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Abstract

Few-shot learning remains a challenging problem, with
unsatisfactory 1-shot accuracies for most real-world data.
Here, we present a new perspective for data distributions
in the feature space of a deep network and show how to
exploit this perspective for few-shot learning. First, we ob-
serve that nearest neighbors in the feature space are with
high probability members of the same class while generally
two random points from one class are not much closer to
each other than two points between classes. This obser-
vation suggests that classes in feature space form sparse,
loosely connected graphs instead of dense clusters. To ex-
ploit this property, we propose using label propagation to
the nearest unlabeled data and then using a kernel PCA
reconstruction error as decision boundary in feature-space
for the data distribution of each class. Using this method,
which we call “K-Prop,” we demonstrate largely improved
few-shot learning performances (e.g., 83% accuracy for 1-
shot 5-way classification on the RESISC45 satellite-images
dataset) for datasets for which a backbone network can be
trained to produce high within-class nearest-neighbor prob-
abilities. We demonstrate this relationship using six differ-
ent datasets.

1. Introduction
Learning from few labeled examples, or “few-shot”

learning, is needed for applications where labels are expen-
sive or hard to obtain or where adapting to new data has to
be fast. But few-shot learning remains a challenging prob-
lem. Particularly, with only 1 to 5 labels per class, classifi-
cation accuracies are typically low on real-world data [13].

The simplest approach to few-shot learning is to adapt
(fine-tune) a pre-trained network to a new target dataset
based on a small set of available labeled data [5]. Either the
weights of the entire network are adapted or only the final
classification layer. In the latter case, the network is typi-
cally split into two parts: a backbone network, consisting,

Figure 1: Comparing the accuracy of our method, K-Prop,
with ProtoNets on the RESISC45 dataset for 5-way classi-
fication (mean ± SE).

e.g., of multiple convolutional and pooling layers and a head
consisting of a multi-layer perception or a linear mapping.
Here, the backbone maps the input data into a so-called fea-
ture space. For few-shot learning, the weights of the back-
bone are typically frozen while the weights of the head are
adapted. With comprehensive pre-training of the backbone
(on a meta training set), training a linear classifier in the fea-
ture space can provide decent results [22], though the 1-shot
results are typically in the best case in the 60-70% accuracy
regime for 5-way classification.

As alternatives to a linear classifier baseline, various
methods have been suggested, broadly falling into three
categories: initialization-based, metric-based, and genera-
tive methods. Initialization-based methods, such as MAML
[8; 17], search for a good initialization of the model weights
for which a good performance on downstream tasks can
be achieved with few labeled examples and in few training
epochs. Metric-based methods work by replacing the lin-
ear classifier with a more sophisticated way of comparing
distances between unseen data and the few labeled points.
Some examples include ProtoNets [21], which compute dis-
tances to prototypical references points for each class, and
Adaptive Subspaces [20], which compute distances to sub-
spaces fitted to the data distribution of a class in feature
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space (Fig. 2). These methods do not necessarily provide an
improvement over a linear classifier, which can, e.g., beat
ProtoNets if having a well trained backbone [22]. Lastly,
generative methods augment the original data with novel
data for training [25]. For example, MetaGAN uses an ex-
isting few-shot learning method and boosts its performance
by generating additional data, though the reported improve-
ments have been only by a few percent [25].

Here, we provide an alternative to these approaches for
classifying data in the feature space. As a backbone net-
work, we consider either a pretrained network or a self-
supervised trained network, which is trained on the unla-
beled target data. Here, we assume that we have access to a
large amount of unlabeled data in the target domain, while
the labeled data are scant.

As a background, we observed that the pairwise dis-
tances between images in feature space are fairly similar
to each other (most are within ±50% of the mean distance).
That is, we cannot expect data points of one class be clus-
tered together in Euclidean space. In addition, we observed
that for some datasets, the nearest neighbors in feature space
belong with high probability (> 90%) to the same class.
These two properties suggest a data distribution of a class
that resembles a loosely connected sparse graph, and the
graphs of different classes are tightly intermingled.

Based on these insights, we construct a few-shot learn-
ing method as follows: given a few labeled points in fea-
ture space, we first propagate the labels to nearby unlabeled
points over nearest-neighbor links. Second, given the result-
ing data-point distribution, we compute the kernel principal
component analysis (kernel PCA) reconstruction error [10]
as a distance measure of a test point to each class. The hy-
persurfaces of equal kernel PCA reconstruction error have
been shown to follow the shape of any distribution [10].

Our experiments show that this new method outperforms
state-of-the-art few-shot learning methods, like ProtoNets
and Adaptive Subspaces, particularly, for 1-shot learning on
certain data sets. We found that these datasets in combina-
tion with a backbone network share a common property: in
feature space, the nearest neighbors are with high probabil-
ity part of the same class.
Contributions. In summary, we make the following three
main contributions:

i Provide a new perspective on how to interpret data in
the feature space based on our observation of pairwise
data-point distances.

ii Introduce a new method, K-Prop, combining self-
supervised learning, label propagation, and kernel PCA
for few-shot learning.

iii Show a relationship between high few-shot learning
performance with our method and data-point distances
in feature space.

The remainder of this article is organized as follows:
Section 2 describes related work; Section 3 provides the
background for our new method including our observation
of pairwise data-point distances and nearest-neighbor rela-
tionships; Section 4 describes our proposed method; Sec-
tion 5 our experiments with the corresponding results in
Section 6. Finally, Section 7 concludes with a summary,
discussion of limits and potential risks to society, and out-
look for future work.

2. Related Work

For few-shot learning, a subset of methods deals with
means for mapping from the feature space onto image
classes. This mapping is generally much less complex than
the mapping from the image space onto the feature space,
for which usually deep multi-layer convolutional neural net-
works are used. This reduced complexity allows for adap-
tation to a target dataset with only a few labels. Exam-
ples of this approach are ProtoNets [21] and Adaptive Sub-
spaces [20].

ProtoNets were introduced as an improvement over
MatchingNets [23], which is a popular few-shot learning
technique, and Adaptive Subspaces were introduced as an
improvement over ProtoNets [20]. From a certain angle,
our approach could be viewed as an extension of Adaptive
Subspaces to non-linear subspaces, which we describe with
kernel PCA. So, there is a natural progression of methods
from the reference points in ProtoNets over subspaces to
kernel PCA (Fig. 2).

Label propagation has been suggested before. For exam-
ple, Zhou et al. [26] introduced label propagation through
diffusion in a semi-supervised learning setting if the data
manifold is sufficiently smooth. More recently, authors
studied label propagation in feature space: Iscen et al. [12]
construct a k-nearest-neighborhood graph and propagate la-
bels with a diffusion process. Liu et al. [15] construct
a neighborhood graph with a Gaussian similarity matrix
and learn the parameters for label propagation in a meta-
learning setting. Benato et al. [1] map from the feature
space onto a t-SNE-generated 2-dimensional plane before
propagating labels.

None of these works mentioned the property that we ob-
served: that nearest neighbors can be with high probability
within the same class for certain datasets and backbones.

3. Background

In this section, we provide the background for our new
method: 1) self-supervised learning of a backbone network,
2) our observation of pairwise data-point distances, and 3)
the kernel PCA reconstruction error.
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Figure 2: Methods for classification in feature space: ProtoNets [21], Subspaces [20], and kernel PCA.

3.1. Self-supervised learning

As unlabeled data are often less expensive to obtain,
one common approach to few-shot learning is to use so-
called self-supervision, wherein a proxy task is employed
to pretrain a backbone network to produce features which
can be leveraged for the downstream few-shot classification
task. Using self-supervised learning to train a backbone net-
work has been shown to rival supervised training based on
linear-classifier accuracy on the trained features for certain
datasets [4; 14].

Li et al. [14] trained various architectures in the mul-
tistage vision transformers (ViT) family using a self-
supervision scheme which builds off of DINO [2]. ViT ar-
chitectures work by first splitting an image into a regular
grid of non-overlapping patches, flattening and (optionally)
projecting the patches, and then performing sparse multi-
head attention on the collection of patches.

In DINO, an exponential moving average ViT teacher
network and a student network of the same architecture are
fed different augmentations (views) of the full image, and
the view-level features produced by each network are then
fed to a shared prediction head which maximizes agreement
between the feature representations of the two views. Li et
al. [14] used an additional region-level task which similarly
enforces similarity of the top-level feature representations
of the various patches by first matching each student feature
to the most similar output feature of the same layer of the
teacher network, and then using the mean similarity of the
resulting collection of feature pairs as the loss (see [14] for
full details).

3.2. Pairwise data-point distances

We investigated the geometric structure of images, as
embedded in the high-dimensional space where each pixel
describes one dimension. For a selected subset of Ima-
genet [7] classes, we computed pairwise distances between
images within each class and between classes. As a result,
in the original image space, the data points have almost the
same distance to each other (Fig. 3).

Figure 3: Pairwise distances (within and between classes)
in the original image space for selected Imagenet classes.

Next, we mapped the images into the 512-dimensional
feature space of a ResNet18 network, which was pre-trained
on Imagenet. Here, the pairwise distances show more struc-
ture (Fig. 4), but a large part of the data still have simi-
lar distances to each other. In addition, for the Imagenette
dataset, we also computed the pairwise distances in the
512-dimensional feature space of an Imagenet-pretrained
ResNet18 network. For the intra-class pairwise distances,
we observed a mean of 23.25±3.48 SD (n = 4.5∗106). For
the inter-class distances, we observed 29.06 ± 3.15 (mean
± SD, n = 4 ∗ 107). That is, the difference between inter
and intra-class distances is relatively small, which matches
the qualitative observation in Fig. 4.

In addition, we evaluated the probability, pNN , of a
nearest neighbor in feature space being in the same class.
We computed this probability for the Imagenet-pretrained
ResNet18 features (Tab. 1) as well as for the EsViT features
(Tab. 2) for six different datasets (RESISC45, CUB, Ima-
genette, EuroSat, CropDisease, and Fungi - see also Experi-
ments). For RESISC45, Imagenette, EuroSat, and CropDis-
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Figure 4: Pairwise distances in the 512-dimensional feature
space of an Imagenet-pretrained Resnet18.

ease, we computed 100 trials, in each picking either 5 or 10
classes at random. In each trial, we computed the pairwise
distances in feature space between all training data of the
selected classes. For CUB and Fungi, we computed 1, 000
trials.

As a result, in most cases, these probabilities, pNN , were
in the 90s%. An outlier is CUB, for which pNN was low
(< 60%) for the EsViT features.

# of Classes RESISC CUB Imagenette

5 94.5± 5.1 90.0± 11.2 98.1± 1.5

10 89.5± 8.2 82.6± 14.6 96.7± 2.5

# of Classes EuroSat Crop Fungi

5 92.5± 6.5 97.7± 4.6 80.0± 19.0

10 86.4± 9.8 95.8± 6.5 70.9± 20.7

Table 1: Probability that a nearest neighbor is within the
same class for the ImageNet-pretrained Resnet18 features
(mean ± SD).

# of Classes RESISC CUB Imagenette

5 98.7± 2.1 59.7± 19.0 92.0± 4.0

10 97.1± 3.3 43.8± 20.4 87.8± 6.8

# of Classes EuroSat Crop Fungi

5 98.0± 1.5 99.3± 1.6 88.7± 13.3

10 96.3± 2.2 98.5± 2.6 83.2± 15.5

Table 2: Probability that a nearest neighbor is within the
same class for the self-supervised trained EsViT features
(mean ± SD).

Figure 5a shows a common view of a data-point distribu-
tion in feature space. Based on our observations, we found
this view to be misleading because it shows point clusters,
while actually, points from one class do not cluster: pair-

Figure 5: a) Common view of data-point distributions in
feature space, b) our interpretation: intermingled sparse
graphs. Each color denotes a different class.

wise distances are almost uniform, and the difference be-
tween intra-class and inter-class distances is small. So, in-
stead, we hypothesize that the data are distributed along
sparse graphs, and the graphs between classes are intermin-
gled, as illustrated in Fig. 5b.

3.3. Kernel Principle Component Analysis

Kernel Principal Component Analysis is a kernelized
version of the PCA algorithm, essentially, expanding the
linear method to non-linear data distributions [19]. Kernel
PCA uses the so-called “kernel trick,” i.e., the PCA is com-
puted in a high-dimensional (potentially, infinitely dimen-
sional) space, into which all data points, {xi}, are mapped,
without actually carrying out the mapping, Φ(xi), into this
space because the mapping appears only inside scalar prod-
ucts, and so, the scalar product can be replaced with a kernel
function in the original space. A common kernel function is
a Gaussian function,

k(xi,xj) = exp(−||xi − xj ||2/(2σ2)) . (1)

For this function, the corresponding mapping would actu-
ally be one into an infinite-dimensional space. Practically,
however, the dimensionality is limited by the number of
data points.

Computing kernel PCA involves computing the kernel
matrix Kij = k(xi,xj), transforming K to account for the
non-zero mean of {Φ(xi)}, and extracting a number, q, of
eigenvectors corresponding to the q-largest eigenvalues [19;
10]. Here, for few-shot learning, we are dealing with a low-
dimensional kernel matrix, so the computational cost of the
eigenvalue extraction is negligible.

When computing kernel PCA for a non-linear data dis-
tribution, the corresponding reconstruction error (analogue
to the reconstruction error in PCA) was introduced as a
novelty-detection measure [10]. For Gaussian kernel func-
tions, it turned out that the equipotential curves/surfaces of
the reconstruction error describe well the non-linear shape
of a data-point distribution [10]. Thus, we use this recon-
struction error to compare between different classes in fea-
tures space.
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Let z be a vector in feature space and {xi} be a distri-
bution of vectors in feature space. Then, the reconstruction
error of z is computed as follows [10],

LRE(z) = k(z, z)− 2

n

n∑
i=1

k(z,xi)

+
1

n2

n∑
i,j=1

k(xi,xj)−
q∑

l=1

fl(z)
2 , (2)

where fl are the projections onto the principal components,

fl(z) =

n∑
i=1

αl
i

[
k(z,xi)−

1

n

n∑
r=1

k(xi,xr)

− 1

n

n∑
r=1

k(z,xr) +
1

n2

n∑
r,s=1

k(xr,xs)

]
, (3)

and αl
i are the eigenvectors of K. When using a Gaussian

kernel, we have two hyperparameters, the width, σ, and the
number of principal components, q.

4. Proposed Method
Based on the above background, we propose a new few-

shot learning method, K-Prop, using self-supervised learn-
ing, label propagation, and the kernel PCA reconstruction
error (Fig. 6). First, we exploit the fact that for many
datasets, a good backbone, and thus a good mapping onto
a feature space, can be obtained with self-supervised pre-
training. Second, we exploit the nearest-neighbor within-
class connections to artificially expand the number of labels
with label propagation, and third, we exploit that the re-
construction error for kernel PCA can describe the sparse
graph-like distribution of the few labeled points. In the fol-
lowing, we describe those three elements in more detail.

Train neural network with large set of 
unlabeled data in a self-supervised way

Extract features for each input from the 
trained neural network

Few labeled 
images

Unlabeled 
training images

Compute label propagation

Compute KPCA

Test image Compute the KPCA reconstruction error 
with respect to each object class

Classify test image

Training

Testing

Figure 6: Process flow of our new method, K-Prop.

1) For self-supervised learning (SSL), we suggest the Es-
ViT method [14]. We use SSL on the target training data

(but not on the test data) to avoid cross-domain transfer
loss. After training, we freeze the backbone parameters and
weights.

2) For label propagation, we iteratively add a fixed num-
ber of extra labels. So, we propagate only into the neighbor-
hood of the given labels, instead of diffusing into the entire
unlabeled set. In each iteration step, we add only one unla-
beled data point: in feature space, we find the point xj with
the smallest Euclidean distance to any of the points xi in
the set of labeled points, i.e.,

j = argminjmini||xi − xj || . (4)

The resulting xj is then added to the set of labeled points,
and the iteration continues until a given number of points is
added to the number of originally labeled points. Figure
7 illustrates one example of this iterative process. Here,
adding a nearest neighbor is shown as a link in a graph. For
1-shot learning, this process results in a sparse graph, and
when starting with more labels, we generally end up with a
multitude of graphs.

Figure 7: Label propagation: we iteratively add one unla-
beled nearest neighbor at a time (a to d) building a graph of
labeled points for each class.

3) We compute kernel PCA for each set of labeled fea-
ture points {xi} for each class separately. Here, the la-
beled data contain the extra labels from the label propaga-
tion. When presenting a new test image, we first compute
its mapping into the feature space, z, and then compute the
reconstruction error, Lc

RE(z) for each class, c. We classify
the test image based on the smallest reconstruction error,
argmincL

c
RE(z).

5. Experiments
We evaluate our method on six datasets and compare

it against three other state-of-the-art methods and in abla-
tion studies replacing key elements of K-Prop. Moreover,
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RESISC
# of Shots ProtoNets MatchingNets Subspaces Ours (EsViT) Ours (Resnet18)

1 60.66± 0.9 60.21± 0.9 60.55± 0.8 83.18± 0.6 71.15± 0.7

2 72.18± 0.7 69.59± 0.7 69.17± 0.7 87.06± 0.5 76.52± 0.6

5 81.21± 0.5 75.75± 0.5 79.16± 0.5 92.08± 0.4 84.84± 0.5
Crop

# of Shots ProtoNets MatchingNets Subspaces Ours (EsViT) Ours (Resnet18)

1 77.40± 0.8 79.33± 0.8 75.87± 0.8 78.11± 0.8 78.53± 0.7

2 89.08± 0.6 85.21± 0.7 81.41± 0.6 85.20± 0.6 83.56± 0.6

5 91.38± 0.4 90.76± 0.4 91.95± 0.5 92.82± 0.4 91.20± 0.4
EuroSat

# of Shots ProtoNets MatchingNets Subspaces Ours (EsViT) Ours (Resnet18)

1 39.93± 0.7 37.40± 0.7 27.55± 0.6 77.20± 0.5 67.90± 0.7

2 44.97± 0.7 39.57± 0.5 36.85± 0.6 83.40± 0.4 74.54± 0.6

5 55.08± 0.5 44.86± 0.6 40.42± 0.5 90.44± 0.3 82.86± 0.4
Imagenette

# of Shots ProtoNets MatchingNets Subspaces Ours (EsViT) Ours (Resnet18)

1 31.57± 0.6 28.95± 0.6 - 74.73± 0.6 91.47± 0.4

2 30.99± 0.5 30.64± 0.5 - 81.12± 0.4 94.77± 0.2

5 37.76± 0.5 36.98± 0.5 - 84.90± 0.4 97.28± 0.1
CUB

# of Shots ProtoNets MatchingNets Subspaces Ours (EsViT) Ours (Resnet18)

1 71.88± 0.9 72.36± 0.9 63.30± 0.9 40.79± 0.7 81.08± 0.8

2 81.44± 0.6 80.18± 0.7 68.38± 0.8 46.44± 0.9 83.77± 0.7

5 87.42± 0.5 83.64± 0.6 78.25± 0.6 53.59± 1.0 89.39± 0.6
Fungi

# of Shots ProtoNets MatchingNets Subspaces Ours (EsViT) Ours (Resnet18)

1 58.87± 0.9 60.79± 0.9 35.34± 0.8 47.26± 1.1 42.87± 1.1

2 74.65± 0.8 74.21± 0.7 39.12± 0.8 68.18± 1.3 56.93± 1.2

5 82.13± 0.6 80.64± 0.8 63.41± 0.7 74.29± 1.2 64.21± 1.2

Table 3: Comparing the performance of our method (with either EsViT or Resnet18 backbone) with ProtoNets, MatchingNets,
and Adaptive Subspaces on the RESISC, CropDisease, Eurosat and Imagenette datasets (mean ± SE). We disregard the
Imagenette results with Imagenet-pretrained Resnet18 when comparing with other methods because of unfair advantage.
The Adpative Subspaces method failed to converge when training on Imagenette, and so the results are missing.

we consider features produced from backbones trained ei-
ther by fully-supervised pretraining on a dissimilar source
domain or by self-supervision with zero labels on the tar-
get domain. In the former case, we used a Resnet18 net-
work with frozen weights, which has been pretrained on
Imagenet-1k. In the latter case, we trained a multistage
transformer architecture with the self-supervision scheme
proposed for EsViT [14].

For EsViT, we used the tiny sliding window architecture
(Swin-T [14]). Images were divided into non-overlapping
16 × 16 pixel patches and two additional (global) random
crops of size 224 × 224, all of which were subject to ran-
dom transformations (augmentations) as described in [3].
We used a base learning rate of 0.0005 and cosine anneal-
ing, with a weight decay scaling linearly from 0.04 to 0.4
over 300 epochs. The network was trained for 300 epochs
or until loss convergence.

Labels were propagated inside the training data set. We
added 4 extra labels for 1-shot learning, 3 extra labels for 2-

shot learning, and 2 extra labels for 5- and 10-shot learning.
We chose these small numbers uniformly across datasets
for speed and simplicity; although, for some datasets, using
more extra labels would help (see Supplemental Material).

For kernel PCA, we used a Gaussian kernel with width
σ = 16 and q = ⌊2k/3+1⌋ principal components, where k
is the number of labels per class (before label propagation).

We compare our method against ProtoNets [21], Match-
ingNets [23], and Adaptive Subspaces [20]. Each of
the methods was implemented with a Resnet18 backbone,
while otherwise following the training and augmentation
routines in [5; 20]. Since these methods require meta learn-
ing to adapt parameters, we trained all three models using
the labels for half of the classes in the dataset, while the
other half was used to evaluate the few-shot learning per-
formance. In contrast, using EsViT, our method did not use
any labels (apart from few-shot) but used all classes of the
unlabeled training set.

For our target datasets, we used Imagenette [11], RE-
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SISC45 [6], CropDisease [16], EuroSat [9], Fungi [18], and
CUB [24]. Imagenette is distributed under the Apache li-
cense, CropDisease under Creative Commons 1.0 Univer-
sal, Fungi under MIT, and CUB under Attribution 4.0 In-
ternational. The licenses for RESISC45 and EuroSat are
unknown. For all datasets, we used the default training/test
data split.

For each dataset and for each pre-training scheme, we
evaluate 5-way, k-shot performance using k = 1, 2, 5. For
each k, we randomly generate 1, 000 tasks by sampling,
for each task, 5 uniformly random classes from the test set
and, then average the classification accuracies over all tasks.
The backbone weights were frozen after pretraining. For
each task, we evaluate our method using either the EsViT or
Resnet18 backbone, compare against other methods and do
ablation studies with our method. For these ablation studies,
we replaced kernel PCA with a linear classifier and tested
the linear classifier either with or without label propagation.

6. Results

Our new method, K-Prop, demonstrated a competitive
performance (Tab. 3). For example, for 1-shot learning
on RESISC45, K-Prop had a 83% accuracy compared to
61% for ProtoNets (Fig. 1). As another comparison, the
best known 1-shot 5-way accuracy reported in the literature
for RESISC45 with a Resnet18 backbone is 64.6% [13].
Interestingly, on this dataset, the nearest-neighbors in fea-
ture space were with high probability (> 98%) part of the
same class if trained with EsViT and higher compared to
the Resnet18 backbone. Generally, we found that high pNN

for a dataset and backbone corresponded to a high few-shot
classification accuracy (Fig. 8).

In addition, our method outperformed the linear clas-
sifier on the RESISC45, EuroSat, Imagenette, CUB, and
CropDisease datasets for 1-, 2-, and 5-shot learning (Fig.
9). For low pNN (< 90%, Fungi and CUB with EsViT),
we found that label propagation hurt the performance and a
standard linear classifier was better. Moreover, our ablation
studies showed that using the kernel PCA reconstruction er-
ror provided a boost over a linear classifier in most settings
(Fig. 9, see Supplemental Material for the corresponding
numerical values).

7. Conclusions

We provided a new perspective for looking at data dis-
tributions in feature space and showed how to exploit it
for few-shot learning. Based on our observations, data in
feature space tend to be loosely connected through nearest-
neighbor connections, and the resulting sparse graphs are
intermingled between different classes. Therefore, moder-
ate label propagation followed by classification based on the
kernel PCA reconstruction error showed promising results
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Figure 8: Comparison of 1-shot accuracy boost for EsViT
relative to Resnet18 as function of difference in probability,
pNN , that nearest-neighbors are in the same class. Each
data point corresponds to a different dataset (mean ± SE).

for few-shot learning. Moreover, we observed that a high
probability of nearest neighbors being in the same class was
indicative of a high classification accuracy.

Given the requirement of ProtoNets, MatchingNets, and
Adaptive Subspaces for meta learning, they had access to
additional labels for pretraining; on the other hand, they
lacked full access to all classes of the unlabeled train-
ing data, which could bias the results in one or the other
way (see Supplemental Material for additional compar-
isons). Moreover, using an Imagenet-pretrained Resnet18
is an unfair advantage for datasets that share similar images
(mainly, Imagenette but also CUB to some extent), but we
included those results because of the interesting relationship
regarding the above nearest-neighbor same-class probabil-
ity.

Limitations: The above relationship shows that the strat-
egy of using SSL before our label propagation is limited
to datasets in which SSL can move same-class data points
close together in feature space. This strategy will fail if the
inter-class difference is small: e.g., the CUB dataset con-
sists of birds of similar shape, which belong to different
classes due to relatively small differences in texture. On
the other hand, we found that we can boost 1-shot learning
performance if we use label propagation and kernel PCA on
an Imagenet-pretrained network. This alternative in turn is
limited to datasets that share similarities in features to Ima-
genet. Finally, despite the large improvements that we have
seen for some datasets, the 1-shot accuracies are still too
low for applications requiring reliable automated decision
making and instead are more suitable for applications with
a human in the loop or with multiple redundancies.

Potential negative societal impact: Given the above lim-
itations, the risk to society is low. Mainly, we provide an
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Figure 9: Ablation study with a linear classifier (Linear), label propagation followed by a linear classifier (Prop-Linear), and
label propagation followed by kernel PCA (Prop-KPCA) for self-supervised features (EsViT) and features from a Resnet18
backbone pretrained on Imagenette (mean ± SE).

insight into feature-space distributions. In terms of applica-
tions, the most promising would be to update a target track-
ing system with only a few labels, where the system auto-
matically filters input data (e.g., a video stream) for later
analysis by a human operator. Like any tool, this system
could potentially be abused by a bad actor, who would gain
increased situational awareness. As mitigation, since the
accuracies are still low, human verification is likely needed,
limiting the potential abuse. In terms of environmental im-
pact, this work has a positive contribution, reducing the
required computational time for updating a model to new
data because only kernel PCA has to be recomputed with a
frozen backbone.

Future work: We hope this work inspires future work in
the geometric properties of feature-space distributions lead-
ing to a better understanding of such distributions under var-

ious learning paradigms (unsupervised, self-supervised, and
supervised). As part of that work, it would be interesting to
find means to estimate pNN without requiring labeled data.
In addition, we plan to explore new ways to further improve
the few-shot learning performance.
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