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Abstract

Generalizing visual recognition models trained on a sin-
gle distribution to unseen input distributions (i.e. domains)
requires making them robust to superfluous correlations in
the training set. In this work, we achieve this goal by alter-
ing the training images to simulate new domains and impos-
ing consistent visual attention across the different views of
the same sample. We discover that the first objective can
be simply and effectively met through visual corruptions.
Specifically, we alter the content of the training images us-
ing the nineteen corruptions of the ImageNet-C benchmark
and three additional transformations based on Fourier trans-
form. Since these corruptions preserve object locations, we
propose an attention consistency loss to ensure that class
activation maps across original and corrupted versions of
the same training sample are aligned. We name our model
Attention Consistency on Visual Corruptions (ACVC). We
show that ACVC consistently achieves the state of the art
on three single-source domain generalization benchmarks,
PACS, COCO, and the large-scale DomainNet 1.

1. Introduction
Visual recognition models aim to categorize the semantic

content of an image. While existing deep learning methods
have achieved impressive results on standard object recogni-
tion benchmarks [11, 15], their performance degrades when
the test data distribution differs from the training one [34].
This problem, called domain-shift [5] is ubiquitous for sys-
tems operating in real environments. In fact, since we cannot
collect data for every possible change in the input distribu-
tion (e.g. illumination, background, weather, etc.), we need
to develop models that can generalize to unseen domains (i.e.
input distribution) not represented in the training set.

Towards this goal, in this paper, we address the prob-
lem of single-source domain generalization (single DG),
where only a single (source) domain is available for train-

1The codes are available at https://github.com/ExplainableML/ACVC
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Figure 1. Our approach (1) samples a transformation from a pool of
visual corruptions (i.e. ϕ(X) ∼ Φ) to simulate distinct domains for
training, and (2) enforces visual attention consistency between the
original and corrupted sample. Once trained, our model is capable
of generalizing well to unseen domains.

ing, and multiple unseen domains are present at test time.
This problem is challenging since, contrary to standard do-
main generalization, we cannot rely on multiple training do-
mains to disentangle domain-specific and domain-invariant
information [2, 16, 22, 35]. This led previous approaches
to simulate multiple domains via data augmentation and
adversarial perturbations [26,33,41], using them within stan-
dard classification objectives [32, 33, 41], or meta-learning
procedures [26].

Training with multiple synthetic domains allows the
model to better disentangle domain- and semantic-specific
information, eliminating spurious correlations between the
model’s predictions and the input images. Here we start
from the same principle, i.e. augmenting data to simulate
different training domains. However, we take a step further
and we argue that a robust single DG model should provide
the same explanation across augmented views of the same
training sample. In particular, we compute the model’s Class
Activation Maps [42] for both the original and augmented
samples, imposing consistency among the two (Figure 1).
This forces the model to look at the same spatial locations,
no matter how different the augmented sample looks like.
We found this approach to provide a stronger learning signal
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in comparison to alignment on model predictions [13].
Another crucial element of our framework is the data aug-

mentation technique. It should heavily alter the input while
not modifying the spatial location of the semantic content.
To achieve this, we propose to use visual corruptions. Our
idea is that corrupting the images not only creates different
input domains, but also produces abundant task-irrelevant
visual variations, which together help to prevent the model
from memorizing spurious patterns in the training set. We
make use of five families of visual corruptions (shown in
Figure 2), i.e. Weather, Blur, Noise, Digital, and Fourier.
The first four groups contain transformations taken from the
ImageNet-C [12] benchmark. The last group contains three
transformations corrupting the image using the post-Fourier
transform components (Figure 2, bottom left) by removing
low frequencies, modifying amplitudes, and scaling phases.

To summarize, our contributions are as follows. (1) We
analyze the use of visual corruptions as augmentation tech-
nique for single DG, using 19 transformations drawn from
ImageNet-C and 3 Fourier-based ones. (2) We propose a new
consistency loss based on class activation maps, forcing the
model to look at the same regions for both the clean and cor-
rupted images (Figure 2, green box)). We name our model
Attention Consistency on Visual Corruptions (ACVC). (3)
We propose a new single DG benchmark using three different
datasets: PACS [16], COCO [20] and DomainNet [23], that
measure generalization performance of models from natural
images to other domains; (4) We show that ACVC achieves
the state-of-the-art on the proposed single-source DG bench-
marks, outperforming information-bottleneck based adver-
sarial (e.g. ME-ADA [41]) and advanced data augmentation
techniques (e.g. MixUp [40], CutMix [39], CutOut [8], Ran-
dAugment [7], and AugMix [13]).

2. Related Work

Domain generalization (DG) is the task of learning a model
that generalizes to data distributions unseen during training
[10,16]. While this problem is usually addressed in the multi-
source setting, here we focus on the scenario where only a
single domain is available during training [26], i.e. single DG.
This is challenging since we cannot rely on the presence of
multiple training domains to e.g. disentangle domain-specific
and domain-invariant information [2, 3, 16, 28], or align fea-
ture distributions of different domains while preserving their
semantics [1, 17, 22, 43]. Typical approaches for single DG
simulate the presence of new domains with data augmenta-
tion either through adversarial strategies [9,18,25,26,33,41]
or direct input transformation [32]. For instance, [33] per-
forms adversarial data augmentation under a worst case for-
mulation, assuming samples of unseen domains to be close
to the training distribution. [26] relaxes the worst-case for-
mulation of [33] through Wasserstein Auto-Encoders [31],
using the augmented domains to perform meta learning. [41]

uses information bottleneck (IB) principle [30] to generate
adversarial samples far from the source domain. [32] de-
fines new data augmentation rules through an evolutionary
strategy, with the fitness measure being the model error.

Differently from these works, we focus on corruptions of
the input images as transformations. We show that removing
information from the data provides better generalization per-
formance than more complex data augmentation schemes.
Moreover, we are the first to use visual explanation tech-
niques as consistency loss for DG, enforcing the model to
attend to the same regions, regardless the style of the input.
Data augmentation is an effective strategy to improve the
generalization of deep neural networks, providing different
views of the same input. In computer vision, the most com-
mon augmentation strategies are label-preserving transforma-
tions such as random flipping, cropping and rotations [4, 15].
Recently, various advanced augmentation techniques have
been proposed to further improve representation learning,
including CutOut [8], CutMix [39], MixUp [40] and au-
tomated augmentation schemes such as AutoAugment [6],
RandAugment [7], and AugMix [13]. In these techniques,
an input image is often randomly corrupted by mixing with
another image (e.g. CutMix [39], MixUp [40]) or by random
occlusion (e.g. CutOut [8]). Such corruptions, however, may
destroy the underlying semantics of the input image and even
alter its corresponding class label [39,40]. In automated aug-
mentation, augmentation strategies are either learned w.r.t.
the performance on the validation set [6], or randomly se-
lected from a pool [7, 13]. In addition, AugMix [13] uses a
Jensen-Shannon divergence loss on model’s predictions for
the original and augmented images.

In this work, we propose to use a diverse set of visual
corruptions randomly selected per image during training.
Since our transformations alter neither the semantic of the
image nor the location of the objects, we formulate a visual
attention consistency loss to encourage the model to look at
the same regions for both the original and corrupted versions
of a given image.

3. Attention Consistency on Visual Corruptions
We aim to solve the problem of single domain general-

ization (single DG) where a model is trained on data from
a single domain (source) but is expected to generalize to
domains unseen during training (target). Formally, we are
given a training set D = {(xi, yi)}Ni=1, where x ∈ X is
an image in the space X and y is its corresponding class
label y ∈ Y = {1, . . . , C}, with C being the number of
classes. We are interested in learning the parameters θ of a
function fθ : X −→ Y mapping images to probability vec-
tors over the class labels, with Y being a probability simplex
defined over Y . Note that, at test time, we receive images
Xt from a new dataset Dt, with a different joint distribution,
i.e. pDxy ̸= pDt

xy , with x and y being random variables in X
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Figure 2. Our ACVC approach (1) randomly samples a corruption ϕ from the set of twenty-two augmentations Φ that consist of ImageNet-C
and our Fourier-based corruptions, (2) enforces visual attention consistency between a given model’s class activation maps (CAM) for
the original My and corrupted version M̂y of a given image X , (3) regularize the CAMs via Negative CAM loss [29] that minimizes the
difference between uniform distribution U and top-k negative classes’ CAMs Mc∈Ck .

and Y respectively.
We train our model θ based on two simple principles: 1)

simulating the presence of multiple domains via a set of data
augmentations, 2) enforcing that the output of the model is
consistent across original and simulated domains. Formally,
we define our overall learning objective function as:

L =
∑

(X,y)∈D

LCE(X,ϕ(X), y)+λLCON(X,ϕ(X), y), (1)

where ϕ is a label-preserving augmentation function, LCON
is a consistency term between X and its augmented version
ϕ(X) given the semantic label y, and λ is a hyperparameter
balancing the two loss terms. LCE is the cross-entropy loss:

LCE(X, X̂, y) = − log fy
θ (X)− log fy

θ (X̂), (2)

where fy
θ (X) is the probability of class y for the input X

given by the function fθ.
The form of ϕ and LCON influence the performance of

the framework. In this work, we randomly sample ϕ from a
larger set Φ composed of visual corruptions, i.e. transforma-
tions that alter the content of the image while not modifying
the location of the object of interest. These corruptions pro-
vide large visual variations while being simple and efficient
w.r.t. other state-of-the-art alternatives. Since the locations
of the objects are preserved, we can implement LCON by 1)
extracting the spatial regions that most contributed to the
prediction and 2) enforcing the model to focus on the same
regions, independent of the specific corruption of the input.
As we will show experimentally, this supervision is more
effective than enforcing consistency on model’s predictions.

3.1. Visual Corruptions

Here we describe our set of transformations Φ, merging
the ImageNet-C with Fourier transform-based corruptions.

3.1.1 ImageNet-C Visual Corruptions

ImageNet-C [12] is a well-known benchmark to evaluate the
robustness of visual models under corruptions [13, 21, 41].
It contains 19 corruptions in total, with 5 severity levels.
We argue that corruptions can be used as an augmentation
technique to train robust vision models. The corruptions in
ImageNet-C are grouped into four categories, i.e. Weather,
Blur, Noise and Digital (see Figure 2 for examples).

Weather simulates meteorological hurdles such as fog,
snow, frost and spatter whereas Blur smooths the intensities
of the image pixels using different functions, such as gaus-
sian, glass, motion, defocus and zoom. Noise perturbates the
pixel values randomly, using different functions, i.e. shot,
impulse, Gaussian and speckle while Digital gathers diverse
set of corruptions caused by either modifying the image res-
olution (i.e. JPEG compression, pixelation, elastic) or pixel
intensity (i.e. saturation, brightness, and contrast).

3.1.2 Fourier-based Visual Corruptions

Early studies showed how the phase component of Fourier
transform of images retains most of the semantic in a scene
whereas amplitude focuses on textures [24]. Recent works
successfully used this property in domain adaptation [37,
38] and multi-source domain generalization [36]. We thus
incorporate three frequency-based corruption methods to our
pool of transformations. In the following we use F(X) to
denote the Fourier transform of an image X , with FA(X)
its amplitude and with FP (X) its phase.
Phase Scaling. Given a random scalar α ∈ (0, 1], this
corruption uses α to scale the phase component, computing:

ϕP-scaling(X) = F−1([FA(X), αFP (X)]), (3)
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where F−1 is the inverse Fourier transform. By scaling the
phase, we are adding more visual artifacts that will occlude
elements of the scene as α → 0 (Fig. 2, first Fourier sample).
Constant Amplitude. This corruption replaces FA with a
constant β ∈ (0, 1], computing the corrupted image as:

ϕconstant-A(X) = F−1([β,FP (X)]), (4)

Since phase information is preserved, the resulting images
are recognizable, but lose most color and texture information
(Figure 2, second Fourier sample).
High pass filter. This transformation corrupts the input
image with a high pass filter via frequency windows. It filters
out low frequency components by adjusting its diameter d
on the centered Fourier spectrum. Formally:

ϕhigh-pass(X) = F−1(Hd(F(X)) ◦ F(X))), (5)

where Hd(F ) a filtering mask where each spatial coordinate
(u, v) has value:

Hd
u,v(F ) =

{
1, if Fu,v ≥ d

0, otherwise.
(6)

This leads to a corrupted image where edges are highlighted
and shapes are preserved (Figure 2, third Fourier sample).

3.2. Attention Consistency

Visual corruptions provide powerful augmentations for
single DG. However, we argue that a good single DG model
should also look at the same image regions, no matter of their
particular style. This will allow the model to find consistent
visual cues across different versions of the same input, re-
using these cues in unseen target domain. In this section, we
describe how to use CAMs of original and corrupted images
to define a consistency loss term for single DG.
CAM consistency. CAMs [42] provide visual explanations
to a given model’s predictions by visualizing the spatial re-
gions that most contributed to the output in a given feature
map. Let us split fθ in three components: g : X → Z map-
ping an image into the feature space Z ⊂ Rn×s, an average
pooling operation P and a linear classifier W ∈ Rn×C fol-
lowed by softmax. In Z , n, denotes number of channels, and
s the spatial locations. Following the formulation of [29],
given an input X and we define its set of CAMs as:

M = σ(W ⊺g(X)), (7)

where M ∈ RC×s and Mc ∈ Rs denotes the CAM for class
c, corresponding to the c-th row of M . In Eq. (7), σ is a
softmax operation with temperature T over the locations:

σ(x)ci =
exp(xc

i/T )∑s
j=1 exp(x

c
j/T ))

. (8)

Algorithm 1 Single DG with ACVC

Require: Training set D, parameters θ, set of corruptions
Φ, prediction function f .

1: for all (X, y) ∈ D do
2: Randomly sample a corruption operation ϕ from Φ
3: Apply the transformation to the input: X̂ = ϕ(X)
4: Compute predictions fθ(X), fθ(X̂)
5: Compute CAMs M , M̂ using Eq.(7)
6: Compute the loss: L = LCE + λ(LCAM + LNEG)
7: Compute the gradient of θ w.r.t. L
8: Update θ
9: end for

Given a label y we compute our visual attention consis-
tency loss using Jensen-Shannon divergence as:

LCAM(M, M̂, y) = DJS(My||M̂y), (9)

where M̂y is the CAM of the corrupted image X̂ = ϕ(X)
for the class y. While Eq. (9) can be replaced by other
objectives, such as MSE, we found the Jensen-Shannon di-
vergence (JSD) to work better in practice. Moreover, this
formulation allows to define more flexible objectives through
the temperature T of the softmax, since T < 1 leaves only
the extreme points of attention whereas T > 1 smooths the
CAM over the image.
Negative CAM loss. One problem with CAMs is that mod-
els tend to produce false activations, i.e. attention maps
localized in precise regions even when a class is not present
in the input image [29]. Since our consistency loss heavily
relies on the quality of the CAMs, we use the negative CAM
loss [29] to penalize attention maps for absent classes in the
input (Figure 2, red box). The loss is defined as:

LNEG(M,Ck) =
∑
c∈Ck

DKL(U ||Mc) +DKL(U ||M̂c),

(10)
where U is the uniform distribution over the spatial locations
s, and Ck is the set of top-k negative classes in terms of
their confidence scores for the clean image X . From Eqs. (9)
and (10), we can define our final objective as:

L = LCE + λ(LCAM + LNEG). (11)

We name our final model Attention Consistency on Visual
Corruptions (ACVC).

3.3. Algorithm Overview

We summarize the model training in Algorithm 1. As the
algorithm shows, we first sample a training image and its
label (line 1) from D. We then sample a random corruption
from our set Φ (line 2) and we apply the transformation
to the input image (line 3). For each sample in the batch
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Photo Art Cartoon Sketch Avg. Max.

Baseline 98.52± 0.4 55.62± 2.2 18.56± 2.6 25.81± 4.8 33.33± 2.4 37.11
MixUp [40] 97.32± 0.7 52.82± 0.7 16.97± 4.4 23.21± 4.5 31.00± 1.7 32.83
CutOut [8] 98.49± 0.6 59.84± 1.3 21.56± 1.6 28.83± 3.3 36.74± 1.5 39.24
CutMix [39] 98.20± 0.6 59.63± 1.8 21.98± 3.9 24.94± 4.7 35.52± 2.3 38.92
ME-ADA [41] 96.49± 0.8 55.61± 0.9 28.92± 1.5 24.63± 4.3 36.39± 1.8 39.08
RandAugment [7] 99.22± 0.6 67.81± 0.9 28.94± 2.6 36.96± 4.7 44.57± 2.3 48.79
AugMix [13] 98.44± 0.3 63.94± 1.6 27.72± 1.4 30.86± 3.2 40.84± 1.4 43.11

VC (Ours) 98.75± 0.6 67.23± 0.5 30.26± 2.1 43.81± 3.9 47.10± 1.7 49.48
ACVC (Ours) 99.22± 0.4 67.80± 0.9 30.31± 2.1 46.42± 6.7 48.18± 2.8 54.67

Table 1. Comparing with the state of the art on PACS benchmark on single DG task using ResNet-18. The models are trained on Photo
domain, and tested on Art, Cartoon and Sketch domains. We measure classification accuracy. Baseline: ResNet-18 trained with cross-entropy
loss w/o any augmentations. Best numbers are bold, second best are underlined. VC = ACVC w/o attention consistency.

we compute its prediction on both original and corrupted
samples (line 4) and their relative CAMs (line 5). Finally, we
compute our loss using Eq. (11) (line 6), the gradient of the
parameters w.r.t. the loss (line 8) and update the parameters
(line 9). During training, we apply the corruptions without
any additional augmentation techniques. At inference, no
corruption is applied on the images of unseen domains.

4. Experiments

Datasets and setup. We evaluate our model on three chal-
lenging benchmarks for single DG: PACS [16], COCO [20],
and DomainNet [23] in increasing order of difficulty.

PACS is a standard multi-source domain generalization
benchmark [16], with 9,991 images belonging to 7 differ-
ent classes. We use it in the single DG setting due to the
extreme domain-shift between its four domains, i.e. Photo,
Art painting, Cartoon and Sketch. Since in this work we are
specifically interested in generalizing from natural images,
we consider Photo as the source domain.

For COCO, we propose a new benchmark consisting of
10 shared classes between the original MS-COCO [20] and
DomainNet [23]. We take MS-COCO as the training set, and
test with the six domains in DomainNet: Real, Infograph,
Painting, Clipart, Sketch, and Quickdraw. This setting is sim-
ilar to that of [44], but we only use training images where the
target object covers at least 10% of the pixels. Since this con-
straint may limit the number of images of some classes, we
avoid class imbalance by setting 1,000 as the upper bound
on the number of samples per class, obtaining 7,783 images
in total. As in [44], we test on this benchmark since the avail-
able segmentation masks allows us (and potentially future
works) to explore how modeling the location of an object
can improve the single DG performance.

Finally, we include a large scale investigation using the
full DomainNet dataset. It has 345 object classes and con-
tains 596,010 images in total. We use the Real domain for

training and validation, and the other five for testing. This
dataset is extremely challenging due to the high-variability
of the domains and the large number of classes.

For all settings, we resize the RGB images to 224 ×
224, and use the official train/val/test splits. We employ
an ImageNet [27] pretrained ResNet-18 [11], and use SGD
optimizer with a learning rate of 4 × 10−3, a batch size
of 128 and we train for 30 epochs, dropping the learning
rate by 0.1 after 24 epochs. These are the hyperparameters
proposed by [14] for multi-source domain generalization
using PACS, and we keep these hyperparameters constant
across our three benchmarks. In addition, for ACVC, we set
k = 3 empirically, and λ = 0.06 as in [29]. For our Fourier-
based corruptions, we define 5 severity levels for α, β, and
d, as in ImageNet-C (see supplementary). During training,
we randomly sample the severity of both ImageNet-C and
Fourier-based operations uniformly from these 5 levels.
Baselines and metrics. We establish the single DG perfor-
mance comparison using (1) a deep neural network trained
using cross-entropy loss but without any data augmenta-
tion (Baseline), (2) advanced augmentation techniques, i.e.
MixUp [40], CutOut [8], CutMix [39], (3) methods that
randomly select augmentations from a large pool of transfor-
mations (where most corruption operations are omitted), i.e.
RandAugment [7], AugMix [13], and (4) the state-of-the-art
adversarial data augmentation technique, i.e. ME-ADA [41].
These methods do not have any reported results on our bench-
marks, hence, we run our own experiments using the authors’
implementations and suggested configurations if applicable.
We provide mean accuracy and standard deviation measure-
ments for multiple runs and the maximum achievable average
domain generalization performance per method. The code
will be released upon acceptance.

4.1. Comparison on PACS

Table 1 shows our evaluation on PACS, where there exists
a large distribution shift between the source and target do-
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COCO Real Painting Infograph Clipart Sketch Quickdraw Avg. Max.

Baseline 80.44± 0.7 84.15± 0.7 78.55± 0.5 31.56± 2.1 62.90± 3.4 44.93± 1.7 12.56± 2.4 52.44± 1.0 54.46
MixUp [40] 80.79± 0.7 78.61± 1.0 73.70± 1.0 23.96± 1.1 50.39± 2.7 38.82± 1.7 13.59± 1.1 46.51± 0.8 48.21
CutOut [8] 80.93± 0.4 84.17± 0.4 79.58± 0.8 32.45± 1.7 61.62± 2.6 39.73± 3.2 10.42± 0.6 51.33± 1.1 53.35
CutMix [39] 80.13± 0.6 84.03± 0.9 78.72± 0.7 31.73± 1.4 64.08± 2.8 43.35± 2.1 12.22± 0.9 52.35± 0.7 53.88
ME-ADA [41] 78.35± 0.9 82.28± 1.0 77.69± 0.5 28.58± 1.4 63.88± 1.8 45.29± 1.7 12.32± 1.1 51.67± 0.8 52.71
RandAugment [7] 80.51± 0.6 85.55± 0.6 81.67± 0.4 33.87± 0.9 67.96± 2.8 52.58± 1.4 14.57± 1.3 56.03± 0.5 56.75
AugMix [13] 80.50± 0.6 85.60± 0.6 80.19± 0.7 33.50± 1.6 71.37± 0.8 51.96± 1.3 17.96± 2.3 56.76± 0.7 57.79

VC (Ours) 80.58± 0.5 85.86± 0.7 80.94± 0.6 32.50± 1.0 71.93± 1.4 61.98± 1.8 18.42± 1.4 58.61± 0.7 59.63
ACVC (Ours) 81.80± 0.6 85.27± 0.5 82.37± 0.6 35.40± 0.6 73.04± 0.8 62.72± 1.0 21.25± 0.9 60.01± 0.3 60.23

Table 2. Comparing with the state of the art on COCO benchmark on single DG task using ResNet-18. The models are trained on COCO
dataset, and tested on DomainNet dataset. We measure classification accuracy. Baseline: ResNet-18 trained with cross-entropy loss only w/o
any augmentations. Bold figures are the highest numbers, underlined are the second highest. VC = ACVC w/o attention consistency.

mains (e.g. Photo to Sketch). Despite the large domain gap,
our proposed methods surpass all competitors on this bench-
mark. Visual corruptions alone (VC) obtain superior perfor-
mance on PACS, with an average accuracy of 47.10%± 1.7
across the different unseen domains in comparison to Ran-
dAugment with 44.57%± 2.3 showing its effectiveness for
single DG. On average, due to our visual attention consis-
tency loss, ACVC improves VC results by 1.08%, and on
the best case, ACVC can go as high as 54.67% average sin-
gle DG performance. Moreover, the table shows how data
augmentation methods that apply a single type of transfor-
mation do not provide enough input variations for training,
with ME-ADA and CutOut achieving 36.39% and 36.74%
respectively in average. However, applying multiple trans-
formations per image may also hurt the performance, e.g.
RandAugment outperforms AugMix by 3.73% despite using
a single transformation and no contrastive loss term.

We see that, as the domain shift increases (Art → Sketch),
standard deviations of all methods also increase, which is the
reason behind the large gap between the average and maxi-
mum performance measurements. We believe this problem
to be caused by the training set size, since PACS contains
only 1,499 Photo images.

4.2. Comparison on COCO

Table 2 shows our results on the COCO benchmark. VC
alone again outperforms the competitors with an average sin-
gle DG accuracy of 58.61%± 0.7 where the best method in
literature, AugMix achieves 56.76%± 0.7. Combined with
visual attention consistency, i.e. ACVC, the average perfor-
mance reaches to 60.01%± 0.3, improving the VC accuracy
by 1.4%. Contrary to PACS, we see that with enough train-
ing data (7,783 images from COCO), the standard deviation
of ACVC’s performance is relatively small.

According to the results, corruptions help generalizing to
distant domains such as Sketch and Quickdraw. Note that the
common subset of COCO and DomainNet datasets includes
classes such as bus, car and truck which often have Quick-
draw examples that are easily confused one with another.

Therefore, any improvement on this domain tends to be lim-
ited for this particular benchmark. Nevertheless, ACVC
can provide 3.29% improvement over AugMix (17.96%) on
Quickdraw. Another interesting observation is that, in addi-
tion to the single DG performance rankings, the ranking be-
tween different methods change even between COCO dataset
and Real domain of DomainNet. For instance, MixUp ac-
curacy decreases 80.79% → 78.61% where ME-ADA accu-
racy increases 78.35% → 82.28. Note that, COCO dataset
is designed to have multiple target classes in a given scene,
whereas Real domain of DomainNet contains mostly central-
ized images w.r.t. the object of interest, thus performance
may increase when testing on the latter.

4.3. Comparison on DomainNet

Table 3 shows our results on large-cale DomainNet bench-
mark. This is the most challenging setting, due to the large
domain-shift among domains (e.g. Real to Infograph, Real
to Quickdraw), and the large number of classes (345). Even
in this benchmark, visual corruptions alone (VC) improve
single DG performance, achieving 26.68% accuracy with
the best competitor (AugMix) achieving 26.48%.

When visual attention consistency is used (ACVC), the
avg. single DG accuracy reaches 26.89%. For Quickdraw
images, methods with additional supervision signal tends
to perform better, i.e. AugMix and ACVCachieving 6.26%,
and 6.57 accuracy, respectively. Table 3 validates once again
the importance of simulating different visual variations by
collecting a set of transformations: the gap between the best
single (and adversarial) augmentation technique (ME-ADA)
and VC is more than 2% on average.

Finally, this benchmark reveals that even though all
methods perform relatively well on the source domain
([74.27%, 76.96%]), we still do not have robust vision mod-
els since their performance significantly drops as the domain
shift increases, e.g. as in Infograph and Quickdraw cases.
The former shows a model’s ability to filter out texts, charts
and other irrelevant sources of information to focus on the
object, and the performance of all methods drops to the
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Real Painting Infograph Clipart Sketch Quickdraw Avg. Max.

Baseline 76.04± 0.8 38.05± 0.8 13.31± 0.4 37.89± 1.2 26.26± 1.3 3.36± 0.2 23.78± 0.8 24.34
MixUp [40] 76.11± 0.2 38.60± 0.1 13.94± 0.2 38.02± 0.8 26.01± 0.7 3.71± 0.3 24.05± 0.4 24.45
CutOut [8] 76.96± 0.8 38.34± 0.7 13.69± 0.4 38.44± 1.3 26.24± 0.8 3.65± 0.4 24.07± 0.7 24.69
CutMix [39] 75.79± 0.7 38.28± 1.1 13.45± 0.5 38.65± 1.8 26.85± 1.5 3.60± 0.4 24.17± 1.1 24.96
ME-ADA [41] 74.27± 0.1 37.95± 0.1 13.12± 0.0 40.31± 0.1 26.79± 0.1 4.53± 0.2 24.54± 0.0 24.60
RandAugment [7] 76.70± 0.4 41.30± 0.8 13.57± 0.3 41.11± 1.1 30.40± 1.0 5.31± 0.5 26.34± 0.7 26.85
AugMix [13] 76.27± 0.1 40.79± 0.3 13.89± 0.1 41.67± 0.3 29.80± 0.2 6.26± 0.0 26.48± 0.2 26.61

VC (Ours) 75.91± 0.3 41.38± 0.3 13.58± 0.3 41.80± 0.7 30.58± 0.5 6.06± 0.4 26.68± 0.2 26.91
ACVC (Ours) 76.16± 0.5 41.32± 0.6 12.89± 0.6 42.79± 0.3 30.86± 0.5 6.57± 0.5 26.89± 0.0 26.91

Table 3. Comparing with the state of the art on large-scale DomainNet benchmark on single DG task using ResNet-18. The models are
trained on Real domain, and tested on Painting, Infograph, Clipart, Sketch and Quickdraw domains. We measure classification accuracy.
Baseline: ResNet-18 trained with cross-entropy loss only w/o any augmentations. Bold figures are the highest numbers, underlined are the
second highest. VC does not contain attention consistency. ACVC is our full model.

PACS COCO

Baseline 33.33± 2.4 52.44± 1.0

Weather 40.36± 2.3 55.69± 0.4

Blur 36.83± 1.3 53.39± 0.1

Noise 35.53± 1.9 53.21± 0.7

Digital 39.79± 3.4 55.12± 0.7

Fourier 34.15± 1.5 54.18± 0.4

ImageNet-C 42.12± 2.5 55.52± 0.9

VC 47.10± 1.7 58.61± 0.7

Table 4. Ablation study of different visual corruptions on PACS,
and COCO. ImageNet-C contains Weather, Blur, Noise and Digital
corruptions. VC contains all five, including Fourier category.

range [12.89%, 13.94%]. The latter contains mostly primi-
tive drawings to represent an object without color, texture
or background, and the range of classification accuracy be-
comes [3.36%, 6.57%].

4.4. Ablation Study

Corruptions. Here we study the effect of (1) each visual cor-
ruption category; (2) ImageNet-C corruptions; and (3) our
VC. As Table 4 shows, different corruptions work differently
across domains. For instance, Noise and Fourier families
perform well on COCO, but they offer limited improvement
upon Baseline for PACS. For Blur, we see the opposite case:
it improves PACS performance, but performs similar to Base-
line on COCO benchmark. On the other hand, Weather and
Digital categories perform close to full ImageNet-C cate-
gory across all domains. Each category brings improvement
over Baseline performance, however, randomly sampling
transformations from all five (VC) consistently yields better
performance than any individual family. We can also see
that our additional Fourier-based visual corruptions bring
a significant improvement over the original ImageNet-C

PACS COCO

VC 47.10± 1.7 58.61± 0.7
+ LJSD 47.39± 2.6 57.83± 0.6
+ LMSE 42.91± 1.8 58.02± 0.4
+ LNEG 43.00± 0.9 59.68± 0.7
+ LCAM 46.55± 2.7 59.67± 0.6
+ segm. masks + LNEG N/A 58.65± 0.5
+ LCAM + LNEG (ACVC) 48.18± 2.8 60.01± 0.3

Table 5. Ablation study of the different loss terms reported on
PACS and COCO benchmarks.

family of transformations. In detail, VC, on average, im-
proves ImageNet-C results by 4.98% on PACS, and 2.81%
on COCO. This suggests that randomly combining multiple
visual corruptions is the best choice when there is no prior
knowledge on the target domains, merging the benefits of all
families while diminishing the negative effects that single
corruption categories may have in particular benchmarks.

Consistency loss. Here we study the effects of different
consistency loss terms on the single DG performance when
applied on top of VC. Table 5 shows that not all consistency
losses bring the same improvements over VC. For instance,
JSD loss on model predictions for the original and aug-
mented versions (as in [13]), slightly improves PACS results
(+0.9%), but degrades the performance on COCO (−0.8%).
When we apply our attention consistency loss LCAM, per-
formance is significantly better (+3.64% on PACS, +1.65%
on COCO) than simple MSE loss between CAMs. Never-
theless, LCAM alone is still not robust, as it degrades the
performance of VC by 0.55% on PACS, but improves it by
1.08% on COCO. This is also the case for improving the
CAMs using only LNEG without any consistency loss (i.e.
−4.1% on PACS but +1.07% on COCO w.r.t. VC). How-
ever, when we combine both terms, we achieve consistent
improvement in both benchmarks, i.e. +1.08% on PACS and
+1.4% on COCO w.r.t. VC. Notably, the benefits of using
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Figure 3. ACVC results on COCO benchmark for different T .

an additional loss terms over VC do not generalize across
PACS and COCO, except for ACVC.

Finally, we analyze the effect of replacing our consistency
loss on CAMs by imposing as fixed target in Eq.(9) the nor-
malized segmentation mask of the image provided by COCO
dataset. Results shows that LCAM does not benefit from hav-
ing a static reference point to optimize towards. On the con-
trary, ACVC is able to achieve, on average, 1.36% higher sin-
gle DG performance than using segmentation masks. We as-
cribe this behaviour to the nature of the softmax that spreads
the intensity of the focus over the whole extent of the ob-
ject and penalizes peaked values of the attention maps, even
when they fall inside the object. This can also be seen on
Figure 3, where the avg. single DG performance is relatively
better for T ≤ 1, which shows how imposing consistency
on peaks of the attention maps is more beneficial for single
DG than smoothing the attention over larger spatial regions.

4.5. Qualitative Results

In this section, we show CAMs for four different ap-
proaches, (1) the baseline model, (2) RandAugment and our
VC as powerful pure data augmentation techniques, and (3)
our final ACVC method. In Figure 4, we see that ACVC
can recognize and focus on the relevant objects in unseen
domains. In detail, the top two rows show paintings where
ACVC is able to focus on the correct objects even in frames
within a crowded scene. The last two rows show images from
the challenging Infograph domain which contains charts,
texts and symbols in addition to the target objects. Neverthe-
less, ACVC can still recognize the bus in both images.

5. Conclusion
In this work, we addressed the problem of single source

domain-generalization (single DG) where the goal is to clas-
sify images of arbitrary unseen distributions, given a single
domain at training time. Similar to previous works, we ad-
dress the problem by synthesizing multiple training domains.
However, unlike previous approaches, we propose to gen-
erate new domains by applying randomly sampled visual
corruptions on the training data. Specifically, we consider
a set of transformations that corrupt the original content
in twenty-two different ways belonging to five categories
of transformations (i.e. Weather, Blur, Noise, Digital, and
Fourier). Since these transformations keep the object loca-
tions intact, we propose a visual attention consistency loss
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Figure 4. Class activation maps of (1) the baseline model, (2) two
different sets of data augmentation techniques, i.e. RandAugment
and the proposed VC models, (3) attention consistency guided
VC, i.e. ACVC. Our ACVC approach obtains more fine-grained
attention maps on unseen domains.

between the model’s class activation maps for the original
and corrupted versions of an input image. This loss ensures
that the model focuses on the same image regions, disregard-
ing the particular style of the input. Experiments show that
our method, ACVC, consistently outperforms the state of the
art in PACS, COCO and DomainNet benchmarks.
Broader societal impact. Our method focuses on scenario
where generalizing to unseen data distributions is crucial.
As a consequence, ACVC can be applied in all scenarios in-
volving robustness to different environmental conditions (e.g.
illumination, weather) as well as recognition across different
visual modalities (e.g. photo, cartoon, sketch). The ability
to generalize to unseen domains without collecting addi-
tional unlabeled (as in domain adaptation [5]) or labeled (as
in domain generalization [16]) data from different distribu-
tions could bring a positive impact on scenarios with privacy
constraints (e.g. federated learning [19]), since it reduces
the need of collecting data for specializing the recognition
model to single users. We want to highlight that the data
used for experiments (PACS, COCO, and DomainNet) are
all public datasets and do not contain any private information
or disclose any identifiable personal information.
Limitations. One limitation of our work is that we explicitly
focus on generalizing from natural images, containing rich
visual information. In this context, removing information
through corruptions is beneficial for single DG performance.
However, our approach may not be suitable for source do-
mains where the input already presents limited information,
such as sketches. In these cases we may need to replace our
pool of corruptions with tailored augmentation techniques.
Acknowledgements This work has been partially funded
by the ERC (853489 - DEXIM) and by the DFG (2064/1 –
Project number 390727645).
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