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Abstract

Few-Shot Class Incremental Learning (FSCIL) is a re-

cently introduced Class Incremental Learning (CIL) setting

that operates under more constrained assumptions: only

very few samples per class are available in each incremental

session, and the number of samples/classes is known ahead

of time. Due to limited data for class incremental learning,

FSCIL suffers more from over-fitting and catastrophic for-

getting than general CIL. In this paper we study leveraging

the advances due to self-supervised learning to remedy over-

fitting and catastrophic forgetting and significantly advance

the state-of-the-art FSCIL. We explore training a lightweight

feature fusion plus classifier on a concatenation of features

emerging from supervised and self-supervised models. The

supervised model is trained on data from a base session,

where a relatively larger amount of data is available in FS-

CIL. Whereas a self-supervised model is learned using an

abundance of unlabeled data. We demonstrate a classifier

trained on the fusion of such features outperforms classi-

fiers trained independently on either of these representations.

We experiment with several existing self-supervised models

and provide results for three popular benchmarks for FSCIL

including Caltech-UCSD Birds-200-2011 (CUB200), mini-

ImageNet, and CIFAR100 where we advance the state-of-

the-art for each benchmark. Code is available at: https:
//github.com/TouqeerAhmad/FeSSSS

1. Introduction

As deep learning models emerge from their infancy and
are being deployed in the real world, more of their limitations
have been identified, e.g., these models classify only a fixed
set of classes and are generally trained with large amounts
of data. This naturally leads to several interesting and practi-
cal problems, e.g., task incremental learning [19, 46], class
incremental learning [13, 29, 42, 47], continual learning [35],
few-shot learning [51,54,58,63], open-set recognition [6,49],
and open-world learning [7, 17].

Inspired by few-shot learning, Tao et al. [51] recently
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Figure 1. Bias and variance have an inherent trade-off and are
normally considered with respect to model complexity. However,
feature spaces also have an important role in the trade-off and
the resulting test error. Few-shot learning (dotted curve) using
supervised data, reduces bias quickly. However, it only has a small
sample of data, hence higher variance, and hence over-fits that data
earlier. Self-supervised feature spaces (dashed line) are trained with
lots of data but have larger bias since they are only weakly related
to actual classes of interest. Either large bias or large variance
limits overall accuracy. Appropriate fusing of these two feature
spaces (solid line) can produce a model with much better test error.
These logical curves are for a single iteration; in Few-Shot Class-

Incremental Learning the problem is compounded as extending
the model for each new set of classes exasperates the problem of
over-fitting. We show that while self-supervised features alone may
not improve performance, combining a lightweight multi-layer
network to fuse standard few-shot features with self-supervised
features significantly improves the state-of-the-art in few-shot class
incremental learning.

addressed class incremental learning in an even more chal-
lenging and practical setting, i.e., Few-Shot Class Incremen-

tal Learning (FSCIL) where only K shots/samples per class
are available and K is very small (5 samples per class) than
general class incremental learning. As we highlight in Fig 1,
due to more constrained assumptions, FSCIL suffers more
over-fitting on the “few” classes. It also suffers catastrophic
forgetting of old classes. As a comparison, in general CIL,
even the number of exemplars retained per class are way
more (generally more than 20) than the total samples per
class (typically 5) in the incremental sessions of FSCIL.
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Given limited data availability in a FSCIL setting, it is nat-
ural to explore if other features can remedy the inherent
catastrophic forgetting and over-fitting, which is the focus of
this study.

In a traditional learning paradigm, it was always assumed
that labeled data belonging to all classes is readily available
with a large number of samples per class. However, as deep
learning migrates from academics to industry, it became evi-
dent that labeling is laborious, costly, time-consuming, and
prone to human errors/biases. Additionally, not all classes
of interest are known beforehand, they may become avail-
able periodically and a learner may not have a large number
of labeled samples per class. To circumvent the labeling
issue there has been a surge in approaches targeting train-
ing of deep networks without labels/supervision, i.e., self-

supervised learning [10, 11, 14, 21–23, 28, 32, 43–45, 60, 61].
Self-supervised learning has been demonstrated to compete
or even outperform pure supervised models on downstream
tasks of image classification and object detection. Recently,
self-supervised features have been deployed even for other
novel downstream tasks [9, 17, 20, 24]. On the other hand,
to address the periodic nature of data and re-purpose a sin-
gle model for various tasks, fields of continual learning,
task incremental learning, and class incremental learning
have been developed where a significant progress has been
achieved within a relatively shorter time-span. While con-
tinual learning and task incremental learning have their own
applications, class incremental learning is more practical.
Class incremental learning requires a model to learn new
classes while maintaining the knowledge of old classes that
it has previously learned. To address catastrophic forget-
ting many approaches have been investigated, e.g., retaining
exemplars, knowledge distillation, temperature scaling – to
name a few.

We investigate fusion of several self-supervised models
for FSCIL and use established benchmarks to demonstrate
that a lightweight classification module trained on combined
supervised and self-supervised features results in outperform-
ing the state-of-the-art methods. Specifically, we leverage
the self-supervised models trained on ImageNet-2012 [50] or
OpenImages-v6 [34], and a supervised model trained on data
belonging to base session where a relatively larger number
of labeled images are available. Both supervised and self-
supervised models are kept frozen after the initial training
on base session and disjoint unlabeled data set respectively,
and serve as first-level feature extractors for the subsequent
incremental sessions. A lightweight two layer classification
head is employed as the learnable module that adapts over
time with data for each incremental session. During training,
the classification module is trained on the concatenation of
independently normalized features emerging from images
belonging to the respective incremental sessions. Since im-
ages are not directly fed to the classification module, several

feature vectors per image are generated with conventional
data augmentation techniques. To further mitigate catas-
trophic forgetting of old classes, we develop a Gaussian
Generator. The Gaussian’s centroid vector per class can be
thought of as a single exemplar per class in a conventional
CIL setting and aligns well with limited resource constraint
of FSCIL. We generalize this by generating synthetic data
by additionally maintaining a scalar/vector for variance and
assuming classes to be multivariate Gaussian from which we
can sample. An ablation study is conducted to demonstrate
that such synthetically generated data further improves the
performance.

Our Contributions

• First to investigate self-supervised learning for the chal-
lenging downstream task of FSCIL.

• An effective learning paradigm (named FeSSSS) fusing
supervised and self-supervised features demonstrating
enhanced performance rather than relying on either
one of them independently. This approach can further
benefit from future advances in self-supervised learning
and/or supervised FSCIL.

• Demonstrate that our novel Gaussian Generator reduces
catastrophic forgetting in FSCIL.

• New state-of-the-art on established benchmarks of FS-
CIL statistically significantly outperforming existing
methods.

• Ablation study demonstrating that both fusion and our
Gaussian Generator statistically significantly matter.

2. Related Work

2.1. Incremental Learning

While there are multiple subtypes of incremental learning,
herein we focus on class incremental learning.

Nearest Mean Classifier (NMC) [40, 41] represents each
class using a prototype vector that is the mean of all the exam-
ples seen for that class. Approaches such as DeeSIL [2] and
DeepSLDA [26] attempt to classify feature representations
using independent classifiers such as SVMs.

Most recent class incremental learning tries to address
catastrophic forgetting and concept drift by partially/fully re-
training the network. [36] attempted to address catastrophic
forgetting by introducing knowledge distillation in the loss
function. Another common approach to circumvent catas-
trophic forgetting is by maintaining exemplars, i.e., some
samples from old classes are retained in the replay buffer.
The network for the next incremental phase is then trained on
both the new classes and the exemplars [27,48,56]. Choosing
these exemplars is also an active research area, e.g., methods
like herding [55] and mnemonics [37]. PODNet [19] studied
rigid-plasticity trade-off where the network learns to balance
between remembering the old classes (rigidity) and learn-
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ing new ones (plasticity). Unlike other methods [31, 37, 56]
which typically employ iCaRL protocol [48] where five or
more classes are introduced per incremental-task, in POD-
Net [19] proposed and other methods [30, 48, 56] are addi-
tionally evaluated on even learning one class per task. [27]
tried to address the incremental learning in a more chal-
lenging online setting. Each online incremental learning
phase was followed by an offline retraining phase where
all the data available up to that point was used to retrain
the network. They also maintained an exemplar set and
employed herding [55]. Recently, there have been more at-
tempts towards incremental learning [46, 62], and detailed
surveys on the topic also exist [38, 39]. In [5], a comprehen-
sive evaluation of recently proposed incremental learning
approaches [2–4, 8, 25, 26, 30, 36, 42, 48, 56] was conducted.

Few-Shot Class Incremental Learning (FSCIL) Few-
shot learning itself is a very active area of research with
hundreds of papers [54]. We focus here on related work on
FSCIL, which has different challenges than few-shot learn-
ing, since the representations must adapt over time and is
a harder problem than classic class incremental learning
because of the limited data per class.

FSCIL was first introduced in [51] where authors pro-
posed a TOPIC framework that used a neural gas (NG) net-
work to learn feature space topologies formed by different
classes for knowledge representation. To mitigate the catas-
trophic forgetting of old classes, they stabilized the topology
of NG while adapting it to enhance the discriminative power
of learned features for few-shot new classes. They adapted
a number of general CIL approaches [13, 29, 47] for FS-
CIL and demonstrated TOPIC outperformed all of them on
benchmark data sets. [63] proposed a prototype-based FSCIL
approach where they introduced a Self-Promoted Prototype

Refinement (SPPR) scheme to update the existing prototypes
by utilizing a relation matrix between representation of the
new class samples and the old class prototypes. They em-
ployed a random episode selection strategy to enhance the
extensibility of feature representation to circumvent severe
catastrophic forgetting inherent to FSCIL. In ERL [18], au-
thors focused on stability-plasticity dilemma and proposed
exemplar relation distillation incremental learning frame-
work to balance the tasks of old-knowledge preservation and
new-knowledge adaptation. In [59], authors devised a de-
coupled learning strategy for representations and classifiers
where only the classifiers are updated in each incremental
session to avoid knowledge forgetting. To propagate context
information between classifiers learned on individual incre-
mental sessions, they employed a graph model and proposed
Continually Evolved Classifier (CEC). A pseudo incremental
learning paradigm is further designed to enable the learning
of CEC. In addition to comparing against TOPIC, they also
adapted a couple of few-shot methods [52, 58] for FSCIL by

inducing their decoupled learning strategy. To the best of
our knowledge, CEC is the best performing FSCIL approach
prior to this writing.

In the latest FSCIL work [16], authors proposed Semi-

Supervised Few-Shot Class Incremental Learning (SSFS-
CIL) approach where they relied on knowledge distillation
and unlabeled data to boost the performance of existing
CIL approaches [29, 47] adapted for FSCIL. For each in-
cremental session, in addition to N-way K-shot data, many
samples from N classes without labels are additionally used
for which the predictions are refined over time by means
of knowledge distillation. More unlabeled samples are se-
quentially added to the labeled set along with their predicted
pseudo-labels and representation is revised with way more
data than conventional K-shots per class. The proposed ap-
proach is demonstrated to improve the baseline iCaRL [47]
and NCM [29] methods, however, as evidenced in Tab. 1,
SSFSCIL is outperformed by pure supervised approaches,
e.g., CEC, ERL/ERL++, by a large margin.

2.2. Self-Supervised Learning

Self-supervised learning is an active research area where
many approaches have emerged in recent years to learn better
feature representations without any supervision and labeling.
Self-supervised learning has been accomplished by solving
a pretext task [21–23, 32, 43–45, 60, 61] using contrastive

loss [14, 28] or by clustering [10, 11] the underlying deep
features. Generally, models learned in a self-supervised man-
ner are evaluated on the downstream task of object recogni-
tion, using ImageNet-2012 [50], by training a classification
head. However, there have been recent studies where self-
supervised learning has also been explored for other down-
stream tasks such as incremental/open-world learning [9,17],
continual learning [20], and novel class discovery and recog-
nition [24]. Inspired by these recent advances, we explore
the suitability of self-supervised learning for challenging
FSCIL problem.

3. Problem Statement

Few-shot class incremental learning operates in various
incremental sessions where few labeled samples per class
become available to the learner in each session. The objec-
tive of the underlying model is to learn new concepts while
retaining the knowledge of old ones. Following [51, 59],
let {D0

train,D1
train, · · · ,Dn

train} be the training sets for
n incremental sessions and class labels for i-th session,
i.e., Di

train is denoted by Ci. The classes added in dif-
ferent sessions do not have any overlap, i.e., 8i, j where
i 6= j, Ci \ Cj = ;. After each incremental session i,
the model is evaluated on test data belonging to the cur-
rent session and classes seen in all previous sessions, i.e.,
C0 [ C1 · · · [ Ci. In FSCIL, it is conventional to have way
more training data in the base session (D0

train) than in the

3902



Resnet18
Trained on Few

Shot Base

Resnet50
Self-supervised 

PreTrained

DataAug DataAug

Image

512Dim L2-normalized 
Supervised Features

2048D L2-noralized  Self-
Supervised Features

Gaussian Generator 

Linear Nodes Existing ClassesLinear Nodes New Classes

In BlueBox=Frozen

Feature Fusion  Layer 1280 Dim output 

Figure 2. The overall architecture of our Few-Shot Self-Supervised
System (FeSSSS). The initial training uses the few-shot base ses-
sion and disjoint unlabeled data after which the core feature ex-
tractors (in the blue box) are frozen. The ResNet-18 for few-shot
supervised training produces 512 dimensional vectors. The self-
supervised ResNet-50 produces 2048 dimensional output. These
ResNets are frozen and not updated after initial training. The L2

normalized features are concatenated and fed into the Gaussian
Generator that learns models for new classes while passing along
their features. During incremental training the Gaussian Generator
samples from its model and provides features for old classes. The
features are fed into the lightweight Feature Fusion Layer, which
learns to map from the 2560 raw feature dimension into a fused
1280 dimensional output feature. These in turn feed through a
fully-connected layer, the linear nodes that provide the final classifi-
cations. When new classes need to be added, new nodes are created
and connected to the feature fusion layer and these new connections
are initialized with random weights (dashed lines). With new class
data, the linear classifiers and the feature fusion layer update, but
the nodes for existing classes and part of feature fusion layer are
warm started keeping their prior data as respective centroids. To
address catastrophic forgetting, the network is then trained with the
new data plus the centroids (from frozen features) of the existing
classes.

incremental sessions where N-way K-shot setting is em-
ployed, i.e., each incremental session has N classes and only
K samples per class are available. For our approach we
assume there exist another unlabeled data set Du

train that
is disjoint with data for any of the sessions in FSCIL. The
self-supervised model is learned on this disjoint data set.

4. Method

The overall architecture of Few-Shot Self-Supervised
System (FeSSSS) is summarized in Fig. 2. The core of
the method are the major elements: the feature extraction,
the feature fusion, the linear classifier, and our Gaussian
Generator to address catastrophic forgetting. Below, we de-
scribe each component of our pipeline, code is available on

our GitHub page.

4.1. Supervised & Self-Supervised Feature Extrac-

tors

A typical deep learning model can be thought of as a
composition of a feature extractor x̂ = f(x; ✓) followed by a
classification head c(x̂;�); where ✓, and � are learnable pa-
rameters, and x (an image), x̂ (feature vector) are the inputs
for respective modules. During training, these parameters
are learned using data in a supervised or self-supervised man-
ner depending upon the setting. In our hybrid framework
FeSSSS, we train one deep model (fs(x; ✓s), cs(x̂;�s)) us-
ing data from base session D0

train in a supervised manner,
and another network (fss(x; ✓ss), css(x̂;�ss)) is trained on
Du

train in a self-supervised manner. We do not assume any
fixed task for the self-supervised model and it can be learned
in any conventional manner, i.e., using a pretext task, em-
ploying contrastive loss, or through clustering. Once the two
models are trained fully on their respective data sets, their
classification heads are discarded and outputs from feature
extractors fs(x; ✓s), fss(x; ✓ss) are normalized to have unit
L2 norm yielding (x̄s, x̄ss) which are then used for input to
the lightweight classification module.

4.2. Lightweight Incremental Feature Fusion and

Classification Module

Our model operating in the incremental setting is com-
prised of a lightweight network lc(✓c) that has two fully
connected layers followed by a Softmax. It takes concate-
nated normalized feature vectors x̄t = (x̄s|x̄ss) as input and
provides the probability vector for n classes that have been
enrolled up to the current incremental session. The number
of nodes in the intermediate feature fusion layer is set to
half of the feature dimension of the concatenated vector x̄t,
whereas, the number of output nodes are equal to the number
of total classes enrolled so far and grow with each incre-
mental session. This lightweight module is initially trained
with the base class data, giving the initial training of feature
fusion considerably more data than in each increment.

In each incremental session the lightweight model lc(✓ic)
is initialized with weights from the previous session ✓i�1

c

and N more nodes are added to the output layer. The weights
for these new connections are randomly initialized. After
training each incremental session, the model is evaluated
on test samples belonging to all classes that have been en-
rolled so far. Importantly, the weights between the input
normalized concatenated features are retained so that the
system continues to better learn feature fusion over time.
The new nodes, while randomly initialized, can exploit those
fused features. If the system only used a simple linear classi-
fier (linear layer), even retaining weights for known classes
would not allow learning to fuse since the new classes would
have no access to that information. We show in the ablation
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Table 1. Comparison of FeSSSS with the state-of-the-art on CUB200 data set, DeepCluster-v2 [11] trained on ImageNet-2012 has been used
as self-supervised feature extractor. ‡ indicates results reported in [59], * identifies the few-shot approaches adapted by [59] for FSCIL, and
† shows the results for approaches taken from their respective papers. Our proposed approach based on the concatenation of supervised and
self-supervised features outperforms the latest FSCIL methods. Our relative performance gain with respect to each approach in terms of
average incremental accuracy is noted in the last column. Using a two-sided t-test with each iteration as the data, our approach is statistically
significantly better than the state-of-the-art with p < .0001

Method Acc. in each session (%) " Avg. " our relative
improvement0 1 2 3 4 5 6 7 8 9 10

Ft-CNN‡ 68.68 43.7 25.05 17.72 18.08 16.95 15.1 10.6 8.93 8.93 8.47 22.02 40.83

NCM‡ [29] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 +30.36

EEIL‡ [13] 68.68 53.63 47.91 44.2 36.3 27.46 25.93 24.7 23.95 24.13 22.11 36.27 +26.58

iCaRL‡ [47] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 +26.18

TOPIC‡ [51] 68.68 62.49 54.81 49.99 45.25 41.4 38.35 35.36 32.22 28.31 26.28 43.92 +18.93

LEC-Net† [57] 70.86 58.15 54.83 49.34 45.85 40.55 39.70 34.59 36.58 33.56 31.96 45.08 +17.77

SS-iCaRL† [16] 69.89 61.24 55.81 50.99 48.18 46.91 43.99 39.78 37.50 34.54 31.33 47.28 +15.57

SS-NCM† [16] 69.89 61.91 55.51 51.71 49.68 46.11 42.19 39.03 37.96 34.05 32.65 47.33 +15.52

SPPR† [63] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 +13.53

SS-NCM-CNN† [16] 69.89 64.87 59.82 55.14 52.48 49.60 47.87 45.10 40.47 38.10 35.25 50.78 +12.07

Decoupled-DeepEMD‡ [58]* 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 58.73 +4.12

Decoupled-Cosine‡ [52]* 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 59.36 +3.49

ERL† [18] 73.52 70.12 65.12 62.01 58.56 57.99 56.77 56.52 55.01 53.68 50.01 59.93 +2.92

ERL++† [18] 73.52 71.09 66.13 63.25 59.49 59.89 58.64 57.72 56.15 54.75 52.28 61.18 +1.67

CEC‡ [59] 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +1.52

FeSSSS (Ours) 79.60 73.46 70.32 66.38 63.97 59.63 58.19 57.56 55.01 54.31 52.98 62.85

study that using just a linear classifier reduces performance.
Training algorithm for lightweight classifier is described in
Algorithm 2 in the supplemental.

4.3. Catastrophic Forgetting Mitigation via Gaus-

sian Generator

To mitigate the effect of catastrophic forgetting of old
classes, we use a Gaussian Generator model for each class.
This starts by calculating the mean vector of each class
and retain the centroids between incremental sessions. The
mean could be thought of as maintaining a single exemplar
per class in a conventional CIL setting. The problem with
centroids is that they do not capture anything about the shape
of the class, and some classes are much more compact than
others leading to a type of catastrophic forgetting as we
forget their shapes.

With only a few samples per class developing shape mod-
els is a challenge. Inspired from generative models, we de-
veloped generating synthetic data for each of the old classes
using a Gaussian model that uses the maintained centroid
vector and sample variance. We explored with either a scalar
(spherical) or vector (axial) model of variance, with a slightly
better performance with the scalar – the number of samples
(K-shot) is far less than the vector dimensionality likely
leading to overfitting. During incremental training, the Gaus-
sian Generator is either learning models for the new classes
or generating samples for the known classes by randomly
sampling from its Gaussian model. Either way, it provides
features to the downstream training.

5. Experiments and Results

We conduct our experiments on three established bench-
mark data sets for FSCIL, i.e., Caltech-UCSD Birds-200-

2011 (CUB200) [53], miniImageNet [50], and CIFAR100
[33]. Below we list the details about data sets and experi-
mental settings and subsequently provide results comparing
our approach against state-of-the-art FSCIL methods.

5.1. Data Sets

Caltech-UCSD Birds-200-2011 CUB200 [53] is a fine-
grained image classification data set originally comprised of
5994 training and 5794 test images belonging to 200 classes
of birds. In [51], authors established a FSCIL protocol where
100 classes were used for the base session and the remaining
100 were equally distributed in 10 incremental sessions. For
training, the base session was comprised of 30 samples per
class, whereas each incremental session is a 10-way 5-shot
setting. It should be noted that all test examples belonging
to the enrolled classes at any given incremental session were
used for evaluation. In a conventional setting, images were
resized to 256 maintaining aspect ratio and 224⇥224 random
crops with random horizontal flip were used during training
while central crops of the same size were used for evaluation.

miniImageNet miniImageNet is a small subset of
ImageNet-2012 [50] comprised of 100 classes, each hav-
ing 600 images; 500 training and 100 test images. Tao et
al. [51] split the 100 classes into 60 base and 40 incremental
classes. The 40 incremental classes were further divided into
8 incremental sessions where each class contained only 5
samples; synthesizing 5-way 5-shot setting. The image size
of miniImageNet was 84⇥ 84.

CIFAR100 CIFAR100 [33] is a popular small scale classi-
fication data set comprised of 100 classes. Following [51],
100 classes were divided into 60 base and 40 incremental
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Table 2. Comparison of FeSSSS with the state-of-the-art on miniImageNet data set, Moco-v2 [15] trained on OpenImages-v6 has been
used as self-supervised feature extractor. ‡ indicates results copied from CEC [59], * identifies the few-shot approaches adapted by [59] for
FSCIL, and † shows the results for approaches taken from their respective papers. Further ⇧ identifies that the results have been approximated
from graphs since tabular results are unavailable from respective papers. Using a two-sided t-test with each iteration as the data, our approach
is statistically significantly better than the state-of-the-art CEC with p < .0001

Method Acc. in each session (%) " Avg. " our relative
improvement0 1 2 3 4 5 6 7 8

Ft-CNN‡ 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.6 1.4 13.44 +54.79

NCM‡ [29] 61.31 47.8 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.82 +37.41

iCaRL‡ [47] 61.31 46.32 42.94 37.63 30.49 24 20.89 18.8 17.21 33.28 +34.95

EEIL‡ [13] 61.31 46.58 44 37.29 33.14 27.12 24.1 21.57 19.58 34.96 +33.27

LEC-Net† [57] 61.31 35.37 36.66 38.59 33.90 35.89 36.12 32.97 30.55 37.92 +30.31

TOPIC‡ [51] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +28.59

ERL†⇧ [18] 61.67 56.19 54.70 51.19 47.61 45.23 44.0 40.95 39.8 49.03 +19.20

ERL++†⇧ [18] 61.67 57.61 54.76 51.67 48.57 46.42 44.04 42.85 40.71 49.81 +18.42

SS-NCM-CNN†⇧ [16] 62.88 60.66 57.55 52.66 50.44 48.44 45.11 41.55 40.88 51.13 +17.10

Decoupled-DeepEMD‡ [58]* 69.77 64.59 60.21 56.63 53.16 50.13 47.49 45.42 43.41 54.53 +13.70

Decoupled-Cosine‡ [52]* 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 55.99 +12.24

CEC‡ [59] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.74 +10.49

SPPR†⇧ [63] 80.0 74.0 68.66 64.33 61.0 57.33 54.66 51.66 49.0 62.29 +5.94

FeSSSS (Ours) 81.5 77.04 72.92 69.56 67.27 64.34 62.07 60.55 58.87 68.23

ones; with incremental classes further divided equally in 8
incremental sessions. Like miniImageNet, CIFAR100 was
also used in a 5-way 5-shot setting. The data set was com-
prised of 60000 32⇥ 32 images with 500 training and 100
test images per class. Due to space constraints, we present
results for CIFAR100 only in the supplemental material.

5.2. Experimental Settings

Following existing approaches on FSCIL, for supervised
training on base session, we use ResNet-18 for CUB200
and miniImageNet data sets, and ResNet-20 for CIFAR100.
Although new models from scratch can be trained on base
session data (D0

train), we leverage the advances made by
the state-of-the-art approach of CEC [59] and use their
trained models. For self-supervised learning, we investi-
gate various models trained either on ImageNet-2012 [50]
or OpenImages-v6 [34]. Specifically, we use ResNet-50
models trained in various self-supervised manners including
Moco-v2 [15], DeepCluster-v2 [11], SwAV [12], and SeLa-
v2 [1]. For main results in Tabs. 1, 2, and 5 (in supplemental)
we use DeepCluster-v2 [11] based self-supervised features
learned on ImageNet-2012 for CUB200, and CIFAR100 ex-
periments and Moco-v2 [15] based self-supervised features
learned on OpenImages-v6 for miniImageNet experiments.
This mismatch is imposed to enforce no overlap between the
data sets used for supervised and self-supervised models. Re-
sults with other self-supervised approaches are demonstrated
as part of the ablation study.

To enhance the training data for the classification module,
we extract features from both supervised and self-supervised
models using various augmented versions of each image
in each incremental session. For each FSCIL data set we
follow the same data augmentations as originally employed
by CEC [59]. We present an ablation analyzing the impact
of the number of augmentations.

The classification module is trained for 1000 epochs at
a learning rate of 0.1 for the base session. For each incre-
mental session, we use 500 epochs and a smaller learning
rate of 0.001. A batch size of 256 is used for both base and
incremental training. We further employ class balancing
to emphasize the importance of old class centroids or the
generated samples from the Gaussian Generator. For each
incremental session, we choose the model saved with the last
epoch, not the best performing one on the test set. This is due
to the fact that there is no held-out validation set, because
there are so few samples, and we did not want to tweak the
test set that might result in marginal improvement.

For experiments on CUB200, images are resized to 256
maintaining aspect ratio and then 224⇥ 224 random crops
or horizontally flipped random crops are used for training.
For miniImageNet, we follow CEC [59] and resize images to
92 and then 84⇥ 84 random or horizontally flipped random
crops are used. During evaluation, for each image only
central crop-based features are concatenated and forward
passed through the trained classification module.

5.3. Results – Comparison Against SOTA FSCIL

We document our main results on CUB200 and miniIma-
geNet data sets in Tabs. 1 and 2 respectively, while results
for CIFAR100 are made available in the supplemental (Tab.
5). We provide a comparison of FeSSSS against the latest
state-of-the-art FSCIL approaches [16, 18, 51, 57, 59, 63] and
outperform each one of them by a significant margin. To
emphasize the relative performance gain, we report the av-
erage incremental accuracy in second-to-last column and
percentage improvement due to our approach in the last
column.

Focusing on CUB200 data set in Tab. 1 , our approach
performs better than all types of FSCIL methods, e.g.,
classic CIL methods adapted for FSCIL (iCaRL, NCM,
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Table 3. Ablation conducted on CUB200 demonstrating both supervised and self-supervised features alone are inferior to CEC [59] and
feature fusion layer (vs simple linear classifer) result in the best performance. Also the Gaussian Generator’s synthetic data for old classes
improves performance over just centroid. Either variance model provides statistically better performance (p < .0001).

Method features feature
fusion layer

Gaussian
generation variance Acc. in each session (%) " Avg. " improvement

over CEC0 1 2 3 4 5 6 7 8 9 10
CEC - - - - 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 -

F
e
S

S
S

S
(O

u
r
s
) concat 7 3 scalar 77.02 68.18 63.90 59.46 55.51 51.89 49.24 46.75 44.92 43.53 42.06 54.76 -6.57

self-supervised 3 7 n.a. 73.21 65.09 62.24 58.26 54.76 51.82 49.78 47.60 44.54 44.46 43.56 54.12 -7.21

supervised 3 7 n.a. 74.37 67.86 64.54 60.81 58.19 54.62 53.22 51.61 49.55 48.63 46.63 57.27 -4.06

concat 3 7 n.a. 79.60 72.19 69.47 65.63 63.55 58.78 58.01 56.64 54.09 53.65 52.81 62.22 +0.89

concat 3 3 vector 79.60 72.70 70.02 66.33 63.87 59.40 58.19 57.09 54.78 54.62 52.91 62.68 +1.35

concat 3 3 scalar 79.60 73.46 70.32 66.38 63.97 59.63 58.19 57.56 55.01 54.31 52.98 62.85 +1.52

EEIL), methods leveraging from additional data and semi-
supervised training (SS-iCaRL, SS-NCM, SS-NCM-CNN),
few-shot classification approaches adopted for FSCIL learn-
ing (Decoupled-Cosine, Decoupled-DeepEMD), and meth-
ods specifically designed for FSCIL (TOPIC, CEC, ERL,
ERL++, SPPR, LEC-Net). It is interesting to note that gen-
eral CIL methods adapted for FSCIL perform very poorly.
While the performance of specifically designed solutions for
FSCIL is better, some of them (LEC-Net, SPPR) barely im-
prove over baseline, i.e., TOPIC [51]. The semi-supervised
approach by [16] that leverages additional unlabeled data
is capable of improving the baseline iCaRL and NCM but
not in the top performers. Compared to these specifically
designed FSCIL approaches (SPPR, LEC-Net) or adapted
CIL approaches (iCaRL, NCM, EEIL), few-shot methods
(Decoupled-Cosine, Decoupled-DeepEMD) adapted for FS-
CIL perform much better. The closest approaches were
ERL/ERL++ and CEC which were consistently outper-
formed by our method across all incremental sessions. We
should note that the performance gain due to our method is
higher for initial incremental sessions, which is understand-
able as catastrophic forgetting becomes worse over a period
of time as more and more classes are enrolled.

When we focus on results for miniImageNet documented
in Tab. 2 we face some interesting contradictions. For exam-
ple CEC is no longer the second best-performing approach
and ERL/ERL++ performed poorly. However, it is worth
noting that CEC and few-shot methods (Decoupled-Cosine,
Decoupled-DeepEMD) are still in the lead. The contradic-
tion may be due to the bigger base session in miniImageNet
than CUB200 and introduction of fewer classes per incre-
mental session. More specifically, the number of training
images in the base session of miniImageNet is 30000, these
images belong to 60 classes, whereas for CUB200 there are
only 3000 images in base session belonging to 100 classes.
Additionally, in miniImageNet only five classes are intro-
duced in each incremental session whereas in CUB200 ten
classes are introduced, possibly triggering more over-fitting
of new classes. Nonetheless, as evidenced in Tab. 2, our
approach consistently outperforms all other approaches by
a high margin as noted in the last column as percentage
improvement in average class incremental accuracy.

5.4. Ablation on Importance of Components

In Tab. 3 we report the results of an ablation study to
analyze the importance of our claimed contributions includ-
ing supervised and self-supervised representations and the
Gaussian Generator. The lightweight classification module
trained independently on either of the two feature repre-
sentations performs poorly compared to the CEC approach.
However, when the feature representations are combined
by mere concatenation, the classification head outperforms
CEC consistently across all incremental sessions. As men-
tioned earlier, to mitigate catastrophic forgetting we maintain
a centroid (mean) vector per class which were also used dur-
ing training to refresh the classification module on the old
classes. To further reduce catastrophic forgetting we ex-
plored synthetic data generation for which a variance vector
or scalar per class needs to be maintained. Tab. 3 shows
that by synthesizing data for old classes and including it in
an incremental session training, we were able to squeeze a
little more performance gain. It is worth noting that there
is not a significant difference whether a variance vector per
class or a single scalar is maintained. Since the underlying
data in each session is very limited (five images per class),
generating a full co-variance matrix is pointless and does not
align with the limited resource setting of FSCIL. Tab. 3 also
demonstrates the importance of feature fusion layer as by
removing it, the performance is significantly dropped.

5.5. Supervised & Self-Supervised Data Overlap

To avoid overlap between self-supervised and supervised
data sets, we have used self-supervised models trained on
ImageNet-2012 and OpenImages-v6 data sets respectively
for experiments on CUB200/CIFAR100 and miniImageNet.
Since, miniImageNet is comprised of selected classes from
the original ImageNet-2012, using self-supervised features
based on ImageNet would be biased. A good separation for
miniImagenet classes would have been learned already in a
self-supervised manner. We conduct an ablation in Tab. 7
(in supplemental) where self-supervised models trained on
ImageNet are used as a feature extractor demonstrating that
using ImageNet-2012-based features results in much better
performance than reported in Tab. 2. We should further
emphasize that in Tab. 7, classification heads trained on
self-supervised features alone outperform the concatenated
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Table 4. Ablation conducted on CUB200 for number of augmentations per training image. For this ablation, we used self-supervised features
learned through DeepCluster-v2 [11]. It is evident as the number of augmentations per image increase the performance increases.

Method
number of augmentation

per image features feature
fusion layer

Gaussian
generation variance Acc. in each session (%) " Avg. " improvement

over CEC0 1 2 3 4 5 6 7 8 9 10
CEC - - - - - 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 -

F
e
S

S
S

S
(O

u
r
s
) 10 concat 3 7 n.a. 77.72 70.44 67.49 63.57 60.84 56.70 56.15 54.59 52.59 52.00 50.72 60.25 -1.08

20 concat 3 7 n.a. 78.45 71.04 68.07 64.86 62.31 58.04 57.10 55.60 52.86 52.71 51.58 61.14 -0.19

30 concat 3 7 n.a. 79.01 71.33 68.45 64.86 62.53 58.57 57.17 55.83 53.11 53.07 52.08 61.45 +0.12

40 concat 3 7 n.a. 79.32 71.61 68.83 65.42 62.85 58.73 57.45 56.36 53.72 53.34 52.26 61.80 +0.47

50 concat 3 7 n.a. 79.29 72.44 69.09 65.63 63.18 59.01 57.69 56.38 53.93 53.45 52.72 62.07 +0.74

60 concat 3 7 n.a. 79.60 72.19 69.47 65.63 63.55 58.78 58.01 56.64 54.09 53.65 52.81 62.22 +0.89

features.

5.6. Number of Augmentations Per Image

The classification module in our FeSSSS approach is not
fed images directly, rather image features are used as input.
To increase the variation of training data, we generated vari-
ous augmented versions of training images. Specifically, we
used the random crop and horizontal flip augmentations con-
ventionally employed for the training of deep models. The
augmented versions of training images are passed through
both supervised and self-supervised feature extractors to gen-
erate the respective representations. Tab. 4 shows the results
of the ablation study where the number of augmentations
per training image are varied. It is evident that as the num-
ber of augmentations being used increases, the performance
improves. We have chosen 60 augmentations per training
image as a good compromise as the performance gain due to
increased number of augmentations slowly declines and the
training time of the classification module in each incremental
session consequently increases.

5.7. Various Self-Supervised Features

In Tabs. 6, 7, and 8 (in supplementary) we have conducted
an ablation study on various self-supervised features includ-
ing DeepCluster-v2 [11], SwAV [12], Moco-v2 [15], and
SeLa-v2 [1] for CUB200, miniImageNet, and CIFAR100
data sets. In each case the self-supervised features are
learned on the ImageNet-2012 data set [50] with a ResNet-
50 model. We can note that not all self-supervised features
perform equally well for FSCIL, e.g., while DeepCluster-
v2 and SwAV features combined with supervised features
outperform CEC, Moco-v2 and SeLa-v2 have lower per-
formance. Irrespective of the underlying self-supervised
representation, synthetic data generated with the Gaussian
Generator is always helpful with either using scalar or vector
variance compared to only maintaining the centroid vectors.

6. Discussion

Few-shot class incremental learning is a challenging
CIL setting which has inherently limited number of la-
beled data for each session. Inspired from advances of self-
supervised learning and its demonstrated applicability to
novel downstream tasks, we have investigated its use for
FSCIL. Through our main results in Tabs. 1 and 2, we

have demonstrated that our proposed approach FeSSSS is ca-
pable of outperforming specially designed pure-supervised
approaches for FSCIL. It is interesting to note that general
CIL approaches do not scale well for FSCIL setting, whereas,
pure few-shot approaches adapted for FSCIL are capable
to perform comparatively. Similarly, by using extra data in
a semi-supervised fashion, [16] are able to squeeze some
performance gain from classical methods, however they per-
formed rather poorly compared to other new methods and
much worse than our FeSSSS. We should emphasize that
after initial learning on session zero, we kept the supervised
representation fixed throughout the incremental steps. A
natural future work would be to let the supervised represen-
tation adapt with data from incremental sessions, i.e., same
as original CEC, in addition to adapting our classification
module.

7. Conclusion

We present FeSSSS – a learning framework for the chal-
lenging problem of few-shot class incremental learning

where we explore the importance of self-supervised learn-
ing. We demonstrate that using either supervised or self-
supervised features independently is sub-optimal and results
in performance lower than CEC/SPPR, i.e., the previous
state-of-the-art algorithms on FSCIL. By employing feature
fusion, FeSSSS is capable of outperforming all existing meth-
ods for FSCIL on three established benchmarks by a large
margin. We further show that the Gaussian Generator further
addresses catastrophic forgetting of old classes and helps to
further boost the performance of the proposed approach. An
ablation on various self-supervised techniques demonstrates
how some approaches (DeepCluster-v2, SwAV) are better
suited for the task of FSCIL than others (Moco-v2, SeLa-
v2). To further avoid the overlap between supervised and
self-supervised feature extractors, we used Moco-v2 trained
on OpenImages for miniImageNet experiments.
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