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Abstract

Learning a common representation space between vision
and language allows deep networks to relate objects in the
image to the corresponding semantic meaning. We present
a model that learns a shared Gaussian mixture representa-
tion imposing the compositionality of the text onto the visual
domain without having explicit location supervision. By com-
bining the spatial transformer with a representation learning
approach we learn to split images into separately encoded
patches to associate visual and textual representations in an
interpretable manner. On variations of MNIST and CIFAR10,
our model is able to perform weakly supervised object de-
tection and demonstrates its ability to extrapolate to unseen
combination of objects.

1. Introduction
For an artificial intelligence agent to gain an understand-

ing of the world comparable to the one of humans’, it should
to be able to connect the visual world with its semantic mean-
ing. There has been a substantial effort in learning image rep-
resentations [6, 20] as well as text representation [9, 26, 27],
capturing the semantic meaning and disentangling the vari-
ation factors in a way similar to how humans learn their
surroundings. However, learning unsupervised visual repre-
sentations from the image data, (e.g., through image recon-
struction), can be challenging because there is no guidance
towards an informative content (e.g., presence of objects)
and uninformative content (e.g., the exact pixel location
of the horizon), when there is no supervision involved or
the downstream task is unknown [36]. [2] hypothesises that
language can be a good prior towards forming useful repre-
sentations, i.e., things that are commonly described or talked
about by people in visual data is information we would like
to preserve in our representations.

Our goal is to build upon the idea of preserving the se-
mantic information in the learned representations and learn
an unified representation between the text and images, where
we use the semantic structure of the text to disentangle the
visual data. For instance, when a caption mentions a car, the

corresponding representation of the image should not only
include the same information, but should be able to report as
well, which part of the image caused the representation of
”car”. Naturally, such a representation is not limited to hold
only a single concept, but can be composed of several indi-
vidual components, both on the text as well as on the image
side. As text is already highly structural, its representation
can be viewed as the aggregation of its words’ meanings.
Images could be then decomposed into patches associated
with the building blocks that encode the semantics within
the text.

By directly modeling the compositionality of the repre-
sentation, it becomes possible to obtain several desirable
properties. The first property is generalizability. In other
words, learning a representation of its constituents is usually
simpler than inferring a meaningful joint representation of a
complex example. Hence, in novel scenarios, being able to
robustly embed partial entities, which are well known from
the training set, allow representations to generalize more
easily. The second property is combinatorial extrapolation.
Certain objects in the images might have high co-occurrence
probability. Previously unknown object combinations during
test time can cause a deep model to fail. Compositionality
can overcome this bias as it allows to arbitrarily combine
partial representations. The third and the final property is
interpretability. Associating the visual components of the
image to the semantics encoded by the textual components
allows humans to develop a better understanding of how
deep models form their complex representations and might
also assist in identifying the causes behind possible failures.

In this work, we implement the idea of using textual guid-
ance to learn compositional image and text representations.
One goal of the representation learning is to create repre-
sentations of the raw input data, which are useful for an a
priori unknown downstream tasks. We choose to evaluate
our approach on image retrieval and weakly supervised ob-
ject detection. The latter task is particularly fitting as an
aim to decompose images into their respective objects as
given by the textual labels without having any bounding box
supervision. Therefore, it allows to give a good indication
about the compositionality and disentanglement of the image
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Figure 1. Compositional Mixture (CoMix) Model. The graphical model is shown in the (b) while (a) shows the architecture of our proposed
CoMix model that learns two Gaussian mixtures, one is learned from the image and the other one is from the text data. The image encoder
first uses a CNN to predict the Gaussian mixture weights π(k)(x) as well as the transformation parameters p(c(k)|x) used by the spatial
transformer module to extract image patches xc(k)

. Each patch is individually encoded by a second CNN into Gaussian distributions
N (z|µ(xc(k)

), σ(xc(k)

)). A text decoder p(w|z) is learned with a negative log likelihood loss and ensures that textual information is
contained in the representation. A text encoder embeds individual words into Gaussian components and then mixes them into the textual
Gaussian mixure representation p(z|w). A KL-divergence loss allow to learn the correspondence between text tokens and image crops by
matching the two representations. Without any bounding box supervision, our CoMix model learns to detect images.

representation that is achieved by our model.
Our contributions are as follows: we present a novel

model that learns a compositional Gaussian mixture rep-
resentation for both the image and the text and matches
them with a KL divergence loss. The vision part of the
model incorporates the spatial-transformer architecture to
learn bounding boxes of the image parts corresponding to the
different textual components. We evaluate our model on the
altered MNIST and CIFAR10 datasets, where each image is
composed of several images from the original dataset.

2. Related work

Representation Learning. We distinguish ourselves from
most representation learning approaches on images in that
we do not try to embed the complete image information in the
latent code. Nonetheless, the goals of representation learning
are shared across related work in this direction. MONet [5]
also employs a compositional approach to scene understand-
ing and reconstruction. It iteratively constructs a scene by
its components such as objects and background elements
and uses a VAE [20] architecture at each step. Similarly,
IODINE [13] also employs a VAE iteratively to infer and
reconstructs scene an object at a time. Related work has pre-
viously combined the spatial transformer architecture [16]
with image representation learning both iteratively [10] and
by processing the whole image at once [8].

Multi-modal Learning. When considering models working

with multi-modal data, MVAE [35] applies the VAE setting
to multiple modalities such as image and text and can be
trained semi-supervised, but it does not employ a composi-
tionality approach. Learning shared representations between
images and text is often done targeting a specific application
such as retrieval [37] or grounding sentences in images [31].
Work on associating objects with parts of language through
visual-semantic alignment [18, 19] usually uses greater level
of supervision at least on object detection. One such example
is VisualBERT [23] which combines the rich textual repre-
sentations of BERT [9] with supervised object detectors to
solve a variety of visual-language tasks. Similarly, [25] uses
natural language explanations to improve the performance of
a visual classifier. LXMERT [33] and UNITER [7] demon-
strate that rich representations learned from multi-modal
vision and text data can benefit diverse tasks such as Visual
Question Answering (VQA). The learned representations of
CLIP [28] achieve zero-shot object recognition capabilities
by training on a large dataset of unstructured image-text
pairs. Recently, several works [15, 17, 24, 32] build upon
the contrastive learning objective similar to CLIP to learned
multi-modal representations in an unsupervised manner.

Weakly Supervised Object Detection. Following the ad-
vances in supervised object detection in models such as
YOLO [29], Faster-RCNN [30] and Mask-RCNN [14], more
work is dedicated in solving the object detection task without
bounding box labels, i.e. weakly supervised with only labels
about which object are present in the image. WSDDN [3]
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works by pooling spatial regions on the last convolutional
feature layer of a CNN and has been challenged by similar
approaches such as C-MIDN [12] and PredNet [1]. These
approaches, however, do not offer the same level of intro-
spection and interpretability as our CoMix.

3. Compositional Mixture Model

We present our proposed compositional mixture model
(CoMix) in the following section. In our setting, we consider
a joint data distribution p(x,w) of images x and text w with
vocabulary V . Our goal is to use a deep learning model
to encode the visual signal coming from the images into a
compositional representation, which entails all the semantic
information that the components of the textual counterpart
contains. At the same time, the representation should be
interpretable in terms of which image region contributes to
its components’ representations.

3.1. CoMix Overview

In our CoMix model, we choose to model the latent rep-
resentation as a Gaussian mixture. By being a multimodal
distribution, it is able to model complex data while having
the desired property of being compositional as it consists of
several simple Gaussian distributions. Hence, each textual
component as well as inferred image patches are embedded
into individual Gaussians before being mixed to form the
final representation. Our CoMix model consists of three
parts as depicted by Figure 1a. A text encoder p(z|w) takes
as input the text tokens w and encodes each one of them into
a latent mixture component.

Analogously, an image encoder maps the input image to
another Gaussian mixture p(z|x), where each Gaussian com-
ponent corresponds to a different spatial image region. By
aligning the two mixture distributions with a KL-divergence
loss term, CoMix learns to associate components of the text
to the concrete image regions. Attending to separate image
patches is learned end-to-end by a spatial transformer mod-
ule without requiring any extra supervision. Finally, a text
decoder p(w|z) ensures that the learned Gaussian mixture
representation retains all the textual information, effectively
preventing degenerate solutions. Thus, CoMix is trained
by supplying image-text paris (x,w) without any additional
supervision as to how these two modalities are related, e.g.
there is no bounding box supervision on where the text is
grounded in the image.

3.2. Text Encoder

A string of text w, such as a sentence, is composed of
entities of interest, such as objects, that are also present in
the image. Each word is embedded into a Gaussian latent
component N (z|µ(wi), σ(wi)), where µ(wi) and σ(wi) are
determined by an embedding layer. The latent variables of

all the words of the text are then combined into a Gaussian
mixture model

1

|w|
∑
i

N
(
z|µ(wi), σ(wi)

)
, (1)

where each Gaussian of the mixture is weighted equally.
This allows us to express a complex multi-modal representa-
tion as the sum of simple uni-modal Gaussian components
representing its constituent words. Given a one-hot vector
for each word, the text encoder is a single matrix that stores
a trainable set of Gaussian parameters for each word.

3.3. Image Encoder

A spatial transformer module [16] determines a total of k
image regions, which are embedded into the parameters of a
Gaussian distribution. Such an architecture allows us to crop,
translate, and scale portions of the original input image by
defining an affine transformation Aθ that maps image pixel
locations of the source and the target image:

(
xs
i

ysi

)
= Aθ

xt
i

yti
1

 (2)

where (xs, ys) and (xt, yt) are the source and target co-
ordinates of pixel locations. The spatial transformer can be
viewed as hard attention on the input image with differen-
tiable transformation parameters Aθ.

We employ a convolutional neural network (CNN) to
learn k different transformations p(c(k)|x) from the input
image. By applying the spatial transformer on each of these,
we get k different image crops xc

(k)

, which are then indi-
vidually encoded with another CNN that, in its turn, pro-
vides the parameters µ and σ to a Gaussian distribution
N (z|µ(xc(k)

), σ(xc
(k)

)). Hence, each Gaussian component
of the image is also associated to an image region by a hard-
attention mechanism. The Gaussian components are com-
bined through the categorical mixture distribution π(k)(x),
which is anticipated from the original input image with the
same network that predicts the k transformations c(k) to form
the Gaussian mixture

∑
k π

(k)N (z|µ(xc(k)

), σ(xc(k)

)).

3.4. Representation Learning

Our requirements for learning a meaningful representa-
tion are twofold: 1) The data likelihood under our graphical
model needs to be maximized. Since the prediction of w
depends only on z, this forces z to capture all the required
textual information from the corresponding images x; 2) The
representation should discard image details that are irrele-
vant for text prediction to obtain a correspondence of text
and image components.

To address the former, we train a text decoder p(w|z)
on top of the image representation. This results in the full
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graphical model depicted in Figure 1b. According to the
graphical model, we can now define the joint distribution of
our data p(x,w) = p(w|x)p(x), where we are particularly
interested in the conditional

p(w|x) =
∏
i

p(wi|x) (3)

=
∏
i

∫∫
p(wi|z)p(z|x, c)p(c|x)dcdz (4)

=
∏
i

∫∫
p(wi|z)

∑
k

π(k)(x)N
(
z|µ(xc

(k)

), σ(xc
(k)

)
)

(5)

p(c(k)|x)dc(k)dz (6)

=
∏
i

∑
k

π(k)(x)Ez∼N (z|µ(xc(k)
),σ(xc(k)

))

[
p(wi|z)

]
(7)

where the crop parameters c(k) are deterministically deter-
mined as a parametric function of x, which is represented by
the transformer architecture.

By parameterizing the conditional distribution with our
model parameters, we can define our objective to minimize
the negative log-likelihood of the joint occurrence of pictures
x and text w:

min
θ

Ex,w∼p̃

[
− log pθ(x,w)

]
(8)

= H(x) + min
θ

Ex,w∼p̃

[
− log pθ(w|x)

]
(9)

where H(x) is the entropy of the image data and as a
constant is irrelevant for the optimization procedure. Specifi-
cally, the second term on the right-hand side is the negative
log-likelihood of the text data given the image under our
model and will be denoted as NLL. By minimizing NLL, we
are effectively capturing the information required to predict
w since the predictive text distribution p(w|z) depends only
on the representation z.

Since we want the representation z to focus only on the
image details which have a textual counterpart, the second
condition aims to discard any image-specific detail from z.
This can be done by minimizing the distance between the
conditional distributions p(z|x) and p(z|w) to enforce con-
sistency between encoded images and corresponding text.
While we model p(z|x) directly, p(z|w) is intractable under
our graphical model. Hence, we introduce a variational dis-
tribution q(z|w) to approximate the representation induced
by the observation of the text data. We model q(z|w) as
a Gaussian mixture distribution in which each component
corresponds to a single word to capture the compositional
nature of the text. By minimizing the Kullback-Leibler (KL)
divergence between p(z|x) and q(z|w) we are effectively

minimizing the amount of image-specific information em-
bedded into z, fulfilling our second requirement:

DKL

(
pθ(z|x)

∥∥qϕ(z|w)
)
≥ DKL

(
p(z|x)

∥∥p(z|w)
)

(10)

= DKL

(
p(z|x,w)

∥∥p(z|w)
)

(11)

= I(z; x|w). (12)

When I(z; x|w) is minimal, the representation z must con-
tain only the information that can be determined through the
text (as z and x become conditionally independent), discard-
ing picture specific nuisances not mentioned in the textual
description w.

Combining the KL-divergence term with NLL, we arrive
at the loss function

min
θ,ϕ

L = min
θ,ϕ

Ex,w∼p̃

[
− log pθ(w|x) (13)

+DKL

(
pθ(z|x)

∥∥qϕ(z|w)
)]

. (14)

The KL-divergence between the two mixture models p(z|x)
and q(z|w) is approximated by sampling from each Gaussian
component using the reparameterization trick [20] resulting
in a stochastic estimate of the loss.

3.5. Image Area Loss

In the previous sections, we provided a detailed descrip-
tion of how a compositional Gaussian mixture representation
for both text and image may be learned. Learning the repre-
sentation is the key part that makes CoMix implicitly split
the image into elements that match the textual components.
However, the crops that are learned by the spatial transformer
are not guaranteed to be minimally enclosing the objects they
represent. Since neural networks are able to learn arbitrary
mappings from the image region to representation, the net-
work can learn to attend to a larger image part than just
the object, effectively including unnecessary information
without harming the modeling performance.

We are specifically interested in the smallest bounding
box per object to be encoded into a Gaussian component
because a precise localization greatly helps model inspection
and interpretability. Hence, we introduce another tunable
loss term that penalizes the size of the image crops learned
by the spatial transformer. Our final loss is given by

min
θ,ϕ

L = min
θ,ϕ

Ex,w∼p̃

[
− log pθ(w|x) (15)

+DKL

(
pθ(z|x)

∥∥qϕ(z|w)
)

(16)

+ λ
∣∣∏

i

Aθ,ii

∣∣]. (17)

where the product of the diagonal elements of the affine
transformation matrix Aθ equal the area of the patches by
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the transformer architecture. The coefficient λ regulates to
which degree we would like to penalize the area of the image
crops. In the experiments section below, we investigate the
effect of this hyperparameter.

4. Experiments

In this section, we describe the datasets and experimental
tasks and provide quantitative and qualitative results evaluat-
ing the representation learned by CoMix. Furthermore, we
demonstrate the performance of our model on classification,
image-retrieval, and weakly supervised object detection.

4.1. Datasets and Setup

Datasets. We conduct experiments on two datasets, Mul-
tiMNIST and MultiCIFAR10, which represent variations of
MNIST [22] and CIFAR-10 [21], respectively. MNIST con-
sists of 60K/10K training/test examples from 10 handwritten
digits and CIFAR-10 contains 50K/10K training/test natural
image examples from 10 classes.

In contrast, MultiMNIST and MultiCIFAR10 combine
several original images randomly sampled onto the same can-
vas. For each example, we sample between one to four origi-
nal images, scale them with a factor drawn from N (1.3, 0.1),
and place them at random locations on the canvas. The can-
vas size is 56× 56 for MultiMNIST and 80× 80 for Multi-
CIFAR10. The presence of an object class in the image is
indicated with the help of labels, regardless of how many
times the same object appears. We sample training and test
data once according to the original data sizes and then keep
the datasets fixed across all the experiments. See Figure 3
for the examples of images from these datasets.
Experimental setting. All the compared models consist of
the same neural-network architectures with the similar or
same number of parameters. For MultiMNIST, the image
encoder is a 3-layer convolutional network with BatchNorm
and ReLU after each layer. For MultiCIFAR10, we use
ResNet18 as the image encoder. For both datasets, we use
an embedding layer for the text encoder, a 2-layer MLP
with ReLUs as the text decoder, and a spatial transformer
network consisting of a 3-layer convolutional network with
BatchNorm and ReLU.

The number of the mixture components k learned by the
spatial transformer network is set to 5 across all the datasets
such that the model has to learn to actively choose to use or
not to use components. The decision about using a particular
component is regulated by the mixture weights π(k), which
is a learned output of the same network. The area loss
coefficient λ is set to 4 for both datasets (see Section 4.3).
We randomly split 10% of the training data as a validation
set to tune the remaining hyperparameters. The model’s
code, experiments, and data generation will be made publicly
available.

MultiMNIST MultiCIFAR10

Cls Det Cls Det

CNN 95.87 n/a 73.99 n/a
WSDDN 99.63 88.27 75.42 49.47
CoMix 99.39 87.04 90.74 75.83

Table 1. Classification and object detection performance measured
in mean average precision (mAP, in percent) on MultiMNIST and
MultiCIFAR10 datasets.

4.2. Classification and Object Detection

Task. We evaluate our model on its ability to detect and clas-
sify objects in an image. For the classification, since there
are multiple target classes per image, we measure the mean
average precision (mAP) of the predictions of our model’s
text decoder. While our model has a direct supervision on
the classification task, there is no supervision signal or loss
on object detection. Solely the learning of a compositional
representation as well as the spatial-transformer architecture
facilitates the fact that our model naturally learns to detect
objects without the ground-truth bounding-box supervision.
Thus, the task setup is identical to weakly supervised object
detection (WSOD).

The predicted bounding boxes come from the transformer
networks predictions that select a region of the image to be
used as one component in our mixture model. We evaluate
on the ground-truth bounding boxes that are known from the
data generation process, i.e., location and boundary of each
individual original image. Following [11], object detection
is measured by mAP, where a detection is considered to be a
true positive whenever the intersection over union (IOU) of
the predicted and the ground-truth bounding box is greater
than 0.5.
Baselines. Two baselines are introduced for the classifica-
tion and object-detection tasks. Firstly, we isolate the image
encoder of our model to do the classification directly from
the input image to the label output without any representa-
tion learning denoted as CNN. This baseline is exclusively
trained on a binary cross-entropy loss to predict the pres-
ence of the object classes in the image. Our model should
match the CNNs classification performance to ensure that
the representation learning does not hinder the prediction
performance.

Secondly, we compare against Weakly Supervised Deep
Detection Network (WSDDN) [3] serving as an object-
detection baseline. WSDDN is an established backbone
for the weakly supervised object-detection networks that
relies on adaptive pooling over a convolutional feature map
similar to modern supervised object detection networks such
as Faster-RCNN [30]. Contrary to our approach, bounding-
box proposals are not learned, but generated algorithmically
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Figure 2. Mean average precision of our CoMix model on both
classification as well as object detection with varying values of
λ. The hyperparameter λ enables an area loss term that tightens
bounding box predictions around objects.

using the selective windows search strategy [34].
Results. We report the classification and object detection
results in Table 1. On classification, our CoMix model out-
performs both baselines on MultiCIFAR10 by a large mar-
gin (90.7% vs 75.4%/74%) and is on par with WSDDN on
MNIST. The close results on MultiMNIST can most likely
be explained by getting close to the perfect classification
results rather than choices in the model. We believe, the
considerably higher performance of our model on MultiCI-
FAR10 can be attributed to the compositional modelling of
the individual objects in the image. For this reason, mAP
approaches ResNet18’s classification performance of around
93% on the individual CIFAR10 images. Since our model
processes image parts separately, we can generalize from
the single image CIFAR10 classification performance to our
more difficult MultiCIFAR10 dataset. Both baseline models
back this property and, therefore, fall short in classification.

Similarly on the object detection, CoMix obtains a compa-
rable performance as WSDDN on MultiMNIST, but outper-
forms it on MultiCIFAR10 (75.8% vs. 49.5%). Being able
to flexibly learn the location of the objects instead of relying
on the statically generated bounding boxes helps our model
to more accurately pinpoint the image region responsible
for a class label. Both results show the benefit of modelling
image parts in isolation instead of the whole image as once
(CNN) and of learning bounding boxes for our components
with the spatial transformer module.

4.3. Inspecting the Area Loss

We argue that our area loss is essential for our model to
learn bounding boxes that enclose the object tightly, which
is important for both the detection performance and model

inspection. In order to validate this claim, we train our
model on both datasets with varying values of λ. A λ of 0
indicates that no area-loss term was applied while the bigger
λ gets, the more bounding boxes will be penalized for their
size. In Figure 2, we report mAP for both the classification
and object detection for different values of λ. Interestingly,
the classification performance is largely unaffected with
increasing λ and it is even higher for MultiCIFAR10 for any
λ > 0 compared to no area loss.

The mAP of the weakly supervised object-detection task
steadily increases for both datasets until λ reaches a value of
4. A value greater than 4 enforces bounding boxes that are
too small and, thus, detection accuracy diminishes. Based
on this analysis, we set λ = 4 for our experiments. Most
importantly, introducing this loss term only benefits both the
detection and classification in the range that we tested, so
that its use can be easily justified.

4.4. Image Retrieval

Task. To evaluate our model’s representation learning capa-
bilities, we introduce an image-retrieval task. Given a text
sample, the task is to find the best matching image from a
set of images. If our model learns a good shared represen-
tation of image-text pairs, it should be possible to retrieve
the image matching a query text by finding the image rep-
resentation closest to the inferred text representation. With
the use of our model, we first encode both the text and all
the images into Gaussian mixtures independently. Then, we
score the text representation to all the image representations.
Since these representations are multi-modal distributions, we
resort to calculating the piece-wise distance between Gaus-
sian components of all the possible text-image pairs. The
distance is defined by the average euclidean distance of each
text component’s mean to the closest image component’s
mean.

Based on the distance score, we can rank the images from
the high to low similarity. To evaluate retrieval performance,
we report the average rank of the ground-truth matching
image as well as the recall at ranks 1, 5, and 10.
Ablation Study. A key advantage of our model is that its
representations are compositional. To study the impact of
having a compositional representation, we create an ablation
model (Gauss), where the latent variable z is a Gaussian
instead of a mixture of Gaussians. In this ablation model, the
image encoder directly infers the latent variable z from the
input image without the compositional spatial transformer.
Moreover, the text encoder’s embedding layer is replaced
by a 2-layer MLP such that the representation of the full
sentence can be learned as it can no longer be composed of
simple embeddings. Since the ablation model only uses a
single Gaussian, the retrieval distance is calculated by taking
the euclidean distance between the means of the text and
image latents.
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MultiMNIST MultiCIFAR10

avg. Rank R@1 R@5 R@10 avg. Rank R@1 R@5 R@10

Regular
Gauss 6.85 21.09 64.84 86.72 16.47 14.06 32.03 55.47
CoMix 2.33 64.06 91.41 96.88 2.5 46.09 93.75 97.66

Skewed
Gauss 15.96 31.25 40.63 53.13 22.35 7.81 35.16 49.22
CoMix 2.45 57.03 89.84 98.44 5.45 47.66 77.34 85.94

Table 2. Image retrieval results of our CoMix model compared to the Gauss baseline where we replace our composition Gaussian
mixture latent representation with a single Gaussian distribution. Regular refers to the normal version of our datasets MultiMNIST and
MultiCIFAR10, whereas skewed indicates a more difficult version where the combination of seen objects is highly correlated during training.
Scores refer to the average retrieval rank and recall percentage at rank 1, 5 and 10.

Skewed Datasets. To better contrast two different
representation-learning approaches, we conduct experiments
on a skewed version of MultiMNIST and MultiCIFAR10.
During the training, there are three groups of object classes,
where each object only co-occurs with objects from the same
group. For instance, for MultiMNIST, only the digits (0, 1,
2) would be seen together on the same canvas and similarly
for digit groups (3, 4, 5) as well as (6, 7, 8, 9).

During the test phase, all the digits can co-occur with any
other digits as in our initial MultiMNIST and MultiCIFAR10
definition. The purpose of this skewed dataset versions is to
show how compositionality can help overcome dataset bias,
where objects are highly correlated in the training data, but
might occur in the novel combinations during the test time.
Results. Image-retrieval results are reported in Table 2. We
observe, learning a Gaussian mixture representation achieves
a lower retrieval rank on average and a higher recall at all
the measured levels as compared to a single Gaussian rep-
resentation. There are two reasons for these results. Firstly,
the Gaussian mixture of CoMix is multimodal and, thus, can
model more complex latent distributions. Secondly, the com-
positionality of CoMix allows it to extrapolate to the unseen
combination of objects during the test time. We observe
this property when comparing the performance loss between
the regular and skewed datasets. CoMix can maintain a low
mean rank (2.3 →2.5; 2.5 → 5.5), while average rank for
the Gauss ablation gets considerably worse (6.9 → 16.0;
16.5 → 22.4) on both datasets. In conclusion, the explicit
modelling of a compositional representation greatly benefits
CoMix’s generalization and extrapolation performance of
the downstream tasks.

4.5. Qualitative Results

To illustrate the datasets and inspect our model, we
present qualitative example of CoMix applied to Mul-
tiMNIST and MultiCIFAR10 in Figure 3. For each dataset,
we show an example for 1 to 4 objects in the image. In each

data image, we visualize the ground-truth bounding boxes of
the objects (dashed yellow line) as well as the object detec-
tions by our CoMix model (blue, orange, green, red, purple
boxes).

Each image is accompanied by two additional columns.
The first column displays the textual prediction of the text
decoder applied onto the representation of the patch with
the same color. The opaqueness of the bounding boxes
and the bar plots is proportional to the categorical mixture
distribution π that is predicted by the spatial transformer net-
work. In other words, CoMix predicts the number of objects
in the image through the π values of each component and
sets a components’ π(k) (close) to zero when less than the
maximum number of components are needed. The second
additional column is the joint categorical class prediction of
the whole image that is obtained by mixing the individual
component prediction by their respective π weights.

CoMix transparently shows which image patch causes
which label prediction as visualized by the color in the last
column. As an interesting side effect, the joint classification
prediction reflects the count of objects in the image. For
example, in the third row of the MultiMNIST data, the joint
prediction probability of number 3 is twice the probability
of number 9. Naturally, this is caused by the number 3
occurring twice in the image. Hence, our model learns to
count without ever having received the supervision in this
regard because the textual labels only indicate the presence
of objects and not the number of them.

Being able to backtrack exactly how predictions are com-
posed and caused by the concrete image regions is another
strength of our model that makes it more interpretable. Due
to the hard-attention mechanism of the spatial transformer
module, CoMix only uses pixel information inside the bound-
ing box to form its representations and the predictions. In
contrast, while WSDDN also predicts bounding boxes, there
is no exclusive relationship to the part of the picture the
bounding box captures. The relationship is on a feature level
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Figure 3. Qualitative results on MultiMNIST and MultiCIFAR10. For each dataset there are three columns: 1) data example visualiing the
ground truth bounding boxes (yellow, dotted line) and the predicted bounding boxes, one for each component (various colors, solid line); 2)
Categorical prediction of object for each individual component corresponding to bounding box with sample color; 3) Categorical mixture
prediction of the whole image with colors indicating the contribution of each component.

that often has a receptive field covering the whole image.

5. Conclusion
We introduced our CoMix model that learns a compo-

sitional Gaussian mixture representation for both images
and text. It utilizes the spatial-transformer architecture to
decompose the raw image and expose transparently, which
patches are responsible for the Gaussian components of the
representation. The information content of the representa-
tion is guided by the textual data by employing a likelihood
and KL-divergence loss. Without any additional supervi-
sion, CoMix learns to detect objects solely facilitated by an
additional area loss.

We demonstrate the advantages of learning a composi-
tional representation on the tasks of weakly supervised object
detection and image retrieval, where we can validate that

our model can generalize and extrapolate to an unseen com-
bination of objects while, at the same time, being easier to
inspect and interpret. Although our current results focus on
synthetically generated datasets, a plausible next step would
be to scale to the natural images with the natural-language
captions, where the employment of recent language models
such as BERT [9], GPT-3 [4] could enable richer textual
representations. Taking further advantage from advances in
contrastive learning such as in CLIP [28], our model could
extend these approaches to be more interpretable and inher-
ently exhibit compositionality in their representations.
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