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In the following pages, we present additional quantita-
tive results, qualitative results and experimental details re-
garding Feature Query Networks. In particular, we present
results for small-baseline FQN-based camera pose refine-
ment, and find FMobileNetv2 achieves performance on par
with the state-of-the-art method PixLoc [11].

A. Small-baseline FQN-based Direct Align-
ment

In the previous experiments, we showed FQN-based di-
rect alignment results when the initial camera pose is far
away from the ground truth query pose (wide-baseline).
While this setup exhibits the power of Feature Query Net-
works for camera pose refinement, it is a significantly
harder camera pose initialization to recover from and thus
makes comparison to state-of-the-art localization methods
difficult. In this section, we report results for small-baseline
direct alignment on Cambridge Landmarks [5].

To do so, we first perform hierarchical localization (sim-
ilar to HLoc [9]) on the top-50 nearest neighbours, and esti-
mate the initial camera pose using PnP+RANSAC as done
in Sec. 5.3. Then, we perform both standard and FQN-
based direct alignment, and report the results in Tab. 1. We
report the performance of other state-of-the-art methods in-
cluding ActiveSearch [12], HLoc [9] (which uses Super-
Point [3] keypoints and matches them with SuperGlue [10]),
DSAC* [1], HACNet [6], SANet [14] and PixLoc [11].
DSAC* results are from the RGB+3D setting. The train
and test folds are identical for all methods in our experi-
ments. Note that PixLoc is also a direct alignment method
which uses learned scene-agnostic features tailored for cam-
era pose refinement.

Overall we find that in a small-baseline setting, the FQN-
based direct alignment brings consistent improvements over
standard direct alignment when trained on MobileNetv2 [8],

*Work done during an internship at Reality Labs.

i.e. 128-dimensional descriptors. In fact, we find the
achieved performance is on par if not better than other end-
to-end learning-based competitors (including PixLoc [11]),
despite our MobiletNetv2 [8] model being trained for key-
point matching as [7]. This is a strong indicator that model-
ing the variance of descriptors w.r.t. to viewpoint might be
a promising direction for future research.

As previously discovered, we also find that the higher-
dimensional descriptor D2Net [4] does not perform as well
for FQN-based direct alignment. This could indicate FD2Net
is lacking capacity to accurately model such descriptors, es-
pecially around the global minimum. We believe this limi-
tation of our approach is also an interesting path for future
research. Illustrations of failure cases with FD2Net are pre-
sented below.

B. Additional Qualitative Results
We report in Fig. 3 and Fig. 2 additional qualitative using

the proposed iterative FQN-based PnP+RANSAC. These
examples indirectly illustrate the ability of FQNs to perform
descriptor regression from novel viewpoints.

A more direct visualization of this ability can be seen
in Fig. 1, which displays correspondence maps obtained
with both D2Net computed from reference images, and us-
ing FQNs FD2Net. We find FQNs help produce correspon-
dence maps with modes much better aligned with ground
truth correspondences.

Lastly we report in Fig. 4 and Fig. 5 failure cases, where
FQNs fail to provide an improved descriptor regression.
We hypothetize these failures come from the lack of gen-
eralization of FQNs to novel viewpoints due to a limited
model capacity, given the high dimensionality of descrip-
tors and scene scales. In the case of FQN-based iterative
PnP+RANSAC, it is also likely that the algorithm gets stuck
in local minima where the FQN descriptors are no longer
updated significantly. This is an issue similar to the one
encountered in gradient-based optimization.
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Figure 1. FQN-based Correspondence Maps: We show in red the ground-truth reprojection of a given 3D keypoint in the scene and (from
left to right) a pair of reference and query images, as well as dense correspondence maps obtained using image-based and FQN-regressed
D2Net [4] descriptors (computed at the ground truth query camera pose). We find that our approach is able to produce much more accurate
correspondence maps on wide-baseline image pairs.

C. Additional Experiments Details
In this section we report experimental details regarding

our application of FQNs to camera pose refinement.

FQN-based Iterative PnP+RANSAC. To perform this
study, we retrieve for every query image of every scene the
top-1 nearest-neighbour image and identify its set of visible
3D keypoints. To increase robustness to scale changes, we
compute multi-scale image-based descriptors using both
D2Net [4] and our trained MobileNetv2 model. We also
regress multi-scale descriptors using FQNs through the
focal length f parametrization. We use the OpenCV [2]
RANSAC implementation and tune the threshold for
optimal performance.

FQN-based Direct Alignment. For FQN-based direct
alignement, we employ a similar multi-scale strategy and
average multi-scale descriptors, as we find it brings an in-
creased robustness to wide baseline camera pose initializa-
tions. We use λmin = 10−8 and λmax = 107.

D. Computational Cost
We experimentally find that FQNs are not only light in

memory (about 2Mb), but they also bring a small additional
cost to camera pose refinement. On a single NVIDIA GTX
3070 we find performing a batched forward pass on 10, 000

keypoints takes only 11.2ms on average. In comparison a
multi-scale inference on a model like D2Net [4] which takes
several hundred milliseconds, this cost is neglictible and al-
lows for multiple FQN-based descriptor updates per query
image.
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Figure 2. Qualitative FQN-based Iterative PnP+RANSAC results on Cambridge Landmarks [5]: We show reprojected keypoints
at the estimated camera pose using image-based PnP+RANSAC with D2Net [4] descriptors (K = 0), and FQN-based descriptors using
FD2Net (K ≥ 1). We report in red the ground truth reprojection of a random subset of the 3D keypoints visible in the top-1 retrieved
reference image (left column) and query image (other columns), and in green the reprojection of 3D keypoints at the estimated pose.
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Figure 3. Qualitative FQN-based Iterative PnP+RANSAC results on 7Scenes [13]: We show reprojected keypoints at the estimated
camera pose using image-based PnP+RANSAC with D2Net [4] descriptors (K = 0), and FQN-based descriptors using FD2Net (K ≥ 1).
We report in red the ground truth reprojection of a random subset of the 3D keypoints visible in the top-1 retrieved reference image (left
column) and query image (other columns), and in green the reprojection of 3D keypoints at the estimated pose.
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Figure 4. FQN-based descriptor regression failure cases: We show in red the ground-truth reprojection of a given 3D keypoint in the
scene and (from left to right) a pair of reference and query images, as well as dense correspondence maps obtained using image-based
and FQN-regressed D2Net [4] descriptors. We find that on very wide baselines FQN descriptors are do not manage to produce accurate
correspondence maps. This could be explained by the novel query viewpoint being too far away from the reference image set (e.g. first
three rows). We also find that when images are better aligned, the FQN leads to overall less peaky correspondence maps which translates
a limitation in regression fidelity, perhaps linked to a limited model capacity.
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Figure 5. FQN-based Iterative PnP+RANSAC Failure Cases: We report in this figure failure cases for our proposed camera refinement
method. We find that our method sometimes diverges, leading to high or increased pose errors. This is most likely due to regression errors
in the FQN descriptor, but also possibly to the method falling in local minima, akin to gradient-based optimization methods.
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Method
Cambridge Landmarks [5] (Outdoor)

StMary’s Court Hospital King’s Shop Facade

AS [12] 8/0.25 24/0.13 20/0.36 13/0.22 4/0.21
HLoc [9] 7/0.21 16/0.11 15/0.30 12/0.20 4/0.20

DSAC* [1] 13/0.4 49/0.3 21/0.4 15/0.3 5/0.3
HACNet [6] 9/0.3 28/0.2 19/0.3 18/0.3 6/0.3
SANet [14] 16/0.57 328/1.95 32/0.53 32/0.54 10/0.47
PixLoc [11] 10/0.34 30/0.14 16/0.32 14/0.24 5/0.23

F
D

2N
et

K = 0 18.94/0.64 115.53/0.74 48.21/0.81 33.46/0.55 11.32/0.51
Eq.5 9.38/0.34 42.17/0.29 20.29/0.35 14.52/0.26 5.40/0.26
Eq.7 - Static 12.24/0.42 70.04/0.38 20.84/0.38 15.50/0.24 6.64/0.34
Eq.7 - Dynamic 11.83/0.40 68.98/0.38 18.67/0.38 15.21/0.24 6.62/0.33

F
M

ob
ile

N
et

v2 K = 0 11.98/0.40 59.06/0.35 36.44/0.55 17.05/0.29 5.25/0.24
Eq.5 11.99/0.38 37.99/0.24 24.62/0.35 15.59/0.26 6.15/0.33
Eq.7 - Static 10.55/0.30 36.43/0.13 17.28/0.26 11.71/0.21 4.85/0.23
Eq.7 - Dynamic 10.49/0.30 36.49/0.13 17.09/0.26 11.58/0.21 4.87/0.23

Table 1. Small-baseline FQN-based Direct Alignment: We re-
port the median translation and rotation errors (in cm/◦, lower
is better) on Cambridge Landmarks [5] scenes using FQN-based
direct alignment. In this setup, we use the top-50 nearest neigh-
bours which naturally leads to better initial camera pose esti-
mates (K = 0) and smaller baselines using the subsequent direct
alignments. We report results using standard direct alignment, as
well as FQN-based residuals, which we either use at initialization
(Static) or continuously (Dynamic). We write in bold and italic
the first and second lowest error respectively for every scene and
descriptor. We find FMobiletNetv2 is able to achieve performance on
par with state-of-the-art learning-based direct alignement method
PixLoc [11]. This study also corroborates the limitations of FQNs
in modeling high-dimensional descriptors like D2Net [4].
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