a grid cell
and finally take the top scoring keypoints according to the
amount of Nerfel limit. This procedure ensures Nerfels are
well spaced out and land on a surface with a high chance of
good fidelity when rendering, while avoiding the case where
a Nerfel might occlude another Nerfel. For the real-world

5065

dataset, we set λPhoto = 1000 and λPhoto = 10000 for the
synthetic one.

Runtime We consider our method to be model-based ap-
proach meaning we assume the Nerfel pose recovery dis-
cussed in Section 5.1 can be performed offline and we re-
port the run-time of performing the joint optimisation (Sec-
tion 5.2) to be 0.137 iters

sec (which is directly affected by the
number of Nerfels used during the optimisation procedure).
Note that due to the least square objective function, run-
time can be further optimized using a second order solver
such as Levenberg-Marquardt using packages such as Ceres
Solver [2]. Additionally, because rendering occupies the
majority of the compute time for our method, additional
NeRF speed-up approaches such as [15, 17, 39] should sig-
nificantly reduce run-time. We leave additional run-time
optimisation for future work.

Error Metrics The errors we inspect are the translation
error in metric scale and rotation error in degrees. For both
of these error metrics, we examine the error in different cut-
off thresholds, specifically: 0.25m, 0.5m and 1m of transla-
tion error.

6.1. Synthetic Results

We use a synthetic dataset to motivate the joint optimi-
sation procedure discussed in Section 5.2. To do so, we
simplify the objective by replacing the neural rendering de-
coder DNR in Equation 4 with a differentiable renderer that
requires ground-truth depth for rendering a simulated Ner-
fel. This will bypass the neural rendering component which
is required for recovering the Nerfel codes and re-rendering
the Nerfel codes at different poses throughout the joint opti-
misation. By using the ground-truth depth we extract a sim-
ulated Nerfel, realised by a coloured point cloud, around
each key-point from the reference frame. This means the
Nerfels are extracted “on the fly” and there is no need to
pre-train a decoder.

The Nerfels are rendered at each iteration using the Py-
Torch3D Pulsar renderer [23, 38] with the current pose es-
timation. For optimising Equation 4, we use Adam with a
learning rate of 1e−2, exponential decay of 0.8 and the num-
ber of optimisation iterations performed was iters = 1000.
The plots in Figure 5 show the results for this experiment.
For this experiment we use SIFT [27] and a ground-truth
matcher that uses the available ground-truth depth to pro-
vide the matches. The purpose of this experiment is to ex-
emplify better robust behaviour of using the extracted Ner-
fels when the keypoints are not well localised. To do so
noise is added to the ground-truth matches’ keypoints loca-
tions to simulate localization error from real-world matches.
Figure 5 shows that when noise is added to the keypoints
location, adding the photometric term to the optimisation
(Equation 4) helps recover a more robust solution in case of
inaccurate keypoint detection. This simulated experiment

Figure 5. Joint Geometric and Photometric Ground Truth
Analysis. To simulate the effect of Nerfels on pose estimation,
the ground truth depth is used to extract a coloured point-cloud to
simulate Nerfel rendering. Translation (left) and rotation (right)
errors are plotted as function of additive keypoint noise, simulat-
ing poorly localized keypoints.

helps motivate how Nerfels are useful: Nerfels provide a
boost to pose estimation accuracy that increases with more
keypoint detector localization error.

6.2. Real-World Results

We evaluate our method on ScanNet [8] by selecting 8
scenes and from those 500 image pairs.

Comparison to Sparse Methods We select three off-
the-shelf feature detectors for these experiments: SIFT [27],
D2Net [11] and SuperPoint [10] (SP) as a baseline for
adding the Nerfel component in the joint optimisation. A
separate Nerfels network is trained for each scene as de-
scribed in Section 4, resulting in 8 Nerfel models for each
feature detector method, and 24 Nerfel models in total.
These feature detectors provide a diverse assessment of
classical and learned feature detectors. SIFT detects pixel
accurate keypoints though provides few matches whilst
learned methods, SuperPoint and D2Net, detect increased
amount of keypoints though offer less pixel accurate key-
point with far more matches [12]. For feature matching of
SIFT and D2Net we use nearest neighbor (NN) + ratio test
as described in [27] with the ratio test values taken to be 0.7
and 0.9 respectively. For SuperPoint we use a recent state-
of-the-art matcher Superglue [41] which was developed and
evaluated to handle similar camera baseline cases with the
same overlap ratio. For evaluating our Nerfel over each of
the baselines we use Adam as the optimiser, a learning rate
of 1e−2, exponential decay of 0.8 and the number of opti-
misation iterations were iters = 200.
For each sparse matching method, we run two pose es-
timation experiments: one with and one without Nerfels.
Inspecting Table 1, we note that adding the Nerfels via
the joint optimisation improves results across all baselines.
While D2Net baseline provides generally better results over
the SIFT baseline, it is considered a less pixel accurate de-
tector. Adding the Nerfels to D2Net provides a better rel-

5066

Features Matcher Translation
error (m)

Angle
error (◦)

Translation
error (m)

Angle
error (◦)

Translation
error (m)

Angle
error (◦)

@0.25m @0.25m @0.5m @0.5m @1m @1m
SIFT NN + Ratio test 0.0582 2.6863 0.0687 3.2767 0.0826 5.6018

SIFT + Nerfels (Ours) NN + Ratio test 0.0568 2.1422 0.0628 2.2202 0.0717 2.8391
D2Net NN + Ratio test 0.0565 1.5363 0.0626 1.7036 0.0786 2.4709

D2Net + Nerfels (Ours) NN + Ratio test 0.0506 1.3034 0.0532 1.3737 0.0608 1.4878
SP Superglue 0.0489 1.4317 0.0502 1.4669 0.0502 1.4669

SP + Nerfels (Ours) Superglue 0.0389 1.0655 0.0389 1.0655 0.0389 1.0655
Dense pixels iNeRF 0.1487 53.9162 0.2689 75.1078 0.4262 73.0027
SP + Colour Superglue 0.0463 1.423 0.0535 1.6259 0.0547 1.6489

Table 1. Pose Estimation Results on ScanNet. Nerfels is combined with various classical and learned detectors + descriptors, and pose
estimation results are compared. Te cumulative translation and angle errors are reported at different translation error cut-off points. Nerfels
improves pose estimation accuracy.

Query
 image

Planar patches
overlayed

Reference
 image

Nerfels
overlayed

Figure 6. Qualitative Results of Nerfel Renderings. Each row shows a different camera pose estimation example. (left) Query image
with keypoints. (left-middle) Original reference image with keypoints. (right-middle) Nerfel codes on the reference image using query
image codes. (right) Planar patches on the reference image using query patches. In the top row we point to the distorted planar patch at
the edge of the table. In the bottom row, the chair’s arm rest can’t be correctly aligned using only a planar reprojection while the Nerfels
capture the correct 2D projected shape and texture in the keypoints’ transformed neighbourhood.

ative performance vs. adding Nerfels to SIFT which in the
0.25m regime provides a modest improvement. Across all
results the largest gains are seen when taking the error at
a larger cut-off point (largest @1m). This improvement
aligns well with the empirical results seen in the synthetic
data and stems from the Nerfels ability to assist in cases
where the error is large.

Comparison to iNerf A vanilla iNeRF [51] network was
trained to capture an entire scene using the same network
architecture and capacity that is used in our rendering de-
coder. iNerf as originally presented does not use depth in-
formation, but our method does. To make the comparison
more fair, we we modify the iNeRF loss by adding a depth
loss, similar to [44]. Accounting for our code condition-

ing mechanism, for a representative number of roughly 500
codes at training time, and a 64 dimensional code, our Ner-
fel model capacity is 3% higher than a Vanilla NeRF. By
using a NeRF network to represent an entire scene we can
then use iNeRF [51] for pose estimation. In comparison to
our runtime, iNeRF runs at a 0.207 iters

sec .

For iNeRF, we generally saw that when less observations
are provided in certain regions of a scene, pose estimation
fails. This aligns well with how NeRF relies on dense
sampling of radiance fields. On the contrary, our Nerfels
by construction do not suffer from this issue, as the mining
procedure enforces a dense radiance field when selecting
keypoints for constructing Nerfel codes. Please refer to the
supplementary material for qualitative results of our mined

5067

Nerfels and dense scene representation using a vanilla
NeRF.

6.3. Ablation studies

Studying the joint optimisation We ran a study where
the optimisation was initialised with the PnP result of Su-
perPoint+Superglue. The reprojection was turned off and
only the Photometric component was used. When the initial
pose was above 0.5m the optimisation failed in the majority
of the cases. In the cases of below 0.25m partial success
was noted with results of Translation error = 0.069m
and Angle error = 3.3231◦. We conclude that the repro-
jection error is required to sufficiently provide a geometric
constraint on Photometric term in all cases.

Naı̈ve colour baseline To study the effect of importance
in rendering fidelity we propose a naı̈ve approach which
samples the keypoint colour for the matching keypoints and
performs the joint optimisation while using the colour value
in the Photometric component instead of the Nerfels. The
results are shown in Table 1 as “SP + Colour”. The empiri-
cal results indicate that when the pose initialisation is below
the 0.25m this approach can improvement the vanilla PnP
approach. However for pose initialisations above 0.5m per-
formance degrades as the reference and query images might
exhibit significant colour changes.

Nerfels vs. Planar patches The main strength of the
Nerfel code is its ability to capture the 3D neighbourhood
around a keypoint. We compare how the Nerfel code eval-
uates against planar patches sampled around a keypoint
and re-rendered at the optimsation phase by assuming the
patch’s normal is orthogonal to the camera. For incorporat-
ing the planar patches into the photometric term in Equa-
tion 4 we interpolate the pixel values given the projected
patch. To highlight the benefits of the Nerfel code over pla-
nar patches, we re-select 100 test cases now with an over-
lap of [0.4, 0.6]. In addition, to faithfully compare planar
patches vs. the 3D Nerfel spheres we by-pass optimising
the code and codes’ pose and assume these were recovered.
In Figure 7 we see a cumulative error plot where as the cut-
off error increases the gap between using Nerfels vs. planar
patches widens. This is due to Nerfels’ ability to render
the rigid behaviour of the keypoints’ neighborhood in wider
baseline cases as opposed to the planar patches (Qualitative
examples shown in Figure 6).

7. Limitations

Our optimisation procedure on average runs at:
0.137 iters

sec . While providing an improvement over iNeRF,
our method does not run in real-time when using a stan-
dard SGD optimiser (further discussed in Section 6). When
optimising Equation 4 we use a photometric loss which is

Figure 7. Evaluating Nerfels vs. planar patches. In low error
regions both perform similarly. As the error grows Nerfel out-
performs the planar patches method as it’s able to render the rigid
changes in viewpoints.

sensitive to illumination changes. We leave improvements
on this matter to future work.

8. Conclusion
In this paper, we presented a framework for combining

traditional geometric feature matching for pose estimation
with local photometric alignment. The photometric align-
ment is performed using Nerfels, which use an underlying
code-conditioned neural rendering mechanism. We veri-
fied experimentally that the additional constraints from the
local photometric alignment improve pose estimation, es-
pecially in wide baseline scenarios. One key characteris-
tic of this formulation is that by using a code-conditioned
NeRF, we maintain the advantage of low-memory foot-
print maps, which is critical for applications like AR and
Robotics, while gaining the advantages of a partially gen-
erative model. Additionally, relative to full scene neural
rendering approaches, we reduce the required expressively
of the neural renderer to local parts of the scene, enabling
improved generalisation of the approach to unseen parts of
the scene.

5068

References
[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian

Simon, Brian Curless, Steven M. Seitz, and Rick Szeliski.
Building rome in a day. Communications of the ACM,
54:105–112, 2011. 2

[2] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.
http://ceres-solver.org. 6

[3] Sameer Agarwal, Noah Snavely, Steven M. Seitz, and Rick
Szeliski. Bundle adjustment in the large. In ECCV, 2010. 1

[4] Gil Avraham, Yan Zuo, Thanuja Dharmasiri, and Tom Drum-
mond. Empnet: Neural localisation and mapping using em-
bedded memory points. In IEEE International Conference
on Computer Vision (ICCV), 2018. 2

[5] Vassileios Balntas, Shuda Li, and V. Prisacariu. Relocnet:
Continuous metric learning relocalisation using neural nets.
In ECCV, 2018. 2

[6] M Bloesch, J Czarnowski, R Clark, S Leutenegger, and AJ
Davison. Codeslam—learning a compact, optimisable rep-
resentation for dense visual slam. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2560–2568, 2018. 2

[7] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309–1332, 2016. 1

[8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 5, 6

[9] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and
Olivier Stasse. Monoslam: Real-time single camera slam.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(6):1052–1067, 2007. 2

[10] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
224–236, 2018. 2, 6

[11] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-Net:
A Trainable CNN for Joint Detection and Description of Lo-
cal Features. In Proceedings of the 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019. 2,
6

[12] Mihai Dusmanu, Johannes L Schönberger, and Marc Polle-
feys. Multi-view optimization of local feature geometry. In
European Conference on Computer Vision, pages 670–686.
Springer, 2020. 6

[13] Jakob Engel, V. Koltun, and D. Cremers. Direct sparse
odometry. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 40:611–625, 2018. 2

[14] Jakob Engel, Thomas Schöps, and D. Cremers. Lsd-slam:
Large-scale direct monocular slam. In ECCV, 2014. 2

[15] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien P. C. Valentin. Fastnerf: High-

fidelity neural rendering at 200fps. arXiv:2103.10380, 2021.
6

[16] Chris Harris and Mike Stephens. A combined corner and
edge detector. In Alvey vision conference, volume 15, pages
10–5244. Manchester, UK, 1988. 2

[17] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. ICCV, 2021. 6

[18] João F. Henriques and Andrea Vedaldi. Mapnet: An allocen-
tric spatial memory for mapping environments. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. 2

[19] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren,
and Dieter Fox. Rgb-d mapping: Using kinect-style depth
cameras for dense 3d modeling of indoor environments. The
International Journal of Robotics Research, 2012. 2

[20] Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Nießner, and Thomas Funkhouser. Local
implicit grid representations for 3d scenes. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020. 3

[21] Alex Kendall, M. Grimes, and R. Cipolla. Posenet: A con-
volutional network for real-time 6-dof camera relocalization.
2015 IEEE International Conference on Computer Vision
(ICCV), pages 2938–2946, 2015. 2

[22] Georg Klein and David Murray. Parallel tracking and map-
ping for small ar workspaces. In 2007 6th IEEE and ACM
international symposium on mixed and augmented reality,
pages 225–234. IEEE, 2007. 2

[23] Christoph Lassner and Michael Zollhöfer. Pulsar: Efficient
sphere-based neural rendering. arXiv:2004.07484, 2020. 6

[24] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o (n) solution to the pnp problem. Inter-
national journal of computer vision, 81(2):155, 2009. 5

[25] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields. In
IEEE International Conference on Computer Vision (ICCV),
2021. 3

[26] Yen-Chen Lin, Peter R. Florence, J. T. Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: In-
verting neural radiance fields for pose estimation. ArXiv,
abs/2012.05877, 2020. 2, 3

[27] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 2, 6

[28] Bruce D. Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In In
IJCAI81, pages 674–679, 1981. 1, 2

[29] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, S.
Nowozin, and Andreas Geiger. Occupancy networks: Learn-
ing 3d reconstruction in function space. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4455–4465, 2019. 3

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 2, 3, 4

5069

http://ceres-solver.org

[31] Raul Mur-Artal, Jose Montiel, and Juan D Tardos. ORB-
SLAM: a versatile and accurate monocular SLAM system.
IEEE Transactions on Robotics, 2015. 1, 2, 5

[32] Luigi Nardi, Bruno Bodin, M Zeeshan Zia, John Mawer,
Andy Nisbet, Paul HJ Kelly, Andrew J Davison, Mikel
Luján, Michael FP O’Boyle, Graham Riley, et al. Introduc-
ing slambench, a performance and accuracy benchmarking
methodology for slam. In 2015 IEEE international confer-
ence on robotics and automation (ICRA), pages 5783–5790.
IEEE, 2015. 1

[33] Richard A. Newcombe, Steven Lovegrove, and Andrew J.
Davison. Dtam: Dense tracking and mapping in real-time. In
IEEE International Conference on Computer Vision (ICCV),
2011. 1, 2

[34] David Nistér, Oleg Naroditsky, and James Bergen. Visual
odometry. pages 652–659, 2004. 1

[35] Jeong Joon Park, Peter R. Florence, J. Straub, Richard A.
Newcombe, and S. Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 165–174, 2019. 3

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32:8026–
8037, 2019. 5

[37] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels-
surface elements as rendering primitives. In ACM Transac-
tions on Graphics (Proc. ACM SIGGRAPH), pages 335–342,
7/2000 2000. 2

[38] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 6

[39] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In International Conference on Com-
puter Vision (ICCV), 2021. 6

[40] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio
Ferrari. Sharf: Shape-conditioned radiance fields from a sin-
gle view. volume abs/2102.08860, 2021. 2, 3

[41] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020. 2, 6

[42] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3, 4

[43] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2020. 2, 3

[44] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davi-
son. iMAP: Implicit mapping and positioning in real-time.
In arXiv preprint arXiv:2103.12352, 2021. 3, 7

[45] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. arXiv preprint arXiv:2006.10739, 2020. 3

[46] Chengzhou Tang and Ping Tan. BA-Net: Dense Bundle Ad-
justment Network. In ICLR, 2019. 2

[47] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In CVPR, 2021.
3

[48] Sen Wang, Ronald Clark, Hongkai Wen, and Niki
Trigoni. End-to-end, sequence-to-sequence probabilistic vi-
sual odometry through deep neural networks. In Journal of
Robotics Research (IJRR), 2018. 2

[49] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and
Victor Adrian Prisacariu. NeRF−−: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 3

[50] Thomas Whelan, Stefan Leutenegger, Renato Salas Moreno,
Ben Glocker, and Andrew Davison. Elasticfusion: Dense
slam without a pose graph. In Proceedings of Robotics: Sci-
ence and Systems, Rome, Italy, July 2015. 2

[51] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: Inverting
neural radiance fields for pose estimation. arXiv preprint
arXiv:2012.05877, 2020. 4, 7

[52] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In ECCV, 2018. 2

5070

	. Introduction
	. Related Work
	. Nerfels
	. Mining Nerfels
	. Nerfels for Pose Estimation
	. Optimising Nerfel Codes
	. Joint PnP and Photometric Pose Optimisation

	. Experiments
	. Synthetic Results
	. Real-World Results
	. Ablation studies

	. Limitations
	. Conclusion

