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Abstract

Almost all the state-of-the-art neural networks for com-
puter vision tasks are trained by (1) pre-training on a large-
scale dataset and (2) finetuning on the target dataset. This
strategy helps reduce dependence on the target dataset and
improves convergence rate and generalization on the tar-
get task. Although pre-training on large-scale datasets is
very useful for new methods or models, its foremost disad-
vantage is high training cost. To address this, we propose
efficient filtering methods to select relevant subsets from the
pre-training dataset. Additionally, we discover that lower-
ing image resolutions in the pre-training step offers a great
trade-off between cost and performance. We validate our
techniques by pre-training on ImageNet in both the unsu-
pervised and supervised settings and finetuning on a diverse
collection of target datasets and tasks. Our proposed meth-
ods drastically reduce pre-training cost and provide strong
performance boosts. Finally, we improve the current stan-
dard of ImageNet pre-training by 1-3% by tuning available
models on our subsets and pre-training on a dataset filtered
from a larger scale dataset.

1. Introduction

Recent success of modern computer vision methods re-
lies heavily on large-scale labelled datasets, which are often
costly to collect [4, 14,23]. Alternatives to large-scale la-
belled data include pre-training a network on the publicly
available ImageNet dataset with labels [8] and performing
transfer learning on target tasks [16, 18,19,27,32]. On the
other hand, unsupervised learning has received tremendous
attention recently with the availability of extremely large-
scale data with no labels, as such data is costly to obtain

[_’ ) ’ ) ]

*Equal  Contribution. Contact: buzkent,

kayush} @cs.stanford.edu

{shuvamc,

Burak Uzkent*
Stanford University

Kumar Ayush*
Stanford University

Kumar Tanmay
IIT Kharagpur

Stefano Ermon
Stanford University

The explosion of data quantity and improvement of un-
supervised learning with contrastive learning portends that
the standard approach in future tasks will be to (1) learn
weights a on a very large-scale dataset with unsupervised
learning and (2) fine-tune them on a small-scale target
dataset. A major problem with this approach is the large
amount of computational resources required to train a net-
work on a very large scale dataset [23]. For example, a re-
cent contrastive learning method, MoCo-v2 [14, 15], uses 8
GPUs to train on ImageNet for 53 hours, which can cost
thousands of dollars. Extrapolating, this forebodes pre-
training costs on the order of millions of dollars on larger-
scale datasets. Those without access to such computa-
tion power will require selecting relevant subsets of those
datasets specific to their task.

Cognizant of these pressing issues, we propose novel
methods to efficiently filter a user defined number of pre-
training images conditioned on a target dataset. We also find
that the use of low resolution images during pre-training
provides a great cost to performance trade-off. Our ap-
proach consistently outperforms other methods by 2-9%
and are both flexible, translating to both supervised and
unsupervised settings, and adaptable, translating to a wide
range of target tasks including image recognition, object de-
tection and semantic segmentation. Our methods perform
especially well in the more relevant unsupervised setting
where pre-training on a 12% subset of data can achieve
within 1-4% of full pre-training when considering target
task performance. Next, we use our methods to improve
standard ImageNet (1.28M images) pre-training. In this di-
rection, we construct a large scale dataset (6.7M images)
from multiple datasets and filter 1.28M images conditioned
on a target task. Our results show that we improve standard
ImageNet pre-training by 1-3% on downstream tasks. Thus,
when needing to pre-train from scratch on large scale data
for a specific application, our methods can replace the stan-
dard ImageNet pre-training with conditional pre-training.
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2. Related Work

Active Learning Active Learning fits a function by se-
lectively querying labels for samples where the function
is currently uncertain. In a basic greedy setup, the sam-
ples with the highest entropies are chosen for annotation
[1,10,26,30]. Active learning typically assumes similar data
distributions for candidate samples, whereas our data distri-
butions can potentially have large shifts. Furthermore, ac-
tive learning, due to its iterative nature, can be quite costly,
hard to tune, and can require prior distributions [25].
Unconditional Transfer Learning Pre-training networks
on ImageNet has been shown to be a very effective way
of initializing weights for a target task with small sample
size [16,18,19,27,32]. However, all these studies use un-
conditional pre-training as they employ the weights pre-
trained on the full source dataset, which can be computa-
tionally infeasible for future large scale datasets.
Conditional Transfer Learning [7, 24, 33], on the other
hand, filter the pre-training dataset conditioned on target
tasks. [7, 1] use greedy class-specific clustering based
and learn image representations with an encoder trained
on the massive JFT-300M dataset [17], which dramatically
increases cost. [33] trains a number of expert models on
many subsets of the pre-training dataset and uses their per-
formance to weight source images, however this method is
naturally quite computationally expensive. Many of these
methods also require labelled pre-training data and are not
well suited for target tasks such as object detection and se-
mantic segmentation. Our methods differ from these works
as we take into account pre-training dataset filtering effi-
ciency, adaptability to different target tasks and settings, and
target task performance.

3. Problem Definition and Setup

We assume a target task dataset represented as D; =
(X, V¢) where X; = {x}, 22 ..., 2™} represents a set of
M images with their ground truth labels );. Our goal is
to train a function ff parameterized by 0; on the dataset
D, to learn f; : x; — y;. To transfer learn, we first
pre-train 6, on a large-scale source dataset Dy and fine-
tune 0; on D;. This strategy reduces the amount of labeled
samples needed in D; and boosts the accuracy in compar-
ison to the randomly initialized weights [23, 28]. For the
pre-training dataset, we can have either labelled or unla-
belled setups: (1) Dy = (Xs,Vs) and (2) Dy = (Xs)
where X, = {xl,22,... 2N}, However, it is tough to
label vast amounts of publicly available images, and with
the increasing popularity of unsupervised learning meth-
ods [3-5, 14, 15], it is easy to see that unsupervised pre-
training on very large Dy with no ground-truth labels will
be the standard and preferred practice in the future.

A major problem with learning 0; on a very large-scale
dataset D, is the computational cost, and using the whole

dataset may be impossible for most. One way to reduce
costs is to filter out images deemed less relevant for D; /to
create a dataset D, € D, where X, = {z! 22 ... 2N }
represents a filtered version of Dy with N "< N. Our ap-
proach conditions the filtering step on the target dataset D;.
In this study, we propose flexible and adaptable methods
to perform efficient conditional pre-training, which reduces
the computational costs of pre-training and maintains high
performance on the target task.

4. Methods

We investigate a variety of methods to perform efficient
pre-training while maintaining high performance on the tar-
get dataset. We visualize our overall procedure in Figure 1
and explain our techniques below.

4.1. Conditional Data Filtering

We propose novel methods to perform conditional fil-
tering efficiently. Our methods score every image in the
source domain and select the best scoring images accord-
ing to a pre-specified data budget N’. Our methods are fast,
requiring only one forward pass through D, to get the fil-
tered dataset D, and can work on both Dy = (X, Y,) and
Dy = (Xs). The fact that we consider data features not la-
bels perfectly lends our methods to the latter, more relevant,
unsupervised setting. This is in contrast to previous work
such as [7, 1 1,24] which do not consider efficiency and are
designed primarily for the supervised setting and thus will
be more difficult to apply to large scale datasets.

Algorithm 1 Clustering Based Filtering

1: procedure CLUSTERFILTER(D;, D;, N, K, AggOp)

2: fn < TRAIN(Dy) > Train Feature Extractor
3 Zy  {fu(z)}IM, > Target Representations
4 {2}E |+ K-Means(Z;,K) v Cluster Target
5: dy < || fn(@h) = Zkll2 > Source Distances
6: cs < {AggOp({di } & 1)} > Score Source
7 D, « BOTTOM( N, cs) > Filter Source
8 return DS > Return the Filtered Subset

4.1.1 Conditional Filtering by Clustering

Selecting an appropriate subset D;, of pre-training data Dy
can be viewed as selecting a set of data that minimizes some
distance metric between D; and the target dataset D, as ex-
plored in [7,11]. This is accomplished by taking feature rep-
resentations Z, of the set of images X and selecting pre-
training image classes which are close (by some distance
metric) to the representations of the target dataset classes.
Building on this, we make several significant modifications
to account for our goals of efficiency and application to un-
supervised settings.
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Figure 1. We first perform a conditional filtering method on the source dataset and downsample image resolution on this filtered subset.
Finally, we perform pre-training on the subset and finetuning on the target task.

Training Only with Target Dataset. We do not train a net-
work f; on a large scale dataset, i.e. JFT-300M [7], as this
defeats the entire goal of pre-training efficiency. Therefore,
we first train a model f;, with parameters 6}, using the tar-
get dataset Dy = (A%, ):) and use the learned 6}, to filter
the source dataset D;.

Consider Source Images Individually. Selecting entire
classes of pre-training data can be suboptimal when lim-
ited to selecting a small subset of the data. For example, if
limited to 6% of ImageNet, (a reasonable budget for mas-
sive datasets), we can only select 75 of the 1000 classes,
which may prohibit the model from having the breadth of
data needed to learn transferable features. Instead, we treat
each image x% from D separately to flexibly over-represent
relevant classes while not being forced to select full set of
images from different classes. Additionally, very large scale
datasets may not have class labels ). For this reason, we
develop methods that work with unsupervised learning, and
treating source images independently accomplishes this.
Scoring and Filtering. Finally, we choose to perform K-
Means clustering on the representations Z; learned by fj,
to get K cluster centers {2}/ . We then compute the dis-
tances between X and {Z} 5 | as

di (5, k) = || fn (2% 0n) — Zxlly ey

where p is typically 1 or 2 (L1 or L2 distance). We can
score z* by considering an Aggregation Operator(AggOp)
of either average distance to the cluster centers

| X
i i
== d )
k=1
or minimum distance

¢l = min({d},}[_,). 3)

To filter, we sort by ¢ in ascending order and select N’
images to create D, € D, and pre-train 6, on it.

Advantages of our Method Performing unsupervised clus-
tering ensures that our method is not fundamentally lim-
ited to image recognition target tasks and also does not as-
sume that source dataset images in the same class should be
grouped together. Furthermore, our method requires only a
single forward pass through the much smaller pre-training
dataset. It attains our goals of efficiency and flexibility, in
contrast to prior work such as [7, | 1]. We outline the algo-
rithm step-by-step in Algorithm 1.

Algorithm 2 Domain Classifier Filtering

procedure DOMAINCLSFILTER(D;, Dy, N ')
: SAMPLE {z1}M, € D,
X {{zi b, {2}
Yh = {{03,, {1,

1:

2

3

4: > Domain Labels
5: Dy, + (Xn, Vn)

6

7

8

9

> Training Data
fn(z;0p) <=0, CELoss(Dp) > Fit Model
cs — {fn(zt;00) Y, > Score
D, +~ TOP(Dy, N, ;) > Filter Source

return D, > Return the Filtered Subset

4.1.2 Conditional Filtering with Domain Classifier

In this section, we propose a novel domain classifier to filter
D, with several desirable attributes. We outline the algo-
rithm step-by-step in Algorithm 2.

Training. In this method, we propose to learn ), to as-
certain whether an image belongs to Ds or D;. 0y is
learned on a third dataset D, = (X},)n) where &), =
Y M, {2 3M 3, M = |Dyl, consisting of full set of
D; and a small random subset of D,. Each source image
zl e X, ; receives a negative label and each target image
zi € Xt' receives a positive label giving us the label set
Vi = {{0}M, {1}M,}. We then learn 6}, on Dy, using
cross entropy loss as

2M

on Y Ynlog(fu(@hiOn)) + (1 — yh)log(1l — fu(h; 0n)). (4)

i=1
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Figure 2. Independent conditional pre-training (Left) and sequential conditional pre-training (Right) with P = 3 target tasks. Sequential
pre-training reduces the number of epochs required to pre-train models to accomplish these tasks.

Scoring and Filtering. Once we learn 6, we obtain the
confidence score p(y;, = 1|xi;60)) for each image z% €
Xs. We then sort the source images X5 in descending order
based on p(y, = 1|x%;6;) and choose the top N’ images to
create the subset D; € Ds.

Interpretation. Our method can be interpreted as selecting
images from the pre-training dataset with high probability
of belonging to the target domain. It can be shown [13] that
the Bayes Optimal binary classifier fh assigns probability

pe(a})
ps(@) + pe(y)
for an image 2% € X to belong to the target domain, where

p: and pg are the true data probability distributions for the
target and source domains respectively.

plyn = 1|z%;05) = &)

Algorithm 3 Sequential Pre-training

1: procedure SEQUENTIALPRE-TRAIN(T , Toem, S, N')
2 f =RAND() > Randomly Initialize Model
3 while T'rue do > Handle All Tasks
4: Tsem-wait() > Wait for Task Semaphore
5: S,D; = T.pop() > Current Task from Queue
6: S/ = FILTER(D;, S, N')

7 f = TRAIN(f, S";)

8 TASK(f, Dy, T)

> Update Model
> Perform Current Task

4.2. Sequential Pre-training

Previously, we treated pre-training for different target
tasks independently by pre-training a model from scratch
on each conditionally filtered source dataset. In practice, we
may be interested in many different target tasks over time,
and performing separate pre-training from scratch for each
one may hinder efficiency by re-learning basic image fea-
tures. To avoid it, we propose sequential pre-training where
we leverage previously trained models to more quickly pre-
train on the next conditionally filtered source dataset.

Formally, we assume that we have a large scale
source dataset S (which can potentially grow

over time) and want to perform tasks on P target
datasets, which we receive sequentially over time as
((S,Dy,t1),(S, Da,ta),...,(S,Dp,tp)). We receive our
first target task with target dataset D, at time ¢;, and we
conditionally filter S into S} based on our data budget.
Then, we pre-train a model from scratch on .S and finetune
it on D; to get target model f;,. Generally, when we re-
ceive D; at time t;, we filter S conditioned on D; to obtain
Sl’» . Then, we take our last pre-training model, trained on

’_,, and update its weights by pre-training on S, and
finetune on D, to obtain f;, to accomplish the current task.
Subsequent tasks require smaller and smaller amounts of
additional pre-training, thus drastically reducing the total
number of pre-training epochs required to accomplish these
tasks. We lay out this procedure step by step in Algorithm 3
and visual comparison between independent and sequential
conditional pre-training is shown in Figure 2.

4.3. Adjusting Pre-training Spatial Resolution

To further increase the efficiency of pre-training, we pro-
pose lowering the spatial resolution of images X in the
source dataset Dy while pre-training. We assume that an
image is represented as xi € RW:*s or g2 ¢ RW:xH:
where W and W, represent image width in source and tar-
get dataset whereas Hy and H, represent image height in
source and target dataset. Traditionally, after augmenta-
tions, we use Wy, W; = 224 and H,, H; = 224. Here,
we consider decreasing W, and H on the pre-training task
while maintaining W, H; = 224 on the target task. Reduc-
ing image resolution while pre-training can provide signif-
icant speedups by decreasing FLOPs required by convolu-
tion operations, and our experiments show that downsizing
image resolution by half Wy, H, = 112 almost halves the
pre-training time with negligible loss on the target dataset.

5. Experiments
5.1. Datasets

Source Dataset For our primary source dataset, we uti-
lize ImageNet-2012 [8], with ~1.28M images over 1000
classes. While full ImageNet is commonly used to pre-train,
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Figure 3. High scoring ImageNet samples selected by our conditional filtering methods for Stanford Cars and Caltech Birds.
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Figure 4. High scoring ImageNet samples selected by our condi-
tional filtering methods for fMoW.

we use it as a proxy for a larger scale dataset that must be
filtered from to thoroughly test our methods’ finetuning per-
formance under various settings. Thus, we experiment un-
der two data budgets, limiting filtered subsets of ImageNet
to 75K (~6%) and 150K (~12%) images. This is an appro-
priate proportion when dealing with pre-training datasets on
the scale of tens of millions or more images. We also test
our methods in larger scale settings and compile 6.71M im-
ages from the Places, Openlmages, ImageNet, and COCO
datasets [21, 22, 34] and perform filtering on this source
dataset to perform conditional pre-training.

Image Recognition For image recognition tasks, we utilize
the Stanford Cars [31], the Caltech Birds [20], and a sub-
set of the Functional Map of the World [6] (fMoW) datasets
as target datasets. These datasets lend important diversity
to validate the flexibility of our methods. Cars has a fairly
small distribution shift from ImageNet, and pre-training on
ImageNet performs well on it, but Birds contains a larger
shift and pre-training datasets emphasizing natural settings
such as iNat perform better [7, 29]. Finally, fMoW, con-
sisting of overhead satellite images, contains images very
dissimilar to ImageNet. Additionally, Birds and Cars are
fine grained tasks, discriminating between different species
of birds or models of cars, respectively. In contrast, fMoW
contains more general categories, i.e., buildings and land-
marks.

Object Detection and Image Segmentation [ 14, | 5] show
that unsupervised ImageNet pre-training is most effective

when paired with more challenging low level downstream
tasks. Therefore, we also perform experiments in the object
detection and semantic segmentation setting to validate the
flexibility and adaptability of our methods. To this end, we
utilize the Pascal VOC 2007 [9] dataset with unsupervised
ImageNet pre-training of the backbone.

5.2. Analyzing Source Dataset Filtering Methods

Domain Classifier Accuracy We typically train the domain
classifier to 92-95% accuracy. We empirically find this is
the sweet spot as classifiers with 88-90% accuracy, perhaps
due to not learning relevant features, and 98+% accuracy,
perhaps due to over-discriminating minor differences be-
tween domains such as noise or color/contrast, do not per-
form as well.

Efficiency and Adaptability Comparison. The domain
classifier trains a simple binary classifier and bypasses full
representation learning on a target dataset, computing dis-
tances, or clustering. However, this difference in efficiency
is small compared to pre-training cost. More importantly,
when the target task is not image level classification, the
representation learning step for clustering based filtering
must be modified in a non-trivial manner. This can involve
a global pooling over spatial feature maps while performing
object detection or an entirely different setup like unsuper-
vised learning. The domain classifier is more adaptable than
clustering as it does not require modification for any type of
target task.

Qualitative Analysis. In Figures 3 and 4, we visualize
some of the highest scoring filtered images for all our meth-
ods on image classification tasks and verify that our filtering
methods do select images with relevant features to the tar-
get task. Unsurprisingly, more interpretable images are se-
lected for Birds and Cars, as there are no satellite images in
ImageNet. Nevertheless, we see that the selected images for
fMoW stil contain relevant features such as color, texture,
and shapes.
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Supervised Pre-train. | Cost
224x224 | Small Shift | Large Shift | (hrs)

‘ Target Dataset ‘ ‘
\ |
| Pre-train. Sel. Method | Cars | Birds | fMow | |
\ |
\ |

0% | RandomInit. | 52.89 | 42.17 | 4335 |0
100% | Entire Dataset | 82.63 | 7487 |  59.05

| 160-180

Random 72.2 | 57.87 50.25 30-35

6% Domain Cls. 74.37 | 59.73 51.17 35-40
Clustering (Avg) | 73.64 | 56.33 51.14 40-45
Clustering (Min) | 74.23 | 57.67 50.27 40-45
Random 76.12 | 62.73 53.28 45-50

12% Domain Cls. 76.18 64 53.41 50-55
Clustering (Avg) | 77.12 | 61.73 53.12 55-60
Clustering (Min) | 75.81 | 64.07 5291 55-60

| Supervised Pre-train. | Target Dataset | Cost
\ 12x112 | Small Shift | Large Shift | (hrs)
| Pre-train. Sel. Method | Cars | Birds | fMow |

| 52.89 | 42.17 | 4335 |0

| 0% | Random Init

| 100% | Entire Dataset | 83.78 | 73.47 | 57.39 | 90-110 |
Random 7276 | 57.4 49.73 15-20
6% Domain Cls. 73.66 | 58.73 50.66 20-25
¢ Clustering (Avg) | 74.53 | 56.97 51.32 25-30
Clustering (Min) | 71.72 | 58.73 49.06 25-30
Random 754 | 62.63 52.59 30-35
129 Domain Cls. 76.36 | 63.5 53.37 35-40
‘ Clustering (Avg) | 77.53 | 61.23 52.67 40-45
Clustering (Min) | 76.36 | 63.13 51.6 40-45

Table 1. Target task accuracy and approximate filtering and pre-training cost (time in hrs on 1 GPU) on 3 visual categorization datasets
obtained by pre-training on different subsets of the source dataset (ImageNet) with different filtering methods at different resolutions. Left:
Pre-training with 224 x 224 pixels images, Right: Pre-training with 112 x 112 pixels images.

| MoCo-v2 [15] |
Cost
| 224 x 224 | Small Shift | Large Shift | (hrs)
| Pre-train. Sel. Method | Cars | Birds | fMow |

\ 0% \ Random Init. \ 52.89 \ 42.17 \ 43.35 \ 0

Target Dataset |

| 100% | Entire Dataset | 83.52 | 6749 |  56.11 | 210-220
Random 75.70 | 56.82 52.53 20-25

¢, | Domain Cls. 78.67 | 61.55 52.96 23-28
Clustering (Avg) | 78.66 | 60.88 53.19 25-30
Clustering (Min) | 79.45 | 59.36 53.5 25-30

Random 75.66 | 61.70 53.56 3035

\2g, | Domain Cls. 78.68 | 63.08 54.01 33-38
7| Clustering (Avg) | 78.68 | 62.53 544 35-40
Clustering (Min) | 79.55 | 63.6 54.26 35-40

\ MoCo-v2 [15] ‘ c
ost
\ 112x 112 | Small Shift | Large Shift | (hrs)
| Pre-train. Sel. Method | Cars | Birds | fMow |

| 52.89 | 4217 | 4335 |0

Target Dataset \

‘ 0% ‘ Random Init

‘ 100% | Entire Dataset 84.09 ‘ 66.57 ‘ 56.83 ‘ 110-120
Random 75.38 | 56.63 52.59 10-15
6% Domain Cls. 76.84 | 57.93 533 13-18
Clustering (Avg) | 76.86 | 58.4 53.75 15-20
Clustering (Min) | 77.53 | 57.1 53.83 15-20
Random 78.35 | 61.50 54.28 15-20
12% Domain Cls. 80.38 | 63.93 54.53 18-23
? Clustering (Avg) | 80.21 | 63.50 55.06 20-25
Clustering (Min) | 79.63 | 62.77 55.03 20-25

Table 2. Target task accuracy and approximate filtering and pre-training cost (time in hrs on 4 GPUs) on 3 visual categorization datasets
obtained by pre-training on different subsets of the source dataset (ImageNet) with different filtering methods at different resolutions. Left:
Pre-training with 224 x 224 pixels images, Right: Pre-training with 112 x 112 pixels images.

5.3. Transfer Learning for Image Recognition

5.3.1 Supervised Pre-training Results

We present target task accuracy for all our methods on Cars,
Birds, and fMoW along with approximate pre-training and
filtering time in Table 1.

Effect of Image Resolution. We see that downsizing pre-
training resolution produces gains of up to .5% in classifica-
tion accuracy on Cars and less than 1% drop in accuracy on
Birds and fMoW, while being 30-50% faster than full pre-
training. These trends suggest that training on lower reso-
lution images can help the model learn more generalizeable
features for similar source and target distributions. This ef-
fect erodes slightly as we move out of distribution, however
pre-training on lower resolution images offers an attractive
trade-off between efficiency and accuracy in all settings.

Impact of Filtering. We find that our filtering techniques
consistently provide up to a 2.5% performance increase
over random selection, with a relatively small increase in

cost. Unsurprisingly, filtering provides the most gains on
Cars and Birds where the target dataset has a smaller shift.
On fMoW, it is very hard to detect similar images to Ima-
geNet, as the two distributions have very little overlap. Nev-
ertheless, in this setting, our filtering methods can still select
enough relevant features to provide a 1-2% boost.
Comparison of Filtering Methods. While all our meth-
ods perform well, we see that the domain classifier is less
variable than clustering and always outperforms random se-
lection. On the other hand, average clustering performs well
on Cars or fMoW, but does worse than random on Birds and
vice versa for min clustering. These methods rely on com-
puting high dimensional vector distances to assign a mea-
sure of similarity, which may explain their volatility since
such high dimensional distances are not considered in su-
pervised pre-training.

5.3.2 Unsupervised Pre-training Results

We observe promising results in the supervised setting, but
a more realistic and useful setting is the unsupervised set-

4246



ting due to the difficulties inherent in labeling large-scale
data. Thus, we use MoCo-v2 [15], a state of the art un-
supervised learning method, to pre-train on ImageNet and
present results for Cars, Birds, and fMoW in Table 2.
Effect of Image Resolution. We find that in the unsuper-
vised setting, with 150K pre-training images, lower resolu-
tion pre-training largely maintains or even improves perfor-
mance as the target distribution shifts. Unsupervised pre-
training relies more on high level features and thus may be
better suited than supervised methods for lower resolution
pre-training, since higher resolution images may be needed
to infer fine grained label boundaries.

Increased Consistency of Clustering. Relative to the su-
pervised setting, clustering based filtering provides more
consistent boosts across the different settings and datasets.
It is possible that clustering based filtering may be well
suited for unsupervised contrastive learning techniques,
which also rely on high dimensional feature distances.
Impact of Filtering. Our filtering techniques aim to sepa-
rate the image distributions based on the true image distri-
butions and feature similarity, not label distribution (which
may not be observable). Unsupervised learning naturally
takes advantage of our filtering methods, and we see gains
of up to 5% over random filtering in the 75K setting and up
to 4% in the 150K setting, a larger boost than during super-
vised pre-training. This leads to performance that is within
1-4% of full unsupervised pre-training but close to 10 times
faster, due to using a 12% subset. These results are notable,
because we anticipate that unsupervised learning will be the
default method for large-scale pre-training and our methods
can approach full pre-training while significantly reducing
cost.

5.3.3 Sequential Pre-training

Cognizant of the inefficiencies of independent pre-training
conditionally on the target tasks, we assume a practical sce-
nario where over time we receive three tasks, D1, Do, D3
representing Cars/Birds/fMoW respectively, with S being
ImageNet. We use the domain classifier to filter 150K im-
ages, obtain 57,55, 55, and sequentially pre-train f, for
100, 40, and 20 epochs respectively with MoCo-v2. In con-
trast, during independent pre-training we pre-train a sepa-
rate f, for 100 epochs for each target task.

We present results in Figure 5. Naturally, for Cars the re-
sults do not change, but since learned features are leveraged,
not discarded, for subsequent tasks, we observe gains of up
to 1% on Birds and 2% on fMoW over Table 2 while using
160 total pre-training epochs vs 300 for independent pre-
training. Our sequential pre-training method augments the
effectiveness of our filtering methods in settings with many
target tasks over time and drastically reduces the number of
epochs required. We leave the application of this technique
for object detection and segmentation as future work.

85 224x224 px pre-training 85 112x112 px pre-training

80 80~ ‘ I Q’ars‘ 1
751 P Cars:. | 75k b i
> >
E 70+ E 70+
S 65 S 65
2 “Birds girds < TBirds Birds
BOF S GO
55F >¥MOW S 551 >?Mow [ i
>ﬁvmw >§MOW
50 L L R 50 L L R
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Number of Training Epochs Number of Training Epochs

Figure 5. Results for sequential pre-training (blue) vs independent
pre-training (red) where pre-training with 224 x 224 pixels images
is shown on the Left and with 112 x 112 pixels images is shown
on the Right. Our sequential method requires fewer epochs over
time with improved accuracy.

5.4. Transfer Learning for Low Level Tasks

Previously we explored image level classification target
tasks for conditional pre-training. In this section, we per-
form experiments on transfer learning for object detection
and semantic segmentation on the Pascal VOC 2007 dataset.

We present results in Table 3. For filtering, we use the
domain classifier with no modifications and for clustering,
we use MoCo-v2 on Pascal VOC 2007 to learn representa-
tions.

Effect of Image Resolution. Overall, pre-training on low
resolution images produces no overall decrease in perfor-
mance, with the corresponding 30-50% reduction in train-
ing time, confirming the adaptability of pre-training on low
resolution images for more challenging low level tasks.

Adaptability Comparison Relative to prior work [7,33],
our clustering method is more adaptable and can efficiently
be used for detection/segmentation as well as image clas-
sification. However, the representation learning step for
clustering must be changed for such target tasks, which can
hinder downstream performance as a representation learn-
ing technique like MoCo-v2 may be more challenging on
smaller scale datasets like Pascal VOC 2007. The domain
classifier, on the other hand, avoids these challenges and
does not have to change when the target task is changed.

Performance Comparison We observe that all of our pro-
posed filtering techniques yield consistent gains of up to
9% over random filtering, confirming their applicability to
lower level tasks. In the segmentation setting, pre-training
on a 12 % subset can match full pre-training performance.
Clustering produces meaningful gains, but the domain clas-
sifier outperforms it in almost every object detection sce-
nario and the majority of segmentation metrics. This is es-
pecially pronounced with a larger pre-training subset, show-
ing the domain classifier can filter more relevant images.
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Detection | 224x224 | 112x112 \

Segmentation ‘ 224x224 ‘ 112x112 ‘

Pre-train. Sel. Method | AP | AP50 | AP75 | AP | AP50 | AP75 |

Pre-train. Sel. Method ‘ mIOU ‘ mAcc ‘ allAce ‘ mIOU ‘ mAcc ‘ allAce ‘

| 0% | RandomInit. | 14.51 | 31.00 | 11.62 | 14.51 | 31.00 | 11.62 | | 0% | RandomInit. | 045 | 055 | 082 | 045 | 055 | 082 |
| 100% | Entire Dataset | 43.94 | 73.05 | 45.96 | 43.62 | 72.56 | 45.52 | | 100% | Entire Dataset | 0.65 | 0.74 | 089 | 0.63 | 072 | 0.88 |
Random 29.01 | 54.02 | 27.26 | 28.10 | 52.82 | 26.39 Random 055 | 0.65 | 085 | 058 | 0.68 | 0.87
69 | Domain Cls. 30.47 | 56.58 | 29.04 | 31.19 | 56.90 | 30.43 69 | Domain Cls. 0.62 | 070 | 0.88 | 0.62 | 0.70 | 0.88
° | Clustering (Avg) | 30.61 | 55.65 | 28.75 | 30.13 | 55.01 | 29.47 * | Clustering (Avg) | 0.61 | 070 | 0.88 | 059 | 0.69 | 0.87
Clustering (Min) | 30.44 | 56.11 | 29.46 | 30.39 | 55.89 | 28.18 Clustering (Min) | 0.61 | 0.70 | 0.88 | 0.61 | 0.70 | 0.88
Random 30.84 | 52.07 | 29.15 | 30.56 | 56.1 | 29.04 Random 056 | 065 | 086 | 059 | 0.69 | 0.87
|29, | Domain Cls. 34.41 | 61.85 | 33.36 | 34.98 | 61.83 | 35.02 |2g, | Domain Cls. 0.65 | 074 | 0.89 | 0.62 | 071 | 0.89
* | Clustering (Avg) | 32.34 | 56.24 | 31.28 | 32.01 | 57.16 | 33.48 7| Clustering (Avg) | 0.64 | 073 | 0.89 | 059 | 068 | 087
Clustering (Min) | 32.58 | 57.77 | 31.16 | 32.96 | 58.25 | 33.64 Clustering (Min) | 0.61 | 0.70 | 088 | 061 | 0.70 | 0.88

Table 3. Comparison of different source dataset filtering methods and pre-training image resolutions on transfer learning on Pascal-VOC
object detection (Left) and semantic segmentation (Right) tasks. For object detection and semantic segmentation, we use unsupervised

pre-training method MoCo-v2 [15] .

| ImageNet+ | 224x224 | 112x112 |
| Pre-train. Sel. Method | Cars | Birds | fMow | Cars | Birds | fMow |
| ImageNet | 83.52 | 67.49 | 56.11 | 84.09 | 66.57 | 56.83 |
\

ImageNet+Domain Cls. | 84.33 | 69.78 | 57.95 | 84.56 | 69.88 | 58.04 |

Table 4. Image classification results for ImageNet+ pre-training
on three target tasks. By fine-tuning ImageNet weights on our
ImageNet filtered subset, we can improve ImageNet pre-training
performance on downstream classification tasks.

| | POIC-Random@224 | POIC-Ours@112 | POIC-Ours@224 | ImageNet@224 |
82.96 \ 84.29 \ 84.51 \ 83.52 \
210-220 | 130-140 | 230-240 | 210220 |

| Accuracy |
‘ Cost (hrs) ‘

Table 5. Results on large scale pre-training (MoCo-v2) and fine-
tuning on the Stanford Cars dataset, with pre-training resolutions
of both 112 x 112 pixels and 224 x 224 pixels. Conditionally
filtering 1.28M images out of the POIC dataset with the domain
classifier improves accuracy on the Stanford Cars dataset over ran-
dom filtering and ImageNet (1.28M images) pre-training.

5.5. Improving ImageNet Pre-training

Thus far, we have used ImageNet as a proxy for a very
large scale dataset to show the promise of our methods in
pre-training on task-conditioned subsets. Since pre-trained
models on ImageNet (1.28M images) are readily available,
we now motivate practical use of our method by showing
how they can outperform full ImageNet pre-training.
ImageNet+ Here, we take a model pre-trained on Ima-
geNet (1.28M images) and help it focus on specific ex-
amples to our task by tuning its weights for a small num-
ber of epochs on our conditionally filtered subset of Ima-
geNet before transfer learning. We apply this method to
Cars/Birds/fMoW and tune pre-trained ImageNet weights
with MoCo-v2 for 20 additional epochs on 150K domain
classifier filtered ImageNet subsets. We present results in
Table 4 and report improvements by up to 1-3% over full
ImageNet pre-training with minimal extra cost.

Large Scale Filtering Here, we envision a scenario in

which a user wants to pre-train a model from scratch for a
specific application with access to larger scale data than full
ImageNet. To this end, we assemble a large scale dataset,
which we call POIC, consisting of 6.71M images from
the Places, Openlmages, ImageNet, and COCO datasets
[21,22,34]. Next, we filter a subset the size of full ImageNet
(1.28M images) using the domain classifier conditioned on
the Cars dataset. We pre-train the weights using an unsu-
pervised learning method, MoCo-v2, and present our re-
sults on the Cars dataset in Table 5. Our filtering methods
improve on the current default of 224 resolution ImageNet
pre-training by 1-1.5% with good cost tradeoffs. Interest-
ingly, a random subset of the large scale dataset performs
worse than ImageNet, showing that our filtering method is
crucial to select relevant examples. Here we are forced to
use a 19% subset, but previous experiments showed larger
relative gains for 6% in comparison to 12% subsets, so ac-
cess to even larger scale data (>6.7M), which should be
common in the future, could further improve results. This
shows promise that our methods can leverage exponentially
growing data scale to replace ImageNet pre-training for spe-
cific target tasks.

6. Conclusion

In this work, we proposed filtering methods to efficiently
pre-train on large scale datasets conditioned on transfer
learning tasks including image recognition, object detec-
tion and semantic segmentation. To further improve pre-
training efficiency, we proposed decreased image resolution
for pre-training and found this shortens pre-training cost by
30-50% with similar transfer learning accuracy. Addition-
ally, we introduced sequential pre-training to improve the
efficiency of conditional pre-training with multiple target
tasks. Finally, we demonstrated how our methods can im-
prove the standard ImageNet pre-training by focusing mod-
els pre-trained on ImageNet on relevant examples and filter-
ing an ImageNet-sized dataset from a larger scale dataset.
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