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Abstract

Semi-supervised learning (SSL) has seen great strides
when labeled data is scarce but unlabeled data is abun-
dant. Critically, most recent work assume that such unla-
beled data is drawn from the same distribution as the la-
beled data. In this work, we show that state-of-the-art SSL
algorithms suffer a degradation in performance in the pres-
ence of unlabeled auxiliary data that does not necessarily
possess the same class distribution as the labeled set. We
term this problem as Auxiliary-SSL and propose AuxMix,
an algorithm that leverages self-supervised learning tasks
to learn generic features in order to mask auxiliary data
that are not semantically similar to the labeled set. We also
propose to regularize learning by maximizing the predicted
entropy for dissimilar auxiliary samples. We show an im-
provement of 5% over existing baselines on a ResNet-50
model when trained on CIFAR10 dataset with 4k labeled
samples and all unlabeled data is drawn from the Tiny-
Imagenet dataset. We report competitive results on several
datasets and conduct ablation studies.

1. Introduction
Collecting and annotating large amounts of labeled data

remains to be a fundamental barrier in exploiting the full po-
tential of machine learning algorithms. Not only is it time
consuming and costly, in some cases (e.g. rare medical con-
ditions) it might not even be possible. To mitigate these is-
sues, there are a number of semi-supervised learning (SSL)
algorithms proposed in the literature which aim to supple-
ment a small set of available labeled data with a larger set
of unlabeled examples during training [5,9,37,42,47]. Un-
labeled data, when properly used in conjunction with the
available labeled data, can greatly improve the learning gen-
eralization [4, 41].

The majority of the existing semi-supervised learning
approaches assume that the unlabeled data is drawn from
the same distribution as the labeled training dataset. In
many cases where the unlabeled data is cheaply available,

this does not impose any problems. In fact, many state-of-
the-art (SOTA) SSL algorithms can be used to reduce the
need for manual labeling of the data. However, this is a
strong assumption, and will not necessarily always hold. In
line with the observation made by Oliver et al., [30], we
will show that existing SSL algorithms suffer a consider-
able performance drop if the unlabeled dataset is chosen
from sources other than the same distribution as the la-
beled set. For example, FixMatch- with 95.7% top-1 clas-
sification accuracy when using 4K CIFAR10 labeled and
46K CIFAR10 unlabeled examples [37], drops down to only
58.48% accuracy when using 4K CIFAR10 labels but 100K
Tiny-Imagenet [22] unlabeled examples (more evidence and
results in Section 5). The significant drop is due to the unla-
beled distribution mismatch in the two cases. Intuitively this
is also expected as any information (such as pseudo-labels)
about the unlabeled data queried from a model trained with
a different training label distribution will not be reliable. In
addition, in some applications where collecting unlabeled
data in large portions may not be possible, such data are
available for related applications (e.g. neck x-ray vs knee
x-ray). This necessitates new solutions to address the afore-
mentioned problems.

In this paper, we formalize this problem and introduce it
as a new paradigm termed Auxiliary-SSL. We refer to the
unlabeled data from unconstrained distributions as auxiliary
data to distinguish it with the in-distribution unlabeled data
settings used in existing SSL approaches (See Figure 1 for
a visualization). In addition, we propose AuxMix, an algo-
rithm of mixing the labeled and auxiliary data in an efficient
way that reduces the degradation gap caused in Auxiliary-
SSL.

The main contributions of this paper can be summarized
as follows:

• We argue that the existing semi-supervised learning al-
gorithms will under-perform, sometimes at big mar-
gins, if they use unlabeled data from unconstrained dis-
tributions (auxiliary data), and confirm this empirically
on multiple datasets.
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Figure 1. A visualization of unlabeled versus auxiliary data in the semi-supervised setting. (a) Unlabeled data is from the same distribution
as the labeled data. (b) Unlabeled data contains out-of-distribution data.

• We establish this paradigm as Auxiliary-SSL, and pro-
vide a formal definition for it.

• We propose AuxMix, a method for tackling the
Auxiliary-SSL. Our method makes use of self-
supervised tasks to learn an initial representation of the
auxiliary data, with which we then mask the auxiliary
set. We also propose a technique of entropy maximiza-
tion for the dissimilar negative auxiliary samples. Ex-
perimentally, we confirm that our method is effective
in reducing the performance drop caused by the label
distribution mismatch of the Auxiliary-SSL.

The rest of the paper is organized as follows. Section 2
provides a brief summary of the related literature. Section
3 formalizes the Auxiliary-SSL paradigm. Section 4 de-
scribes our AuxMix method in details. Section 5 contains
the experiment results and discussions around the observa-
tions. Finally, Section 6 concludes the paper.

2. Related Work
In this section, we provide a brief summary of literature

related to our work. Broadly, we look at state-of-the-art
semi-supervised learning approaches, some recent works
that investigate label distribution mismatch and open-set do-
main adaptation methods.

2.1. Semi-supervised learning

There is an extensive variety of literature on semi-
supervised learning algorithms, especially after the boom of
deep learning [41]. Among them, pseudo-label based meth-
ods [1,6,25,34,35,38] train a model on the existing labeled

data and then use this model to generate pseudo-labels on
the unlabeled data, which will later be used for additional
training. Another emerging direction is to leverage self-
supervised learning algorithms such as RotNet [14], Jig-
Saw [29], SimCLR [10], or MOCO [16] for unsupervised
pretraining and then fine-tune with the limited labeled set
[11, 19]. Furthermore, a number of recent SOTA methods
rely on regularizing consistency in predictions across dif-
ferent augmentations [3]. Π-model retains an exponential-
moving-average (EMA) of the predictions [21] whereas
Mean Teacher proposes to average model parameters in-
stead [39, 40]. In an other line of work, Virtual Adver-
sarial Training (VAT) defines adversarial perturbations as
input augmentations [27]. [43, 48] in their work enforce
a consistency between convex interpolations of unlabeled
samples and their similarly interpolated predictions. Using
MixUp [48] as their augmentation procedure, MixMatch [9]
and ReMixMatch [8] also perform consistency regulariza-
tion. Our work is also closely related to UDA [45] and Fix-
Match [37]. Both of these methods use predictions from
a weakly augmented sample to regularize prediction on a
strongly augmented sample. ReMixMatch [8] also follows
a similar procedure along with Distribution Alignment and
Augmentation Anchoring. UDA further sharpens the pre-
dicted distribution whereas FixMatch uses pseudo-labels
instead. These methods rely on confidence-based thresh-
olding to filter spurious predictions. As mentioned in Sec-
tion 1, in the presence of unconstrained auxiliary data, the
traditional semi-supervised approaches suffer a consider-
able performance drop due to improper filtering of auxil-
iary data coupled with unreliable predictions for the out-of-
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distribution unlabeled set.

2.2. Class distribution mismatch

As discussed in section 1, the problem of class distribu-
tion mismatch between labeled and unlabeled data is more
practically observed. Efforts in this area however, are lim-
ited. Oliver et al., [30] in their paper draw forth several
scenarios for evaluating semi-supervised learning. They
show that adding unlabeled data from a mismatched set
of classes can actually degrade the performance compared
to not using them at all. RealMix [28] tackles this prob-
lem with consistency training and Entropy Minimization.
They show their results using 400 labeled samples per class
from CIFAR-10 Animals subset with the rest of CIFAR-10
classes as the mismatched unlabeled set. Chen et al., [12]
propose Uncertainty-Aware Self-Distillation (UASD) that
uses soft-targets and self-distillation to combat class mis-
match. DS3L [15] provide a theoretical guarantee that their
algorithm never learns worse than with only using labeled
data. They showcase their results on MNIST and CIFAR10
datasets with upto 60% mismatch. In this paper, we for-
malize this problem as Auxiliary-SSL and refer to the un-
constrained unlabeled data as auxiliary set. We report im-
proved results when using Tiny-Imagenet, Caltech-UCSD
Birds (CUB) [44] and noise images drawn from a uniformly
random distribution as auxiliary datasets.

2.3. Open-set domain adaptation techniques

Domain adaptation (DA) methods also have a similar
setup to Auxiliary-SSL. The goal of DA is to make accu-
rate predictions on the target domain having learnt from la-
beled data in the source domain. In contrast, Auxiliary-SSL
tries to enhance learning from limited labeled data in the
source domain itself by leveraging related data from an un-
labeled dataset. Also, traditional (closed-set) domain adap-
tation deals with the problem of a distribution shift between
the source and the target domain but assumes that the labels
remain fixed [7], which is different than our Auxiliary-SSL
setting. That being said, open-set domain adaptation does
consider the case of label distribution mismatch between

the source and target domain datasets [24,31,36]. However
unlike the Auxiliary-SSL unconstrained paradigm, these
methods still impose some conditions on the unlabeled
dataset used for adaptation. For example, they usually as-
sume a set of known target classes along with a set of un-
known categories. In addition, the evaluation of such meth-
ods is usually in controlled scenarios where some classes
of a dataset are considered only for the target dataset. On
the contrary, in our method, we relax these constraints (even
experiment with training with pure noise in Section 5), and
allow the auxiliary set to be freely selected. To cope with
the potential problems of this design choice, we propose a
method to filter the auxiliary examples and regularize the
negatively masked samples.

3. Problem Setting
We formulate our problem of learning from auxiliary

unlabeled data following that of existing semi-supervised
learning (SSL) work [30]. A key change in our work is the
more general assumption that the data from the unlabeled
set does not share the same class distribution as the labeled
set. Therefore, a classifier trained on the labeled set cannot
trivially generate labels for the unlabeled set. We denote
this paradigm as Auxiliary-SSL, and propose AuxMix as a
method to tackle this problem. We refer to the unlabeled set
as the auxiliary set with samples drawn from an auxiliary
distribution.

More formally, we are given a labeled set Dl =
{(xli, yli) ∼ p}nl

i=1 sampled i.i.d. from an unknown data
generating distribution p(X,Yl) and an auxiliary set Da =
{(xai ) ∼ qx}na

i=1 sampled i.i.d from distribution q(X) which
is a marginalization of the data distribution over labels in the
auxiliary domain Ya. The shared label set between the two
distributions Ys = Yl ∩ Ya 6= ∅ and the auxiliary set has
private labels Yp = Ya\Ys.

It is worth noting that in general, the relationship be-
tween two label distributions Yl and Ya can be character-
ized in the following different ways as shown in Figure 2:
(a) The label set Yl could have a partial overlap with Ya, (b)
no overlap between Ya and Yl, and (c) a complete overlap

Figure 2. Venn diagram illustrating the relationship between two labeled and auxiliary distributions: (a) partial overlap, (b) no overlap, and
(c) complete overlap.
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between Yl and Ya reverting to standard semi-supervised
learning setting. In this work, we consider the first two
cases. The objective of our algorithm is therefore to learn
a model fθ that maximizes the classification performance
on the source labeled set Yl by distinguishing between aux-
iliary samples in the shared label set Ys and the auxiliary
private label set Yp.

4. Method
Our algorithm, dubbed AuxMix, consists of two phases.

In phase one, we learn to score each auxiliary data sam-
ple {(xai ) ∼ Da}na

i=1 according to their semantic similarity
with labeled data and separate them into a positive selec-
tion set D+

a and a negative regularization set D−
a . In phase

two, the positive set D+
a is used in semi-supervised learn-

ing based on consistency regularization across augmenta-
tions [37]. We further regularize learning from auxiliary
data by maximizing the entropy of predictions on the nega-
tive set D−

a to penalize confident output distributions [32].
Intuitively, the positive set encourages reliable predictions
for a meaningful consistency regularization. On the other
hand, the model is required to be unable to decide which
class labels to assign the samples in the negative set. We
do this by pushing the model towards high uncertainty for
these data samples.

4.1. Scoring and pre-training based on self-
supervised learning

We train a model fpθ consisting of an encoder gp(.) and
a classifier head cp(.). In the limited labeled data setting of
Auxiliary-SSL, we employ self-supervised learning to pre-
train the model on a self-supervised prediction task. Self-
supervised tasks allow the model to learn general represen-
tations from the data [18]. In the absence of ground-truth la-
bels for the auxiliary samples, these representations can be
exploited to gain useful insights about the samples. There
are several self-supervised learning tasks in recent litera-
ture that have shown promising results in the complete ab-
sence of labels as discussed in section 2. In AuxMix, we
leverage rotation prediction following the work of Gidaris et
al., [14] that shows that by predicting the rotations for each
image following their augmentation, the model learns to ex-
tract semantic features of objects contained in them. These
semantic features become key to measuring similarity be-
tween the images of the auxiliary set and the labeled set
at a later stage. However, other self-supervised approaches
could also be utilized.

Given a set of training images {xpi ∼ Dl∪Da}nl+na

i=1 the
model fpθ is first trained to minimize the rotation prediction
loss Lrot defined as:

Lrot = H
(
φ, fθ(Rot(x

p
i , φ)

)
∀ φ ∈ [0◦, 90◦, 180◦, 270◦],

(1)

where, Rot(xi, φ) is an augmentation operator that rotates
the images by the specified angle φ and H(y, f(x)) is the
standard cross-entropy loss between a target y and a predic-
tion f(x). We then calculate a benchmark semantic repre-
sentation or a prototype for each class c in Yl = [1, . . . , C]
by using the labeled set (xli, y

l
i). Each prototype {hk}Ck=1

is a mean vector of the output of the encoder gp(.) for all
input samples xli in the labeled set and class label yli = k:

hk =
1

Nk

nl∑
i=1

gp(xli) (2)

Every sample in the auxiliary dataset is then compared
with each prototype to yield an affinity score {ai}na

i=1. We
use cosine similarity as the distance measure between the
two vectors. Other distance measures such a Euclidean dis-
tance could also be used in place of cosine similarity.

ai = max
k=[1,...,C]

{sim(gp(xai ), hk)} (3)

These scores show how similar auxiliary examples are to
the labeled data prototypes, or their affinity to the labeled
data distribution.

4.2. Consistency regularization and entropy maxi-
mization

A threshold τ on the affinity scores can be used to sepa-
rate the auxiliary set into a selection set D+

a and regulariza-
tion set D−

a . We set the threshold according to the equation
τ = µ + βσ where µ and σ are the mean and standard de-
viation of the affinity score distribution {ai}na

i=1 and β is a
hyperparameter:

D+
a = {xai } | ai ≥ τ

D−
a = {xai } | ai < τ

(4)

Enforcing consistency in predictions across different
augmentations of the same input image is a commonly used
method in semi-supervised learning [8, 9, 37]. It encour-
ages a label-transfer from the limited labeled data to the vast
amount of in-distribution unlabeled data in general semi-
supervised learning settings. We follow the same principle
of consistency regularization for the labeled set Dl and the
selection set D+

a . In particular, we implement the strategy
used in methods such [8, 37, 45], which consider a weak
and a strong augmentation of an input sample denoted by
α(.) and A(.) respectively. The pre-trained encoder from
the previous step gp(.) is now attached to a new C-class
classifier head cT (.) to form our target model fTθ . Weakly
augmented samples from the labeled set are used to train
fTθ with the standard supervised cross-entropy loss Lx over
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Figure 3. Visual description of the proposed AuxMix method. In Phase 1, we pre-train a model on self-supervised rotation and use the
representations to generate affinity scores for the auxiliary dataset. In phase 2, we perform consistency regularization on the positive
samples and entropy maximization on the negative samples at the same time as learning from the limited labeled data. The overall loss will
therefore have three terms.

a batch B of labeled samples as:

Lx =
1

B

B∑
i=1

H
(
yli, f

T
θ (α(xli))

)
(5)

Moreover, hard pseudo-labels are generated only for the
weakly-augmented versions of samples for data from the
selection set D+

a rather than all of the unlabeled set. The
pseudo-labels ŷi are used to enforce consistency on the
strongly-augmented versions of the same input sample by
minimizing the loss L+

u . Following [37] during training,
for a batch B of labeled data, µB batches of unlabeled data
are sampled and used.

ŷi = argmax
(
fTθ (α(xai ))

)
L+
u =

1

µB

µB∑
i=1

H
(
ŷi, f

T
θ (A(xai ))

)
∀ (xai ) ∈ D+

a .
(6)

Learning from the pseudo-labels of the selection set min-
imizes the entropy on the source label set Yl. On the other
hand, the data from the regularization set is used to regular-
ize the model by maximizing the entropy of the output pre-
dictions. This min-max entropy optimization benefits the
model by contrasting positive samples from the selection

set against the negative samples from the regularization set.
Positive samples are relatively reliable, so they are used in
the semi-supervised setting with consistency regularization.
On the other hand, negative samples are not as reliable, so
they are used to push the model to be unable to decide which
class labels to assign to these samples. We penalize predic-
tion confidences by assigning a uniform distribution over all
classes as the target distribution for rejection samples. The
loss L−

u is then defined as:

p(ŷi = k) =
1

|YL|
∀ k ∈ Yl

L−
u =

1

µB

µB∑
i=1

{H
(
ŷi, f

T
θ (α(xai ))

)
+H

(
ŷi, f

T
θ (A(xai ))

)
}

∀ (xai ) ∈ D−
a .

(7)

Finally, the net loss minimized by the model is L =
Lx + λ+uL+

u + λ−uL−
u , where λ+u and λ+u are loss weights

for the selection set and the regularization set respectively.
AuxMix maintains an Exponential Moving Average (EMA)
[40] of the parameters θ of the model for stable training and
inference in both phases.
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5. Experiments

In this section we review and discuss the experiment re-
sults, as well as ablation studies.

5.1. Experiments settings

We evaluate the performance of AuxMix on the stan-
dard semi supervised learning benchmark dataset, CIFAR10
[20]. The unlabeled data however, is drawn from en-
tirely different datasets: (1) Tiny-ImageNet, (2) Caltech-
UCSD Birds - 2011 (CUB) [44], and (3) Noise images sam-
pled from a uniform random distribution, to constitute our
auxiliary set. We compare our results for each of these
datasets with the recent SOTA SSL methods: FixMatch [37]
and MPL [33]. In addition, we report on several other
SSL methods previously evaluated by [28] and [30] on the
Animals-vs-Others class split of the CIFAR10 dataset. We
also perform results of ablations to determine the contribu-
tion of each component of our algorithm.

5.2. Training details

We use RandAugment [13] with parameters as defined
in [37] as the strong augmentation and random horizon-
tal flips and random crops as the weak augmentation for
AuxMix. In all of our experiments, we set the following
hyper-parameters: λ+u = 1, λ−u = 1, B = 64, µ = 7, ema-
decay = 0.999, weight-decay=5e− 4, rotation learning rate
phase 1 = 0.1, learning rate phase 2 = 0.03, and cosine learn-
ing rate scheduling. All experiments including baselines are
run for 300k iterations and we report the best score on 6k
test set for CIFAR10-Animals-Others and 10k standard test
set for all other experiments. The threshold τ is varied by
changing the hyperparameter β and the best results are re-
ported in the tables.

5.3. Distribution mismatch results on CIFAR10
Animals-vs-Others

We follow the distribution mismatch experiment settings
as described in [30] which splits the CIFAR10 dataset into
400 samples of the six animals classes as the labeled set
and the rest of the data (20000 samples) from the four other
classes as the auxiliary set. We report the results for our
method and other baselines on Wide ResNet 28-2 [46] in
Table 1. AuxMix at 14.12% shows 3.5% lower error rate
than RealMix and over 8% lower than supervised training
with the labeled set only. It is interesting to note that most
methods show a higher error rate than supervised learning
due to the unlabeled data being out-of-distribution. That
means unsuitable unlabeled data may in fact damage the
learning.

Method Error rate (%)

Supervised 22.47
Temporal Ensembling [21] 27.02
Mean Teacher [40] 26.81
VAT [26] 26.19
Pseudo-Label [23] 25.94
SWA [2] 24.10
UASD [12] 22.47
RealMix [28] 17.62
AuxMix (Ours) 14.12

Table 1. Error rate on distribution mismatch between CIFAR10-
Animals as labeled set and CIFAR10-Others as unlabeled set on
Wide-ResNet-28-2. Lower is better.

5.4. Tiny-Imagenet, CUB and noise as auxiliary
data

Next, we investigate the impact of changing the auxil-
iary dataset. For the auxiliary set, we use 100k images
across 200 classes from the training set of Tiny-Imagenet,
11788 images from CUB, and 50k noise samples drawn
from a random uniform distribution, in three sets of exper-
iments. We use a 4K labeled random subset of CIFAR10
as the labeled set. Moreover, we use a ResNet-50 [17]
model to compare with previous work. All baselines are
trained for 300k iterations except pseudo-labelling and su-
pervised training, which we run for 100k iterations. Other
hyper-parameters for each method are set according to the
descriptions in their respective papers. Table 2 contains
results from this experiment. We observe from this table
that AuxMix performs competitively in comparison to other
baselines, across different auxiliary datasets. AuxMix is
close to 10% better than FixMatch and close to 19% bet-
ter than MPL when TinyImagenet is used as the auxiliary
dataset. It is interesting to note that pseudo-labelling per-
forms very well when compared to the recent SSL baselines
in most cases. In addition, as expected, using auxiliary data
from outside label distributions in some baselines results in
a performance lower than that of the supervised model.

5.5. Ablation study

Table 3 shows an ablation study on AuxMix, where we
study the contributions of the entropy-maximization and
sample masking components of our method. For this study,
we used the CIFAR10 Animals-vs-Others experiment set-
tings. As shown in Table 3, each component on its own
achieves a reasonable accuracy, but together the highest per-
formance is achieved.
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Method Accuracy (%)

Tiny-Imagenet CUB Noise

Supervised-4K 59.91 59.91 59.91
Pseudo-Label [23] 63.04 61.80 64.89
MPL [33] 49.18 68.86 52.44
FixMatch [37] 58.48 49.23 65.88
AuxMix (Ours) 68.38 73.95 69.34

Table 2. Classification accuracy for the 4K CIFAR10 experiment
with the test set from CIFAR10 test set, and using entirely different
datasets as unlabeled auxiliary data.

Method Accuracy (%)

Supervised 77.53
AuxMix 85.88
AuxMix without Entropy Maximization 85.10
AuxMix without Sample Masking 84.57

Table 3. Ablation study on AuxMix with CIFAR10 Animals-vs-
Others experiment. We observe that masking and regularization
both contribute to the end-to-end performance.

6. Conclusion

In this paper we first provided empirical evidence as
well as intuitions that unlabeled data from unconstrained
distributions can considerably damage the semi-supervised
learning accuracy of existing SSL methods. Then we for-
malized this SSL setting as a new Auxiliary-SSL paradigm.
Moreover, we proposed an algorithm called AuxMix to
tackled the issues raised in Auxiliary-SSL. Experimental
evaluations showed that AuxMix can achieve a competitive
performance in recovering the performance drops occurred
when using unconstrained unlabeled data.
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