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Abstract

Despite the outstanding success of self-supervised pre-
training methods for video representation learning, they
generalise poorly when the unlabeled dataset for pretrain-
ing is small or the domain difference between unlabelled
data in source task (pretraining) and labeled data in tar-
get task (finetuning) is significant. To mitigate these issues,
we propose a novel approach to complement self-supervised
pretraining via an auxiliary pretraining phase, based on
knowledge similarity distillation, auxSKD, for better gener-
alisation with a significantly smaller amount of video data,
e.g. Kinetics-100 rather than Kinetics-400. Our method
deploys a teacher network that iteratively distils its knowl-
edge to the student model by capturing the similarity in-
formation between segments of unlabelled video data. The
student model meanwhile solves a pretext task by exploit-
ing this prior knowledge. We also introduce a novel pre-
text task, Video Segment Pace Prediction or VSPP, which
requires our model to predict the playback speed of a ran-
domly selected segment of the input video to provide more
reliable self-supervised representations. Our experimental
results show superior results to the state of the art on both
UCF101 and HMDB51 datasets when pretraining on K100
in apple-to-apple comparisons. Additionally, we show that
our auxiliary pretraining, auxSKD, when added as an extra
pretraining phase to recent state of the art self-supervised
methods (i.e. VCOP, VideoPace, and RSPNet), improves
their results on UCF101 and HMDB51. Our code is avail-
able at https://github.com/Plrbear/auxSKD.

1. Introduction

Self-supervised learning (SSL) methods have taken great
strides recently in acquiring high-level semantic visual rep-
resentations from unlabelled data, eliminating the cost of
annotating large-scale datasets [5, 8, 11, 17, 42]. The most
common approach in SSL is to use large-scale unlabelled
data, such as Kinetics-400 [16], for pretraining network pa-
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Figure 1. High-level overview of of our framework and recent SSL
methods – while recent methods encourage their model to solve a
pretext task from scratch, our SSL model benefits from an implicit
similarity-based knowledge, distilled by a teacher model, before
solving the pretext task. However, the question that we pose in
this paper is: can we use an implicit knowledge of this type to
improve the generalization ability of self-supervised approaches?

rameters, followed by finetuning on a downstream task with
a limited amount of labelled data [5, 8, 9, 11, 42]. Despite
the reduction in manual labelling, the performance of SSL
methods is leveraged on huge unlabelled datasets, which de-
mands high computational and memory costs, especially for
large-scale video datasets. For example, it takes around two
weeks to train MoCo [11] on Kinetics-400 for 300 epochs
with two Nvidia RTX 2080TI GPUs. In fact, such compu-
tational costs place many state of the art (SotA) SSL ap-
proaches only in the realms of huge corporations who have
such powerful resources [5, 9, 28], and this further becomes
a subject of ethical fairness as well as carbon emission foot-
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prints [34].
A few recent works have addressed the issue of effi-

cient pretraining for image-based tasks [12, 22, 31], but
there is only Lin et al. [21]’s work for video-based tasks
which improves the generalization performance of a con-
trastive learning-based method [37] under a meta-learning
paradigm. However, their method is not suited to most of
the SotA works that use transformation-based pretext tasks
[8, 15, 24, 41, 42].

Our motivation is to develop a task-agnostic pretrain-
ing process that alleviates the dependency on large-scale
datasets for self-supervised video representation learning,
while ensuring the model generalises well and still contains
rich information. To achieve this, we propose an auxiliary
pretraining stage, based on knowledge distillation (KD),
which trains on a reduced version of the source dataset, pro-
vides implicit knowledge for the primary pretraining stage
with the same reduced-size source dataset, and boosts gen-
eralization for downstream video representation learning
tasks.

Figure 1 illustrates the difference between our frame-
work and existing SSL methods, such as [5, 8, 15, 24, 42].
We employ a slowly progressing teacher model to itera-
tively distill knowledge to the student, our self-supervised
model, by evaluating the similarity information of an aug-
mented view of a query video clip to a large queue of ran-
dom clips as anchors and transferring that information to the
student. To the best of our knowledge, this is the first time
such Similarity-based Knowledge Distilation (SKD) has
been used in video-based self-supervised learning, while re-
cently, SKD was adopted in image-based applications, for
example for contrastive learning [35,36] or model compres-
sion [1, 7]. To refer to this aspect of our work, we use
auxSKD. To support the operation of the proposed approach
on temporal features in the video domain, we apply tempo-
ral augmentations, in addition to spatial augmentations, to
generate different transformed versions of a query video.
Such temporal transformations are the same as the pretext
transformations used in the primary pretraining stage. Their
application at this stage allows our teacher to impart knowl-
edge which matters most in the primary pretraining stage.

Also in this paper, we propose a new pretext task for
video representation learning, namely Video Segment Pace
Prediction (VSPP). While recent video playback rate pre-
diction methods randomly sample training clips at different
paces or speeds [3,42], we sample training clips where only
a randomly selected segment of the video has a randomly
selected speed and the other segments of the video retain
their natural pace. VSPP then requires the learner model to
predict the playback speed of this randomly selected seg-
ment and its temporal location in the input training video.
We advocate that by solving this pretext task, our model can
strengthen its awareness of the natural pace of the clip and

deal with the imprecise video speed labeling problem [5].
In our experiments, we show that our results, based

on Kinetics-100 pretraining as an example of a reduced-
size dataset, rather than the commonly used Kinectics-
400, beat VCOP [43] (↑4.7% on UCF101 and ↑7.8% on
HMDB51), VideoPace [42] (↑5.4% on UCF101 and ↑9.5%
on HMDB51) and RSPNet [5] (↑2.7% on UCF101 and
↑2.3% on HMDB51) in like-for-like comparisons.

Our key contributions can be summarised as follows:
(i) we propose an auxiliary pretraining stage for self-

supervised video learning to alleviate the dependency on
large-scale source datasets, e.g. to allow using Kinetics-
100 instead of Kinetics-400, (ii) we extend similarity-based
knowledge distillation to the task of self-supervised video
representation learning which has not been shown before,
(iii) we show that our approach can benefit other pre-
text tasks for self-supervised pretraining that involve video
transformations (e.g. VCOP [43], VideoPace [42] and RSP-
Net [5]), (iv) we propose a simple, yet effective and novel
pretext task which is more commensurate with video mo-
tion events than existing video playback prediction tasks,
(v) we achieve SotA results when pretraining with Kinetics-
100, and evaluate the performance of different components
of our proposed method through ablation experiments.

2. Related Work
In this section, we pay attention to three of the most

prominent areas within the main scope of our work, with
focus on the more recent, SotA approaches.

Auxiliary Learning – To assist a primary task to gener-
alise better to unseen data, training through auxiliary learn-
ing is an effective approach [22, 26, 32] and has been ap-
plied alongside a wide range of techniques, such as transfer
learning [40], reinforcement learning [20], semi-supervised
learning [49], and knowledge distillation [44]. In a recent,
work, Xu et. al [43] treat a self-supervised learning method
as an auxiliary task for knowledge distillation, pushing the
student to mimic the teacher on both classification output
and auxiliary self-supervision pretext task output. They
show that the auxiliary learning step regularizes the stu-
dent to generalize better on few-shot and noisy-label scenar-
ios. Here, we show that the similarity information between
embedded feature points can be used as implicit knowl-
edge for self-supervised pretraining to learn more gener-
alised representations through pretext tasks. To capture this
similarity information, we employ a variation of knowl-
edge distillation, called similarity-based knowledge distil-
lation [36, 39], as an auxiliary task which can be applied to
any self-supervised pretraining method.

Similarity-based Knowledge Distilation – Knowledge
distillation [4, 13] establishes a framework for improving
the performance of a lightweight student model, guided by
a larger and better performing teacher model which distills
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Figure 2. The self-supervised learning pretext training scheme is supported by an Auxiliary Pretraining task (auxSKD - see top region)
that provides a similarity knowledge distillation process via a teacher-student configuration. In this configuration, both the teacher and the
student 3D encoders are initialized and trained from scratch. Our teacher encoder is updated using momentum as a moving-average of the
student weights. We train the student via gradient update by minimizing the KL divergence between the two probabilities from the teacher
and the student for a transformed version of input video v, computing its similarity over anchor points. Note that in each iteration our
encoders randomly take a different transformed input via our clip speed sampling process (see section 3.2). In the primary pretraining task
(see bottom region), the student is ready to solve our VSPP task on input clips with segments that include changed pace.

the (dark) knowledge it learns to its student [13, 27, 47, 48].

Similarity-based Knowledge Distillation (SKD) methods
[1,7,29,30,35,36,39] train a student to mimic the similarity
score distribution inferred by the teacher over data samples.
Most early works in SKD use a supervised loss during dis-
tillation [29, 30, 39], but there are a number of works that
combine SKD with contrastive SSL learning to achieve SSL
model compression and performance gains [1, 7]. While
these works rely on a pre-trained frozen teacher model, Te-
jankar et al. [35] propose an iterative SKD regime where
the teacher model continues to learn similarity score distri-
butions during training. Our auxSKD architecture is similar
to [35], but our objectives are different, (i) we expand SKD
to extract representations from video data, instead of im-
ages, and (ii) we use distilled similarity representations as
auxiliary knowledge for different self-supervised pretrain-
ing methods, instead of directly applying them on down-
stream tasks.

Video Playback Speed Perception – Creating an effi-
cient self-supervised pretext task to model motion and ap-
pearance for video SSL is significantly more difficult than

for static images [5]. Recently, estimating video playback
speed has attracted much interest as a highly effective way
to encourage the model to learn features (of moving objects)
in videos [3, 5, 6, 14, 15, 42, 46]. For example, Epstein et
al. [6] design a method to predict normal video speed to
detect an unintentional event in the video. SpeedNet [3]
determines whether a given video clip is being played at
normal or twice its original speed, while VideoPace [42]
predicts the specific speed of each video clip which is ran-
domly sampled at a different frame rate. One of the main
limitations in considering playback speed alone is that video
clips with different speed labels might appear similar to
each other, e.g. when different athletes might perform the
same sporting action at different speeds.

To avoid the dependence on imprecise speed labels,
Chen et al. [5] introduce RSPNet to predict relative speed
between two video clips to better learn motion features.
They use a triplet loss to minimize the distance between
two clips of the same video at the same playback speed and
maximize the distance between two clips of the same video
at different playback speeds. Also in ASCNet [14], Hunag
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et al. focus on speed similarity and propose a consistent
speed perception task which aims to minimize the distance
between two clips from two different videos with the same
playback speed.

In VSPP, we propose a simple, yet effective video sam-
pling strategy which does not rely on comparing video clips
at different speed rates, since we embed a speed rate change
within each clip. This emphasises focus on motion and
abstracts the model from appearance features for which
RSPNet and ASCNet require a whole additional process-
ing pipeline. It also allows our model to converge much
faster, e.g. after 20 epochs compared to 200 for RSPNet
and ASCNet.

3. Proposed Approach

Our goal is to reduce the pretext training computational
burden by developing an auxiliary pretraining phase that
assists the primary pretext task to learn as efficient gener-
alised self-supervised video representation as possible on a
reduced-size source dataset. To achieve this, we take inspi-
ration from Similarity-based Knowledge Distillation which
is used in recent works [1, 7, 35, 36]. We illustrate our full
self-supervised pretraining framework in Figure 2.

3.1. Auxiliary Learning via auxSKD

Our auxiliary learning framework consists of a teacher
T and a student S with the same architecture followed
by a fully-connected layer, as the projection, to map the
representations into a lower dimension space. We follow
BYOL [9] and use a MLP predictor layer on top of the
student model. This makes the teacher-student architec-
ture asymmetric to prevent collapsed solutions. We ran-
domly initialize both models from scratch equally. The
student model and its predictor layer are updated by back-
propagation while momentum update [11] is applied in the
teacher model to be a running average of the student.

At each iteration our pretext task transformation VSPP
is applied twice to a raw video instance v to generate
two video clips v∗1 and v∗2 independently, with the goal of
maximizing their similarity in our teacher-student frame-
work. Then, given feature encodings (T (v∗1),S(v∗2)) and
predictor function MLP(.) for S, we perform L2 nor-
malization such that zT = T (v∗1)/∥T (v∗1)∥2 and zS =
MLP(S(v∗2))/∥MLP(S(v∗2))∥2.

Similar to [11,35], we consider a memory bank of H fea-
ture vectors (or anchors) xT

i = [xT
1 , ..., x

T
H ] obtained from

the teacher model under a simple FIFO strategy. Specifi-
cally, at each iteration, we enqueue the feature vectors of
the current batch extracted from the teacher model and de-
queue the earliest instances. Next, we calculate the similar-
ity of the teacher’s embedding zT to all feature vectors in
the memory bank and apply Softmax to obtain a probability

distribution,

pTi = − log
exp(sim(zT , xT

i )/γ
T )∑H

j=1 = exp(sim(zT , xT
j )/γ

T )
, (1)

where pTi = [pT1 , ..., p
T
H ] is the probability of teacher query

zT for the i-th anchor point, sim(., .) measures the similar-
ity between L2 vectors, and γT is the temperature value for
the teacher’s model.

Similarly, we calculate the student similarity distribution
pSi = [pS1 , ..., p

S
H ] over anchor points, with

pSi = − log
exp(sim(zS , xT

i )/γ
S)∑H

j=1 = exp(sim(zS , xT
j )/γ

S)
. (2)

Here γS is the temperature value for the student’s model.
Finally, the loss is measured by the Kullback–Leibler (KL)
divergence as

L(T ,S) =
∑
i

KL(pTi ∥ pSi ) . (3)

Note that during training, the teacher network’s weights are
initialised randomly and then they evolve gradually as a run-
ning average of the student using momentum with the up-
date rule θT ← mθT + (1−m)θS , where m ∈ [0, 1) is the
momentum hyperparameter to ensure smoothness and sta-
bility, and θT and θS are the teacher and student model pa-
rameters respectively. Pseudo-code for our auxSKD train-
ing is provided in Algorithm 1.

3.2. Primary Pretext task learning via VSPP

A SSL pretext task encourages the neural network to
learn a representation from unlabelled data which contains
high-level abstractions or semantics. In the video pace pre-
diction approach of Wang et al. [42], each training clip is
randomly sampled at a different pace and their pretext task
then identifies the pace for each clip. While this is an effec-
tive approach, it means each clip is treated as if its pace is
its natural speed.

We propose that each clip should contain within it one
segment where the pace has been (randomly) altered. Our
assumption is similar to [3, 5, 42] in that the network can
only represent the underlying video content through effi-
cient spatiotemporal features if it succeeds in learning the
pace reasoning task, however, we build on [42]’s proposal
through a more intricate, yet simple, within-video pace al-
teration task. Our proposed VSPP pretext task requires our
model to temporally explore a video clip and predict the in-
dex and speed of a segment within a clip which is sampled
at a different speed rate.

Given a video clip vi comprising N frames, we generate
video v∗i = {I0, I1, ..., IK−1} of size K<N , comprising
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Algorithm 1 Training auxSKD

Input: Teacher model T (., θT ) and student model
S(., θS), videos V = {vi}Ni=1, and memory bank
{xT

i }Hi=1.
Output: Trained student model weights θS .

1: Randomly initialize T (., θT ) and S(., θS).
2: while not max epoch do
3: Randomly sample a video v from V .
4: Sample two clips v∗1 and v∗2 from v using VSPP

video transformation (Section 3.2).
5: Compute student query features zS from clip v∗1 us-

ing student model S(., θS).
6: Update teacher parameters using momentum:

θT ← mθT + (1−m)θS .
7: Compute teacher query features zT from clip v∗2 us-

ing teacher model T (., θT ).
8: Calculate pTi and pSi using Eq. 1 and Eq. 2.
9: Add the teacher’s embedding zT into the memory

bank {xT
i }Hi=1 and pop-out the earliest sample.

10: Optimize student model using KL divergence loss,
Eq. 3.

11: end while

Z segments, such that K/Z number of frames in segment
ζ are sampled at pace λ, where both ζ and λ are randomly
selected from 1 ≤ ζ ≤ Z and 1 ≤ λ ≤ Q respectively,
and Q is the highest possible speed rate. Note, when Z = 1
the sampling strategy is similar to [42]. In this work, we
select Z = 4 and Q = 4 to allow a significantly wide vari-
ation of starting locations and sudden speed rate changes
to provide more precise self-supervision signals. Specifi-
cally, our approach results in a change of speed rate in only
one segment of the clip while the rest of the clip (before
and after) retains its natural rate (see Figure 3). This strat-
egy allows the network to better find the difference between
natural speed (changes which happen gradually) and altered
speed (changes which happen suddenly) in a clip, alleviat-
ing imprecise video speed labeling issues [5].

To have a random speed rate λ for the ζth segment, be-
ginning at frame Ib and ending at frame Ie, then

Ib = fr + ((ζ − 1) ∗ K
Z
) + (λ− 1),

Ie = Ib + λ ∗ (K
Z
− 1) , (4)

where fr is the rth frame of the original video vi which
is randomly selected during sampling to generate a more
diverse video clip v∗i at each iteration.

Summary of our overall method: Given a 3D encoder,
such as an R(2+1)D or R3D-18, and a video dataset V =
{vi}Ni=1, we perform our auxiliary learning stage using our
flavour of SKD (see Section 3.1 and Algorithm 1) based

Natural  Natural2x Speed

Figure 3. Changing the natural speed of one random segment of a
video clip for the pretraining stage - the VSPP pretext task learns
where in v∗ this occurs and at what speed change. In this example
λ = 2 and ζ = 2.

on a KL loss (Eq. 3). Following this auxiliary pretraining
stage, the student model enters the primary pretraining stage
to solve our VSPP pretext task through two simultaneous
sub-tasks: i) predicting the speed rate λ in the ζth segment
of v∗, ii) predicting the temporal location of the segment
in v∗ which is sampled at a different speed, i.e. predicting
index ζ. Then by jointly optimizing these two tasks, the
final self-supervised loss is defined as:

L = αLspeed + βLseg, (5)

where α and β are balancing weights (empirically found to
work best in our experiments when α = β = 1). Lspeed

and Lseg are cross-entropy losses.

4. Experiments
4.1. Datasets

We conducted our experiments on four datasets, two
for pretraining, Kinetics-400 [16] (K-400) and Kinetics-
100 [5] (K-100), and two for downstream action recogni-
tion, UCF101 [33], HMDB51 [18].

Kinetics-400 is a huge dataset for action recognition
collected from Youtube, which contains 400 human action
classes and around 240K videos. Each video lasts about 10
seconds.

Kinetics-100 comprises 100 classes and around 33K
videos. We use K-400 and K-100 as pretraining datasets
to validate our proposed approach’s performance on a
reduced-size dataset and promote less dependency on large-
scale datasets for self-supervised representation learning.

UCF101 contains 101 action categories with a total of
13320 videos. It is divided into three training/testing splits
and we follow prior works [5, 42] to use training split 1 for
self-supervised pre-training and train/test split 1 for fine-
tuning and evaluation.

HMDB51 contains 6,849 video clips of 51 action classes
– a relatively small dataset compared to UCF101 and Kinet-
ics. It is divided into three splits and we use split 1 for our
downstream task evaluation, similar to [5, 42].
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4.2. Implementation Details

Backbone Networks – We choose two different back-
bones R(2+1)D [38] and R3D-18 [10], as our 3D encoder,
which have been widely used in recent SotA self-supervised
video representation learning methods [5, 14, 28].

Default Settings – We run all experiments under Py-
Torch on two GeForce RTX 2080Ti GPUs with a batch size
of 30. We use SGD as our optimizer with momentum of 0.9
and weight decay of 5e-4.

Pretraining Stages – Following [42], for both auxiliary
and primary stages, we pretrain our models for 20 epochs
with an initial learning rate of 1 × 10−3. The learning rate
is decreased by 1/10 every 6 epochs. For data augmenta-
tion, we randomly crop the video clip to 112 × 112 and
then apply horizontal flip and color jittering to each video
frame. Following [2], for UCF101 we apply (10x more
iterations at) 90K iterations per epoch for temporal jitter-
ing. In our auxiliary pretraining stage, we use a predictor
head for the student encoder comprising a 3-layer MLP with
hidden dimension 1024, and output embedding dimension
128. We do not use a predictor for the teacher and only set
its output dimension (projection head) to 128. We follow
MoCo [28] and set the size of the memory bank to 16384
and set the momentum value of the encoder update to 0.999.
We also use the same temperature for both teacher and stu-
dent model at 0.02. To use the student encoder for the pri-
mary stage, the weights of the convolutional layers are re-
tained after auxiliary pretraining and we drop the projection
layer and predictor to replace them with two randomly ini-
tialized FC layers corresponding to the segment speed and
index outcomes of our VSPP pretext task (see Figure 2). We
select our parameters empirically.

Fine-tuning – During fine-tuning, we transfer the
weights of the convolutional layers to the human action
recognition downstream task, while the last FC layer is ran-
domly initialized. We fine-tune the network on UCF101
and HMDB51 for 25 epoches with labelled videos and ap-
ply cross-entropy loss. We use the same data augmentation
and training strategy as the pretraining stage except for the
initial learning rate which is set to 3×10−3, similar to [42].

Evaluation Settings – We follow the common evalua-
tion protocols on video representation learning [14, 42] to
assess the performance of our proposed approach. For ac-
tion recognition, we sample 10 clips uniformly from each
video in the test sets of UCF-101 and HMDB-51. Then for
each clip, we only simply apply the center-crop. To find the
final prediction, we average the Softmax probabilities of all
10 clips from the video.

4.3. Evaluations on UCF101 and HMDB51

Comparison on K400 pretraining – For completeness
sake, and to illustrate how our proposed method fares when
pretrained on K400, we present comparative results in Ta-

ble 1 for top-1 accuracy on both UCF-101 and HMDB-51
datasets, along with the pretraining settings for all methods,
i.e. backbone architecture, input size, pretraining dataset,
and number of epochs. In Rows 1-4, we show a mix of
methods that operate on temporal manipulations at differ-
ent input sizes and on different backbones for reference.
Rows 5-10 allow more like-for-like comparisons of recent,
popular works in SSL video representation learning based
on K-400 pretraining, R3D-18 backbone and almost con-
sistent image sizes across the techniques. ASCNet achieves
the most superior results with a combined appearance and
speed manipulation approach. In Rows 11-15, where pre-
training is on K-400 on the R(2+1)D architecture, RSPNet
and VideoMoCo come 1st and 2nd-best alternatively on the
two test datasets, while our approach exceeds CEP on both.

Comparison on K100 pretraining – The results on
Rows 16-29 of Table 1 represent the essence of our con-
tributions, in that we aim to reduce the dependence of SSL
methods on large pretraining datasets, for example by re-
placing K-400 with K-100 for pretraining. We apply our
auxSKD stage to two other transformation-based pretext
tasks, i.e. VCOP, VideoPace, and also to one contrastive
task, i.e. RSPNet, to exhibit the flexibility of our method.
For VCOP and VideoPace, we train their auxSKD with
video clips sampled based on VCOP and VideoPace’s own
sampling strategies, as proposed in [42] and [43] respec-
tively. To integrate auxSKD into the RSPNet framework,
we train it with the video transformation proposed in [5] and
then transfer all the convolutional layer weights to its query
encoder and initialize the projection head and key encoder
randomly from scratch.

Rows 16-22 relate to the networks with a R(2+1)D
backbone. VCOP+auxSKD improves on VCOP by ↑1.2%
and ↑0.4% on UCF101 and HMDB51 respectively, while
VideoPace+auxSKD similarly surpasses VideoPace alone
by ↑2.3% and ↑2.4%. Note these are very close perfor-
mances to when VideoPace is pretrained on K-400 (cf. Row
11). RSPNet’s performance also improves when our auxil-
iary SKD is deployed, by ↑0.8% for UCF101 and ↑1.7% for
HMDB51.

When the R3D-18 backbone is used, consistent improve-
ments are again observed (see Rows 23-29) for all these
methods when auxSKD is added to them. Our proposed
method obtains the best performance using the R(2+1)D
backbone on both datasets at 76.3% and 39.6%. When us-
ing R3D-18, it achieves the best result on UCF101 at 62.9%
and the 2nd best on HMDB51 at 33.0%. Finally, we note
that unlike VideoPace [42], RSPNet [5] and ASCNet [14]
(for which no code has been released at the time of writ-
ing), we do not have an appearance stream in our method.
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Self-Supervised Methods Top 1 accuracy
Row Method Network Input Size Pretrain #epochs UCF101 HMDB51

1 Shuffle&Learn [25] [ECCV, 2016] Alexnet 256 × 256 UCF101 - 50.2 18.1
2 OPN [19] [ICCV, 2017] VGG 80 × 80 UCF101 - 59.8 23.8
3 VCOP [43] [CVPR, 2019] C3D 112 × 112 UCF101 - 65.6 28.4
4 SpeedNet [3] [CVPR, 2020] I3D 224 × 224 K-400 n/a 66.7 43.7
5 VideoPace [42] [ECCV, 2020] R3D-18 112 × 112 K-400 18 63.7 27.9
6 VideoMoCo [28] [CVPR, 2021] R3D-18 112 × 112 K-400 200 74.1 43.6
7 RSPNet [5] [AAAI, 2021] R3D-18 112 × 112 K-400 200 74.3 41.8
8 ASCNet [14] [ICCV, 2021] R3D-18 112 × 112 K-400 200 80.5 52.3
9 CEP [45] [BMVC, 2021] R3D-18 224 × 224 K-400 50 75.9 36.6

10 Ours R3D-18 112 × 112 K-400 40 67.9 32.6
11 VideoPace [42] [ECCV, 2020] R(2+1)D 112 × 112 K-400 18 77.1 36.6
12 VideoMoCo [28] [CVPR, 2021] R(2+1)D 112× 112 K-400 200 78.7 49.2
13 RSPNet [5] [AAAI, 2021] R(2+1)D 112 × 112 K-400 200 81.1 44.6
14 CEP [45] [BMVC, 2021] R(2+1)D 224 × 224 K-400 50 76.7 37.6
15 Ours R(2+1)D 112 × 112 K-400 20 77.6 40.4
16 VCOP [43] [CVPR, 2019] R(2+1)D 112 × 112 K-100 200 71.4 32.1
17 VCOP [43] + auxSKD R(2+1)D 112 × 112 K-100 200 72.6 32.5
18 VideoPace [42] [ECCV, 2020] R(2+1)D 112 × 112 K-100 18 73.8 36.2
19 VideoPace [42] + auxSKD R(2+1)D 112 × 112 K-100 18 76.1 38.6
20 RSPNet [5] [AAAI, 2021] R(2+1)D 112 × 112 K-100 200 74.7 37.4
21 RSPNet [5] + auxSKD R(2+1)D 112 × 112 K-100 200 75.5 39.0
22 Ours R(2+1)D 112 × 112 K-100 20 76.3 39.6
23 VCOP [43] [CVPR, 2019] R3D-18 112 × 112 K-100 200 58.2 25.2
24 VCOP [43] + auxSKD R3D-18 112 × 112 K-100 200 60.7 28.4
25 VideoPace [42] [ECCV, 2020] R3D-18 112 × 112 K-100 18 57.5 23.5
26 VideoPace [42] + auxSKD R3D-18 112 × 112 K-100 18 60.9 27.1
27 RSPNet [5] [AAAI, 2021] R3D-18 112 × 112 K-100 200 60.2 32.6
28 RSPNet [5] + auxSKD R3D-18 112 × 112 K-100 200 61.9 33.4
29 Ours R3D-18 112 × 112 K-100 20 62.9 33.0

Table 1. Comparative performance results on UCF101 and HMDB51 when pretraining on K400, and most importantly, on the reduced-size
dataset K-100 (shaded region) to emphasise the power of our proposed approach. Note auxSKD refers to our proposed auxiliary pretraining
stage using similarity-based knowledge distillation.

4.4. Ablation Studies

We perform ablations to establish the effectiveness of our
auxiliary pretraining process and our VSPP pretext task.

Effectiveness of auxSKD – We verify the impact of our
auxiliary pretraining stage by showing its gains in perfor-
mance. In Table 2, we present the results of our proposed
method on both R(2+1)D and R3D-18 backbones, with and
without auxiliary pretraining for UCF101, using K-100 and
K-400 for pretraining. It is clear that in each and every case
auxSKD causes an increase in performance.

Temperature parameters – We studied the effect of
changing temperatures of auxSKD for both teacher and stu-
dent models and report the results in Table 3. Here we use
VSPP as the pretext task for the primary stage.

Ablation on VSPP – Our VSPP pretext task determines
both the segment within a clip where there is a speed alter-
ation compared to the natural speed of the rest of the clip
and what the speed rate is, effectively parameters λ and ζ.
Based on ablation studies in [42], for all the experiments
here we consider 4 different speed rates i.e. Q = 4, hence
λ = {1, 2, 3, 4}.

Table 4 outlines the effect of each sub-task in VSPP
when our model pretrains on them separately and jointly

Method Pretrain UCF101 HMDB51
Dataset Top-1 Top-1

Backbone: R(2+1)D
Ours - auxSKD UCF101 76.0 37.4
Ours UCF101 77.3 38.6
Ours - auxSKD K-100 74.0 37.3
Ours K-100 76.3 39.6

Backbone: R3D-18
Ours - auxSKD K-400 65.8 28.8
Ours K-400 67.9 32.6
Ours - auxSKD K-100 60.8 26.3
Ours K-100 62.9 33.0

Table 2. Ablation of the auxiliary pretraining stage auxSKD with
our proposed approach.

γT 0.01 0.02 0.05 0.07 0.1 0.01 0.02
γS 0.01 0.02 0.05 0.07 0.1 0.1 0.1

UCF101 75.0 76.3 75.3 74.9 74.9 75.5 75.0

Table 3. Effect of changing the temperatures for our method for
UCF101 with R(2+1)D backbone. γT and γS indicate teacher and
student temperatures respectively.

(on K-100). Our auxSKD pretraining is not engaged for
this ablation. The best result is obtained at 60.8% on the
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Speed Segment #Classes
Prediction Prediction #speed, #segment UCF101

✓ - [Q = 4 , Z = 1] 57.5
✓ ✓ [Q = 4 , Z = 2] 57.5
✓ ✓ [Q = 4 , Z = 3] 59.5
✓ ✓ [Q = 4 , Z = 4] 60.8
✓ ✗ [Q = 4 , Z = 4] 58.3
✗ ✓ [Q = 4 , Z = 4] 59.9

Table 4. Ablation of our VSPP pretext task pretrained on K-100
with R3D-18 (no auxSKD stage). We examine the importance of
each subtask within VSPP while the number of segments within
the clip changes.

0 10 20 30 40

VSPP + auxSKD 58 73.5 76.3 74.4 74.6

VSPP 58 72.1 74 72.2 71.7

0

Speed loss 1.69 1.35 1.22 1.14 1.1 1.07 1.05 0.99

Segment loss 1.59 1.21 0.9 0.8 0.75 0.73 0.71 0.66
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Figure 4. (Left) VSPP pretext task performance with auxSKD
(VSPP+auxSKD) and without (VSPP) based on the number of
epochs. We pretrained the R(2+1)D model on K-100 for 40 epochs
and report the results every 10 epochs on UCF101. (Right) Pre-
training losses of our VSSP subtasks on K-100, i.e. speed predic-
tion and segment prediction losses, further illustrate that our model
actually converges after around 20 epochs.

UCF101 dataset when pretraining jointly on both tasks and
having the maximum number of segments Z = 4 .

When the number of segments Z during sampling is
fewer (i.e. as ζ ranges from 1 to Z) or a subtask is missed
out, the performance drops. Note, the first line of the table
when there is only one segment, i.e. Z = 1 is the equiva-
lent to VideoPace. We believe that increasing the number of
segments in the clip pushes the model to temporally explore
the video more to find that specific segment with different
speed, resulting in better temporal representation.

Pretraining epochs – In Figure 4 (left), we evaluate the
performance of our method on UCF101 when pretrained on
K-100, with and without auxSKD, using different check-
points. It can be seen that when auxiliary learning is
switched on, the performance of our VSPP pretext task is
increased at all checkpoints. We also notice that the per-
formance starts to saturate after 20 epochs for both VSPP
and VSPP+auxSKD. In Figure 4 (right), we can see that af-
ter around 20 epochs, the changes in the VSPP losses are
not significant. This demonstrates that our model converges
quickly and we can ensure its convergence during pretrain-
ing with only 20 epochs.

5. Limitations

We identify three limitations of our work:
(i) a fundamental aspect of our VSPP pretext task is that

it thrives on the altered natural pace of motion in a segment
of a video while the rest of the clip retains its natural mo-
tion. However, any sudden and very fast motion in a clip
may violate this assumption as the fast motion within the
selected segment of a clip may be missed when it’s sam-
pled. This is a similar limitation for other current speed
based pretext tasks such as VideoPace and RSPNet. (ii) we
aim to test our approach on at least one other reduced-size
version of an existing, large dataset, such as FineAction
[23] to further validate our auxiliary pretraining stage as
an approach that reduces the dependence of self-supervised
learning approaches on large pretraining datasets (iii) other
speed-related pretext tasks, such as ASCNet, RSPNet, and
VideoPace include an appearance stream in their methodol-
ogy, however in this work, while the absence of an appear-
ance stream may seem to be a limitation, it was avoided to
focus on the power of VSPP as an independent pretext task
and promote the auxiliary pretraining stage as two contri-
butions that may be used in a modular fashion by the com-
munity. We expect that adding an appearance stream to our
model may improve our results.

6. Conclusions

In this paper, we introduced an auxiliary-learning phase
for self-supervised video representation learning that al-
lows a significant reduction in the amount of unlabelled
data required for the pretraining task. The approach ex-
ploits similarity-based knowledge distillation to better pre-
pare a (student) network to perform its primary pretraining
task. Our experiments show that this new auxiliary phase
auxSKD improves the performance of other existing SSL
approaches, such as VCOP [43], VideoPace [42], and RSP-
Net [5]. We also introduced a new video speed analysis
task, VSPP, that predicts the index and altered speed of a
segment within a clip which is sampled at a different frame
rate to the rest of the clip. Solving this task can strength the
network’s awareness of the video’s natural speed rate and
alleviate the imprecise video speed labeling problem [5].
Our experiments illustrate that the features learnt achieve
competitive or superior results compared to the state of the
art, while training on a much smaller dataset, e.g. K-100
rather than K-400, and at a lower computational cost.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Pires, Zhaohan Guo, Mohammad Azar, et al. Boot-
strap your own latent: A new approach to self-supervised
learning. In Neural Information Processing Systems, 2020.
1, 4

[10] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and im-
agenet? In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 6546–6555, 2018. 6

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020. 1, 4
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