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Abstract

Accurate 6-DoF camera pose estimation in known envi-
ronments can be a very challenging task, especially when
the query image was captured at viewpoints strongly differ-
ing from the set of reference camera poses. While structure-
based methods have proved to deliver accurate camera pose
estimates, they rely on pre-computed 3D descriptors coming
from reference images often misaligned with query images.
This discrepancy can subsequently harm downstream cam-
era pose estimation tasks. In this paper we introduce the
Feature Query Network (FQN), a ray-based descriptor re-
gressor that can be used to query descriptors at known 3D
locations under novel viewpoints. We show that the FQN
is able to model viewpoint-dependency of high-dimensional
keypoint descriptors and bring significant relative improve-
ments to structure-based visual localization baselines.

1. Introduction

Learning robust and invariant keypoint descriptors is an
underpinning component to many computer vision applica-
tions, such as Structure-from-Motion (SfM) [26, 60, 62, 71]
and visual localization [57, 69, 70]. These applications are
in turn crucial backbones to Augmented and Virtual Reality
or autonomous driving scenarios.

In the case of visual localization where a 3D model of
the scene is available, keypoint descriptors can be used
to perform camera pose estimation through direct 2D-
to-3D matching followed by a Perspective-n-Pose (PnP)
solver [10, 25, 31, 34] inside a RANdom SAmple Consen-
sus approach (RANSAC) [20, 56] loop. When dense query
feature maps are available, one can also either solve or re-
fine the camera pose estimate using direct alignment meth-
ods [54, 68, 77]. Both approaches belong to structure-based
localization methods which fully exploit the available 3D
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Figure 1. Bridging viewpoint discrepancies using FQNs: When
performing structure-based localization, viewpoint discrepancies
often occur between the reference image Ir and the query image
Iq , inducing increased descriptor distances for the same 3D point.
In this paper, we introduce the Feature Query Network (FQN) Fg ,
a ray-based MLP trained to model the variance of an arbitrary fea-
ture descriptor g at known 3D locations with respect to the cam-
era pose. We demonstrate how this simple model can be used to
improve structure-based localization by leveraging an image-free,
continuous geometric modeling of descriptor space.

geometry, resulting in both lightweight and accurate relo-
calization pipelines [52, 55].

In structure-based localization however, the 3D descrip-
tors come from reference images that are often geometri-
cally misaligned with respect to the query image. When
performing 2D-to-3D keypoint matching or feature-metric
error minimization on query images captured under unseen
viewpoints, a discrepancy naturally emerges between the
pre-computed 3D descriptors and the 2D query features.

Alternative approaches to visual localization propose to
perform end-to-end training of convolutional models to di-
rectly regress camera poses (in an absolute [28, 29, 78]
or relative [1, 16, 33, 82] way) or scene coordinates [5–
7, 9, 11, 12, 36, 79]. Such methods however fail to match
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Figure 2. Feature Query Networks for Neural Surface Description: We report qualitative examples on scenes from [29, 63], obtained
using FQN-regressed descriptors at unseen camera poses. We show in red the ground-truth reprojection of a given 3D keypoint in the
scene and (from left to right) a pair of reference and query images, as well as dense correspondence maps obtained using image-based and
FQN-regressed D2Net [17] descriptors (computed at the ground truth query camera pose). We find that our approach is able to produce
much more accurate correspondence maps, and to bridge the viewpoint discrepancy between the reference and query image. This includes
dealing with occlusions (upper row) and strong out-of-plane rotations (lower row).

the accuracy of structure-based localization [54], have little
generalization abilities [58], and share the burden of requir-
ing to retrain fairly heavy models on every scene, which can
additionally be sometimes unstable [55, 61]. In comparison,
our proposed approach is scene-specific but only requires a
very lightweight model (about 10 to 50 times fewer param-
eters) with a very straightforward training procedure, and is
compatible with structure-based approaches.

While recent advances in learning-based feature descrip-
tors [2, 15, 17, 46, 49, 64, 65, 80], have strongly improved
their robustness to illumination and viewpoint changes, re-
gressing perfectly viewpoint-invariant keypoint descriptors
remains an open problem. Instead of aiming to reach view-
point invariance, we propose to instead learn to explicitly
model the variance of existing keypoint descriptors w.r.t.
geometry on specific scenes.

In this paper we introduce the Feature Query Network
(FQN), a simple ray-based multilayer perceptron (MLP)
designed to capture arbitrary descriptor variance with re-
spect to the camera viewpoint on known geometry. Previ-
ous works on implicit neural representations [21, 27, 41, 47]
have shown the outstanding ability of MLPs to represent
various scene attributes from few posed RGB images, some
leveraging the available 3D geometry. iNeRF [38] proposed
to invert the NeRF [42] model to perform camera pose esti-
mation from query images through photometric error min-
imization. In comparison, the FQN operates at a surface-
level of a known 3D reconstruction and trades the need to
estimate the scene geometry with the complexity of model-
ing high-dimensional scene descriptors.

As shown in Fig.1, the FQN can be used to dynami-
cally update 3D descriptors at given camera pose estimates
in structure-based visual localization methods. We ex-
perimentally demonstrate that this view-dependent regres-
sion ability can bring a significant relative improvement in
camera pose estimation accuracy. While our approach is
scene-specific by design, it is significantly more lightweight
and straightforward to train than the aforementioned scene-
specific visual localization methods. Our contributions are
as follows:

• We introduce Feature Query Networks (FQNs), pow-
erful neural networks trained to model the variance of a
given descriptor w.r.t. the camera viewpoint on a given
scene.

• We show how they can be parametrized to per-
form view-dependent descriptor regression in a known
environment. We study the ability of FQNs to
model learning-based descriptors, including a 512-
dimensional one from [17].

• We demonstrate how the FQNs can be applied to
structure-based camera pose estimation methods, and
easily yield incremental improvements in accuracy.

2. Related Work
In this section we review existing approaches related to

visual localization, as well as recent advances in implicit
representation learning.
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Structure-based visual localization. Assuming a known
ground truth 3D model of the world and a set of posed
reference images, structure-based localization leverages
the available geometry to obtain accurate camera pose
estimates on unseen query images. Direct 2D-to-3D
matching methods try to identify explicit correspon-
dences between the query image and the 3D model.
These putative 2D-to-3D correspondences can subse-
quently be fed to a PnP solver [10, 25, 31, 34] inside
a RANSAC loop [20, 56]. The recent progress in
learning-based keypoint detection [32, 49, 59, 75, 76], de-
scription [2, 15, 17, 22, 23, 43, 46, 49, 64, 65, 73, 75, 80],
matching [44, 50, 53, 81] and outlier rejection meth-
ods [3, 4, 8, 13] has improved structure-based localization
performance significantly. Coupled with a hierarchical
retrieval-based framework [52, 53], this approach has
become competitive for large-scale image-based relocal-
ization [52, 53, 55]. One can avoid the problem of explicit
2D-to-3D keypoint matching using Direct Alignment
methods instead [14, 18, 19, 24, 54, 68, 77], which directly
optimize for the camera pose through minimization of a
photometric or learning-based cost function. The burden
of structure-based localization however lies in the dis-
crepancy between the 3D keypoint descriptors (assigned
using reference images), and the 2D descriptors coming
from the query image. Due to the frequent geometric and
appearance domain gap between the reference and test
set, the lack of viewpoint and illumination invariance of
state-of-the-art feature descriptors introduces errors in both
explicit 2D-to-3D matching and feature-metric camera
pose optimization. The work of [74] proposes to pre-rectify
images using piece-wise homographies adaptation, by
assuming scene-planarity. We argue that this approach
is limited in its warping fidelity and projects images to
a canonical space which does not ensure alignment of
descriptors. The purpose of this paper is instead to bridge
the geometric domain gap by explicitly modeling the
viewpoint-conditioned surface-level descriptor representa-
tion of the world.

Structure-free visual localization. A parallel line of
work to perform visual localization ignores the underlying
3D geometry to rather focus on performing end-to-end
learning-based camera pose estimation. This can be done
using absolute [28, 29, 78] or relative [1, 16, 33, 82] camera
pose regression, or by regressing scene coordinates [5–
7, 9, 11, 12, 36, 79]. These methods however come with
their set of drawbacks, namely the lack of generalization
to novel viewpoints [58], training instabilities [55, 61],
cumbersome per-scene retraining and set of weights, and
overall reduced accuracy [54].

Implicit neural representations. Recent advances in im-

plicit representation learning has demonstrated the power
of coordinate-based multilayer perceptrons (MLPs) to map
known world coordinates to signed distance fields [27, 47],
occupancy grids [21, 41] or RGB values [72]. Other
approaches relax the need for ground truth 3D geometry
and apply differentiable rendering to perform novel-view
synthesis from a set of posed images [42, 45, 67]. Closer to
our work is iNeRF [38], which geometrically minimizes the
photometric error using NeRF [42]-generated 3D recon-
structions. In this paper however, we focus on leveraging
available 3D geometry which yields considerably faster
regression times, and directly operate in higher dimensional
descriptor-space as opposed to RGB-space, which is a lot
more robust to illumination changes.

3. Feature Query Networks

In this section, we introduce Feature Query Networks,
simple ray-based MLPs that can be used to regress descrip-
tors at known 3D locations for a given viewpoint. We pro-
pose a simple parametrization and show how they can be
trained to learn to model descriptors at a surface-level.

3.1. Formalism

Given a set of M reference images {Ij}Mj=1 with cam-

era poses {Tj}Mj=1, we consider a sparse 3D model of the

worldM = {ui}Ni=1 (e.g. built using SfM) where ui ∈ R3,
Ii ∈ [0, 1]3×H×W and T ∈ SE(3). Following [42], given a
keypoint ui and a camera pose Tj we define (θ, ϕ)i as the
2-dimensional viewing direction between ui and the cam-
era center of Tj . In addition, let li,j be the correspond-
ing ray length, fj the focal length of the camera and rj
the camera roll angle. For an arbitrary keypoint descriptor
g : R3×H×W × R2 → RD, we model the descriptor-based
representation of the world using the 8-dimensional vector-
valued function:

Fg(u, θ, ϕ, r, f, l) = d̂ ∈ RD. (1)

We refer to the Θ-parametrized MLP approximating Fg

as the Feature Query Network, or FQN for short. An
overview of the FQN parametrization can be found in Fig. 3.

3.2. Optimizing a Neural Descriptor Surface

Let pj
i ∈ R2 be the projection of ui in the image plane

of Ij defined by pj
i = ω(ui, Tj , Kj).1 Writing the 3D de-

scriptor dj
i of ui seen in Ij as dj

i = g(Ij ,p
j
i ), we can train

a Feature Query Network by minimizing the following loss
function w.r.t. Θ:

1With a slight abuse of notation, we write pj ∈ RN×2 the stacked
reprojected keypoints {pj

i}
N
i=1.

5073



Lg =

M∑
j=1

N∑
i=1

∥∥∥Fg,Θ(ui, θi,j , ϕi,j , rj , fj , li,j)− dj
i

∥∥∥2
2
.

(2)
Compared to [38, 42], our FQN leverages the avail-

able 3D geometry to only regress descriptors at a sur-
face level. Thus, it avoids the density estimation prob-
lem, which comes with its intricacies and a heavy compu-
tational cost. However, the FQN needs to properly model
a descriptor-based representation of the world in a space
of much higher dimension than the typical RGB space (in
the case of NeRF [42]). As shown in our experiments (see
Sec. 5.2), we find that our 8-dimensional parametrization
of the FQN inputs is sufficient to encode the variance of
various descriptors w.r.t. to scale, rotation, and translation.
Notably we find the additional inputs l, f and r to be crit-
ical to properly encode the descriptor variance w.r.t. depth,
2D-scale and in-plane rotations respectively.

We report in Fig. 2 qualitative results obtained with
FQNs trained on D2Net [17] descriptors. In particular, we
report dense correspondence maps computed as per [23],
and find that when provided with ground truth camera poses
FQN effectively bridges the viewpoint gap between the ref-
erence and query image set. More details are provided in
Sec. 5.

3.3. Implementation Details

Our implementation of the FQN architecture closely fol-
lows [42]. We use an MLP architecture consisting of 8
fully-connected layers (with ReLU activations, 256 chan-
nels per layer). The final layer of the model outputs D
channels, depending on the choice of g. We employ a
3-dimensional unit-norm viewing direction to encode the
viewing direction, and apply Fourier Basis functions [42,
72] for positional encoding on every input to the FQN inde-
pendently. For stability the ray length l is first transformed
using l′ = 1/l2, and we apply L2-normalization on both
d and Fg,Θ in Eq. 2. Please refer to Sec. 5 for additional
details regarding our training procedure.

4. FQNs for Visual Localization
In this section, we will show how the Feature Query Net-

works can be leveraged to improve upon existing structure-
based visual localization methods.

4.1. Application to 2D-to-3D Matching

We first present how the FQNs can be used in direct
2D-to-3D matching methods for visual localization.

Reprojection Error Minimization. A popular approach
to structure-based localization consists in establishing pu-
tative 2D-to-3D correspondences between the query image

g

r
u

d

l

(, ϕ)

f I

M
(u,,ϕ,r,f,l)

d̂

Fg,Θ

(a) (b)

Figure 3. Feature Query Network parametrization: (a) Given
a posed reference image I, a pre-computed ground truth scene ge-
ometry M and an arbitrary feature descriptor g, we train (b) a
simple MLP Fg,Θ to optimize an 8-dimensional neural surface-
level descriptor representation. We denote the focal length of the
camera by f , the camera roll by r, the 2D viewing direction by
(θ, ϕ) and the D-dimensional descriptor by d.

and the 3D model of the scene. Considering a subset of
the 3D model N ⊂ M, let us write (q,v) ∈ R2 × N
a single 2D-to-3D correspondence. For a given query im-
age Iq , N can be defined as the set of 3D keypoints visi-
ble in a nearest-neighbour image (e.g. obtained using image
retrieval as [52]). Recovering 2D-to-3D correspondences
is then often done using detection and description in Iq ,
followed by direct 2D-to-3D matching using the offline-
computed 3D descriptors.

To estimate the query camera pose Tq = (Rq|tq) ∈
SE(3), one can then minimize the 2D reprojection error
such that:

R̂q, t̂q = argmin
T=(R|t)

N∑
i=1

∥qi − ω (vi, T, Kq)∥22 . (3)

While solving this minimization is well stud-
ied [10, 25, 31, 34], the heart of the problem lies in
finding accurate 2D-to-3D correspondences. This becomes
particularly difficult when the query image viewpoint
differs strongly from the set of reference images. Indeed,
the viewpoint discrepancy in Iq has direct repercussions
on the extracted 2D descriptors subsequently used in the
keypoint matching stage. We argue that Feature Query
Networks can be used in this case to help bridge this gap.

FQN-based Iterative PnP Solving. In order to leverage the
view-dependent regression power of FQNs, we propose the
following simple iterative algorithm for PnP-based camera
pose estimation. We first perform direct 2D-to-3D matching
following the aforementioned steps, using image-based 3D
descriptors (i.e. interpolated at their 2D reprojections in ref-
erence images). We write Tq,0 this initially estimated query
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Algorithm 1 FQN-based Iterative PnP+RANSAC

1: Given the descriptor g, keypoint matcher m, FQN Fg,Θ

2: procedure FQNITERATIVEPNP(Iq , Ij , Tj , Kq , Kj , N )
3: (pq,dq)← detectAndDescribe(Iq, g) ▷ Perform detection and description in Iq

4: dj
i ← g(Ij , ω(vi, Tj , Kj)) ∀ vi ∈ N ▷ Compute Image-based 3D Descriptors

5: Tq,0 ← PnPRANSAC(pq , v, Kq , m(dq,dj)) ▷ 2D-to-3D Matching + PnP+RANSAC
6: for k = 0 to K − 1 do
7: d̂k

i ← Fg,Θ(vi, θi,k, ϕi,k, rk, fk, li,k) ∀ vi ∈ N ▷ Update descriptors using Fg,Θ

8: (Tq,k+1, ninliers[k + 1])← PnPRANSAC(pq , v, Kq , m(dq, d̂k)) ▷ 2D-to-3D Matching + PnP+RANSAC
9: return Tq,argmax(ninliers)+1

pose. Then, for K iterations, we (i) recompute the 3D de-
scriptors at the previously estimated camera pose Tk using
the FQN, (ii) perform direct 2D-to-3D matching against the
query image and, lastly, (iii) solve for Eq. 3 using the up-
dated set of keypoint correspondences. From this set of K
predicted camera poses, we propose to select the best refine-
ment prediction based on the highest number of RANSAC
inliers. We describe an overview of our algorithm in Alg. 1.

4.2. Application to Direct Alignment

We now present a second applications of FQNs, to
improve the performance of direct alignment methods.

Direct Alignment. Considering a calibrated query image
Iq (unseen at training time), we aim at estimating its un-
known camera pose Tq = (Rq|tq) ∈ SE(3). The commonly
used approach to solve for the camera pose using direct
alignment consists in minimizing the sum of feature-metric
errors between the query and a set of partially covisible 3D
keypoints such that:

R̂q, t̂q = argmin
T=(R|t)

M∑
j=1

N∑
i=1

ρ(
∥∥∥rji∥∥∥2

2
), (4)

where ρ is a robust parametric kernel, and ri the vector of
residuals of the i-th keypoint visible in Ij defined by:

rji = g(Iq,pi)− dj
i ∈ RD. (5)

Note that g here can simply return the interpolated RGB
value at pi which results in a simple photometric error min-
imization, however learning-based features have proved to
deliver much more robust and accurate results [54, 68, 77].

Starting from an initial estimate T0, this nonlinear least-
squares cost function is usually iteratively minimized using
the Levenberg-Marquardt (LM) algorithm [35, 40]. Let the
residual vector at the k-th iteration of the LM algorithm be
rj,ki = g(Iq, ω(ui, T, Kq))−dj

i . We parametrize the camera
pose increments in se(3), resulting in a 6-dimensional up-
date pose vector δ ∈ R6. We write J ∈ RN×6 the Jacobian

of the residual vectors w.r.t. the pose, W the diagonal ma-
trix of the robust kernel derivatives, and lastly the Hessian
H = JT WJ. At every iteration we compute all the resid-
ual vectors r, J, H, W and solve for the camera pose update
δ ∈ R6 using:

δ = −(H+ λdiag(H))−1JT Wr. (6)

We finally obtain the camera pose estimate by applying
the exponential map over the skew-symmetric matrix of
δ [18]. In all our experiments we initialize the damping
factor λ at λmin, multiply it by 2 when the camera pose
update increases the feature-metric error, and divide it by
half otherwise. We stop iterating when λ reaches λmax.

FQN-based Direct Alignment. With a Feature Query Net-
work Fg , we can now rewrite the residual vector of the i-th
keypoint at the k-th iteration of the LM optimization as:

rj,ki = g(Iq, ω(ui, Tk, Kq))−Fg(ui, θi,k, ϕi,k, rk, fq, li,k).
(7)

With this novel formulation residual vectors are now in-
dependent of j. We no longer rely on reference images Ij
and can now dynamically query and update the previously
fixed 3D descriptors at every iteration of the LM algorithm.
In a wide-baseline scenario where Iq is far away from the
reference images {Ij}Mj=1 but our initial pose estimate T0
is close to the global minimum, we can now rely on Fg

to generate descriptors much more geometrically aligned
w.r.t. Iq . This comes at a minimal computational cost as
batched-forward passes on Feature Query Networks can be
efficiently parallelized (see supp. mat.).

5. Experiments
In this section, we describe the experiments to demon-

strate the power of Feature Query Networks for camera pose
refinement. We first run an ablation study on the model
parametrization, and subsequently demonstrate its ability
to bridge viewpoint gaps in structure-based localization ap-
proaches.
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5.1. Evaluation Details

Datasets. We evaluate our approach on 7Scenes [63] and
Cambridge Landmarks [29], two popular datasets used in
evaluation of learning-based relocalization methods. The
former consists of 7 indoor scenes with posed RGB-D
reference sequences, and RGB query images captured
with different trajectories in the same environments. The
latter consists 5 outdoor scenes, containing posed RGB
reference images, on top of which Sf M was run using
COLMAP [60, 62] to obtain a SIFT [39]-based sparse 3D
reconstruction. We train our FQN models on reference
images, using dense 3D data for 7Scenes, and sparse 3D
point cloud for Cambridge Landmarks.

Choice of g. To evaluate the ability of FQNs to model
high-dimensional feature descriptors coming from dif-
ferent architectures, we choose 2 different CNN-based
models pre-trained for feature matching. The first
one is D2Net [17], a feature descriptor trained on
Megadepth [37] with a VGG16 architecture [66], pro-
ducing 512-dimensional descriptors. The second is a
MobileNet-v2 [51] model trained on Megadepth [37]
following [49] to produce more compact, 128-dimensional
descriptors. We refer to each model as FD2Net,Θ and
FMobileNetv2,Θ.

Training details. We train a separate FQN model for every
each of the previously mentioned 12 scenes and 2 descrip-
tors, resulting in a total of 24 models weighting about 2Mb
each. Training is done using Eq. 2 for 400k iterations with
the Adam [30] optimizer. We set the initial learning rate to
1 × 10−4 and apply an exponential decay following [42].
Ground truth 3D descriptors are extracted using bilinear in-
terpolation at the reprojected keypoint locations in reference
images. For models using the focal length f as input, we
apply a random image resizing (between 25% and 100%)
to enable multi-scale inference, and randomly subsample a
maximum of 2048 3D keypoint per sample. Training a sin-
gle model takes about a day on an NVIDIA V100 GPU.

5.2. Ablation Study

To evaluate the importance of every parametrization term
in Eq. 1, we perform an ablation study with FD2Net,Θ on
7Scenes [63]. We train one model per scene with different
input parameters. For every unseen test image and set of
visible 3D coordinates in that image, we compute the FQN-
based descriptors at the ground truth query pose, as well as
the image-based descriptors (i.e. the interpolated descrip-
tors at the 3D keypoint reprojections in query images). To
study the impact of image scales on CNN-based descrip-
tors, we also apply random image downsizing as done at
training time. Finally we report the average L2-error over
the 512-dimensional L2-normalized descriptors in Table 1.

Average Per-Channel L2 Error

(θ, ϕ) l r f
w/o random

resizing (×10−3)
w/ random

resizing (×10−3)

7S
ce

ne
s

[6
3]

- - - - 1.508 ± 0.296 1.712 ± 0.261
✓ - - - 1.506 ± 0.297 1.705 ± 0.264
✓ ✓ - - 1.496 ± 0.304 1.710 ± 0.266
✓ ✓ ✓ - 1.491 ± 0.308 1.708 ± 0.268
✓ ✓ ✓ ✓ 1.533 ± 0.270 1.505 ± 0.236

Table 1. FQN Parametrization Study: We report the aver-
age per-channel L2 error between descriptors computed using
FD2Net,Θ and D2Net [17] on all 7Scenes [63] test images (lower
is better). We find that as [42] the viewing direction (θ, ϕ) is
a crucial parameter to encode descriptor variance. It is however
not sufficient to handle changes caused by moving camera dis-
tance w.r.t. geometry or in-plane rotations, which are encoded by
l and r respectively. Lastly to enable image-scale dependency we
parametrize our model with the focal length f , and report errors
on randomly resized images (last column).

We find that beyond the required 3D location input u
of the keypoint to regress in the scene, every other addi-
tional input parameter contributes to a better modeling of
the descriptor variance w.r.t. the camera viewpoint. In par-
ticular we find the camera distance to the geometry l and
its roll angle r play an important role as deep descriptors
lack invariance to these parameters. The same conclusion
can be drawn for 2D image resizing, which is modeled by
our model using f . Interestingly however, training with ran-
dom image sizes coupled with the focal length parametriza-
tion damages the results on full-resolution images, indicat-
ing possible capacity limitations of our model.

5.3. Camera Pose Refinement

We now evaluate the application of FQNs to structure-
based localization. More specifically, we run the algorithms
proposed in Sec. 4.1 and Sec. 4.2 to perform camera pose
refinement in wide-baseline configurations.

FQN-based Iterative PnP+RANSAC. In order to evaluate
our proposed Algorithm 1, we consider the popular hierar-
chical localization framework [52], in which image retrieval
w.r.t. the reference image set is used to identify a candidate
set of 3D keypoints covisible with the query image Iq . To
exhibit the ability of FQNs to reduce the viewpoint discrep-
ancy between reference and query images, we voluntarily
choose to relocalize using only the top-1 nearest-neighbour.
This also comes with the benefit of reducing the overall
computational cost of hierarchical localization.

In our experiments, we perform image retrieval by com-
puting global image descriptors using [48]. Matching is
done with a simple mutual nearest-neighbour algorithm. To
improve robustness to changes in scale w.r.t. the query im-
age, we average FQN descriptors regressed at 25%, 50%
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Method
7Scenes [63] (Indoor) Cambridge Landmarks [29] (Outdoor)

Chess Office Pumpkin Heads Fire Kitchen Stairs StMary’s Court Hospital King’s Shop Facade

F
D

2N
et

K = 0 6.90/2.48 25.30/7.35 14.93/4.10 4.03/2.83 6.36/2.54 26.19/6.59 109.18/27.20 44.45/1.72 4685.66/95.82 105.66/1.56 35.69/0.58 17.41/0.77
K = 1 6.76/2.18 20.15/5.65 10.13/2.88 5.04/3.65 7.37/2.72 31.95/7.83 141.66/52.24 134.37/4.55 4653.13/89.12 77.80/1.28 40.61/0.58 14.40/0.70
K = 5 6.13/1.95 15.17/4.31 9.57/2.70 4.87/3.59 6.71/2.46 20.41/5.37 141.98/53.64 100.44/3.63 4673.10/89.16 68.08/1.06 32.57/0.50 14.84/0.67
K = 30 5.96/1.87 14.16/4.11 9.53/2.66 4.86/3.51 6.58/2.42 18.37/4.79 140.76/53.02 92.82/3.54 4381.71/74.25 64.62/0.91 32.40/0.47 14.19/0.61

F
M

ob
ile

N
et

v2 K = 0 7.54/2.62 87.52/26.85 19.31/5.23 3.11/2.15 5.09/2.09 121.97/30.61 169.08/43.88 329.34/11.66 7679.41/99.43 468.21/9.15 35.84/0.44 31.14/1.39
K = 1 5.33/1.73 27.46/7.70 10.75/2.87 3.90/2.61 5.48/2.05 82.41/21.11 183.88/59.91 545.44/13.53 6976.24/68.84 144.43/2.83 32.19/0.45 24.74/1.08
K = 5 4.49/1.40 12.31/3.49 9.48/2.51 3.65/2.44 4.76/1.80 19.25/5.25 168.08/50.71 120.44/4.49 5601.26/54.13 61.66/0.87 28.54/0.41 12.54/0.56
K = 30 4.13/1.31 10.47/2.97 9.24/2.45 3.55/2.36 4.62/1.76 16.12/4.42 139.50/34.67 57.95/2.00 4253.12/39.16 53.95/0.82 28.25/0.38 13.02/0.63

Table 2. FQN-based Iterative PnP+RANSAC Quantitative Results: We report the median translation and rotation errors (in cm/◦,
lower is better) on both indoor and outdoor scenes using Alg. 1, for different values of K. We write in bold and italic the first and second
lowest error respectively for every scene and descriptor. K = 0 corresponds to the standard image-based PnP+RANSAC approach.
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Figure 4. Qualitative FQN-based Iterative PnP+RANSAC results: We show reprojected keypoints at the estimated camera pose using
image-based PnP+RANSAC with D2Net [17] descriptors (K = 0), and FQN-based descriptors using FD2Net (K ≥ 1). We report in red
the ground truth reprojection of a random subset of the 3D keypoints visible in the top-1 retrieved reference image (left column) and query
image (other columns). We show in green the reprojection of 3D keypoints at the estimated camera pose. We find the geometric modeling
of descriptors by FQNs helps recovering accurate camera pose estimates even for wide baselines.

and 100% original input size (through the focal length pa-
rameter f ). We report in Tab. 2 the translation and rotation
error of the estimated camera poses as a function of K. Note
that K = 0 corresponds to the standard 2D-to-3D matching
followed by PnP+RANSAC, where the 3D descriptors are
interpolated at their 2D reprojections in the reference image.
We find that on most scenes, FMobileNetv2 is able to signifi-
cantly reduce the initial camera pose error yielded by the
classic PnP+RANSAC. On the higher-dimensional model
FD2Net and on larger scenes (e.g. St Mary’s Church) im-
provements are less consistent, which is another hint that
our model might be suffering from a limited capacity. We
report qualitative results in Fig. 4.

In a second experiment, we deplete the set of reference
camera poses in the scenes by randomly sampling 10 poses

per scene and report the results in Fig. 5. This leads to even
wider baselines between the query and reference images.
We find that although the initial error at K = 0 is fairly
high, the FQN is able to reduce it significantly, halving the
rotation error on average on Cambridge Landmarks [29].
Both experiments demonstrate the ability of FQNs to
bridge viewpoint gaps for wide-baseline structure-based
relocalization.

FQN-based Direct Alignment. We now evaluate the ap-
plication of FQNs to wide-baseline direct alignment, as per
Sec 4.2. We use as camera pose initialization the results of
the previous PnP+RANSAC-based estimate, when K = 0
(i.e. a standard PnP+RANSAC). The wide-baseline nature
of the initial camera poses w.r.t. the ground truth query
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Method
7Scenes [63] (Indoor) Cambridge Landmarks [29] (Outdoor)

Chess Office Pumpkin Heads Fire Kitchen Stairs StMary’s Court Hospital King’s Shop Facade

F
D

2N
et

K = 0 6.90/2.48 25.30/7.35 14.93/4.10 4.03/2.83 6.36/2.54 26.19/6.59 109.18/27.20 44.45/1.72 4685.66/95.82 105.66/1.56 35.69/0.58 17.41/0.77
Eq. 5 8.24/3.12 31.89/8.56 23.48/5.86 7.99/6.07 15.11/5.81 24.53/6.35 95.24/18.58 51.96/1.62 4671.24/90.78 89.60/1.27 44.47/0.73 17.85/0.79
Eq. 7 - Static 7.28/2.78 21.08/5.99 14.08/3.73 6.33/4.89 9.59/3.86 23.47/5.60 100.75/20.73 53.78/1.74 4942.98/92.95 93.14/1.11 39.66/0.53 16.20/0.87
Eq. 7 - Dynamic 6.19/2.3 19.97/5.94 14.53/3.72 6.27/4.63 10.75/4.35 23.76/5.50 97.33/20.00 60.14/1.74 4861.03/95.45 105.14/1.28 35.45/0.47 16.59/0.85

F
M

ob
ile

N
et

v2 K = 0 7.54/2.62 87.52/26.85 19.31/5.23 3.11/2.15 5.09/2.09 121.97/30.61 169.08/43.88 329.34/11.66 7679.41/99.43 468.21/9.15 35.84/0.44 31.14/1.39
Eq. 5 6.32/2.42 77.87/24.77 13.67/3.91 3.26/2.73 3.94/1.78 116.15/28.95 166.85/43.02 65.73/3.41 7735.02/99.58 81.56/1.04 31.92/0.43 12.11/0.63
Eq. 7 - Static 5.34/2.05 76.91/24.81 11.55/3.14 3.54/2.94 4.72/1.93 116.46/29.52 167.09/43.32 91.05/3.66 7709.67/97.98 65.09/0.94 26.06/0.34 9.69/0.50
Eq. 7 - Dynamic 5.18/1.99 77.05/25.30 11.12/3.10 3.59/2.91 4.84/1.97 115.76/29.33 163.76/41.32 68.78/2.88 7782.13/96.69 65.01/0.87 25.29/0.33 9.91/0.55

Table 3. FQN-based Direct Alignment Quantitative Results: We report the median translation and rotation errors (in cm/◦, lower is
better) on both indoor and outdoor scenes using FQN-based direct alignment. We report results using standard direct alignment (Eq. 5), as
well as FQN-based residuals (Eq. 7), which we either use at initialization (Static) or continuously (Dynamic). We write in bold and italic
the first and second lowest error respectively for every scene and descriptor. We find FQNs work best with medium-sized descriptors and
scenes, and can sometimes bring significant improvements compared to standard direct alignment approaches.
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Figure 5. FQNs for few-reference image HLoc: To exhibit the
ability of FQNs to bridge viewpoint gaps we run Alg. 1 using only
10 retrievable reference camera poses per scene. This sparsified
reference set naturally leads to wider baselines when relocalizing,
and thus a higher error at K = 0. We report the averaged median
error on all scenes from both 7Scenes [63] and Cambridge Land-
marks [29] and find the FQN helps reduce the initial pose errors.

pose makes this problem especially challenging for a direct
alignment method, which is prone to falling in local minima
and requires wide and accurate convergence basins. We re-
port the results in Tab. 3 of our feature-metric error min-
imization algorithm using both standard image-based 3D
descriptors (Eq. 5), and using updated FQN-based residuals
(Eq. 7). We report results using two variants for this FQN-
based formulation, one where we only regress 3D descrip-
tors at initialization which is referred to as static (i.e. setting
rj,ki = rj,0i ∀ k > 1), and one where the 3D descriptors are
continuously updated, which we refer to as dynamic.

We find the FQN-based direct alignment to provide
consistent improvements over standard direct alignment
methods in cases where the scene is both relatively small

(e.g. Old Hospital, Shop Facade) and where descriptors
are more compact (FMobileNetv2). Interestingly, the dynamic
update of descriptors does not necessarily imply an im-
provement over static descriptors, which could indicate a
lack of accuracy in descriptor regression around the global
optimum. We find that on larger scenes such as St Mary’s
Church or Great Court, as well as on high-dimensional
descriptors, FQN-based residuals can damage performance.

6. Discussion
As shown in this paper, attempting to reach descriptor

invariance can be circumvented by rather explicitly model-
ing the variance of such descriptors w.r.t. the camera view-
point. This initial formulation however comes with some
limitations. Much like other implicit representation learn-
ing methods [42], Feature Query Networks seem to exhibit
a limited scaling ability when applied to large scenes or
very high-dimensional descriptor. Local conditioning of the
model or increased model capacity might help tempering
those issues. Our model also lacks a proper modeling of
appearance variations in descriptor (mainly due to the lack
of available training data), which could be important for
long-term relocalization. Incorporating density estimation
in FQNs could also enable potentially help deal with noisy
3D reconstructions. We believe these research paths could
make for interesting future work.

7. Conclusion
In this paper we introduce Feature Query Networks,

simple surface-level MLPs designed to model the variance
of a given descriptor in a scene w.r.t. the camera view-
point. Rather than trying to force invariance in descriptors,
we model it directly with powerful neural networks. We
showed their capacity to regress high-dimensional descrip-
tor under novel viewpoints on specific scenes, as well as
applications to wide-baseline structure-based visual local-
ization for improved camera pose estimation.
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