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Abstract

We propose SCVRL, a novel contrastive-based framework
for self-supervised learning for videos. Differently from pre-
vious contrast learning based methods that mostly focus on
learning visual semantics (e.g., CVRL), SCVRL is capable
of learning both semantic and motion patterns. For that,
we reformulate the popular shuffling pretext task within a
modern contrastive learning paradigm. We show that our
transformer-based network has a natural capacity to learn
motion in self-supervised settings and achieves strong per-
formance, outperforming CVRL on four benchmarks.

1. Introduction
In recent years, self-supervised approaches have shown

impressive results in the area of unsupervised representa-
tion learning [10, 19]. These methods are not bound to cat-
egorical descriptions given by labels (e.g., action classes)
and thus are able to learn a representation that is not bi-
ased towards a particular target task. In this context, rich
representations can be learned using pretext tasks [7,17,34,
47, 50, 51, 54] or, more recently, using contrastive learning
objectives [9–12, 19–21, 32, 38, 52] that led self-supervised
performance to outperform the fully-supervised counterpart
in the image domain [10, 19].

While contrastive learning in images has advanced the
state-of-the-art, it remains relatively under-explored in the
video domain, where the few existing works applied con-
trastive learning to videos [22,38,40] in a way that primarily
captures the semantics of the scene and disregards motion.
For example, CVRL [38] adapted the SimCLR image-based
contrastive framework [10] to videos by forcing two clips
from the same video to have similar representations, while
pushing apart clips from different videos (Fig. 2, right).
This leads to strong visual features that are particularly ef-
fective on datasets such as UCF [44], HMDB [25], and
Kinetics [23], where context and object appearance matter
more than motion information. However, forcing the repre-
sentations of two clips from a single video to be the same
induces invariance to temporal information. For example,
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Figure 1. Our temporal contrastive loss. We reformulate the
popular pretext task of frame shuffling within a novel contrastive
learning framework, where all the contrasted samples (anchor,
positive and negative) are augmentations of the same clip (input).

in a “high jump” video, this will force the video encoder
to embed the “running phase” at the start of the video to
use the same representation of the “jumping phase” at the
end, even though these contain very different motion pat-
terns. Instead, we propose a new framework that can learn
semantic-rich and motion-aware representations.

To accomplish this task, we borrow inspiration from the
literature of self-supervised pretraining using pretext tasks
for videos, like shuffle detection [7, 8, 27, 54], order ver-
ification [22] or frame order prediction [26, 54]. These
methods learn by predicting a property of the video trans-
formation (e.g. the original order of the shuffled frames).
While achieving competitive results, they learn representa-
tions that are covariant to their transformations [32], hin-
dering their generalization potential for downstream tasks.
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Instead, we reformulate the previous shuffle detection pre-
text task in a contrastive learning formulation that yields
stronger temporal-aware representations which learn mo-
tion beyond just frame shuffling and can therefore better
generalize to new tasks.

In detail, we propose SCVRL, a new contrastive video
representation learning method that combines two con-
trastive objectives: a novel shuffled contrastive learning and
a visual contrastive learning similar to [38]. In order to en-
courage the learning of motion-sensitive features, our shuf-
fled contrastive approach forces two augmentations of the
same clip (anchor and positive, Fig. 1) to have similar repre-
sentations, while pushing apart negative clips generated by
temporally shuffling the positive clip. Since all these sam-
ples come from the same original clip, during training the
model cannot just look at their visual semantics to solve the
contrastive objective, but is instead forced to reason about
their temporal evolution, which is the key to the proposed
learning. Thanks to the rich combination of two contrastive
objectives, SCVRL learns representations that are both mo-
tion and semantic-aware. SCVRL trains in an end-to-end
fashion and its design consists of a single feature encoder
with two dedicated MLP heads, one for each of the con-
trastive objectives.

As feature encoder, SCVRL adopts a Multiscale Vi-
sion Trasformer [55], which is well suited for learning
the rich SCVRL objective. We evaluate SCVRL on four
popular benchmarks: Diving-48 [28], UCF101 [44] and
HMDB [25] and Something-Something-v2 [18]. We show
strong performance, consistently higher than the CVRL
baseline on all datasets and metrics. Additionally, we also
conduct an extensive ablation study to show the importance
of our design choices and investigate the extent to which
SCVRL learns motion and semantic representations.

2. Related Work

Self-supervised learning for images. Early works on self-
supervised image representation learning used various pre-
text tasks such as image rotation prediction [17], auto-
encoder learning [37,43,46], or solving jigsaw puzzles [34]
to learn semantic generalizable representations. That led to
promising results, unfortunately still far away from those
of fully-supervised models, mostly due to the difficulties
of preventing the network from learning short-cuts. That
changed with the (re-)emergence of approaches based on
contrastive learning [9–12, 19–21, 32, 52]. The underlying
idea behind these approaches is to attract representations of
different augmentations of the same image (positive pair)
while repelling against those of different instances (nega-
tive pair) [2, 36]. Thanks to this training paradigm, recent
works were able to produce results on par with those of
fully-supervised approaches [9–12, 19, 21, 32].

Self-supervised learning for videos. In the video domain,
many works exploited the temporal structure of videos by
designing specific pretext tasks such as pace prediction
[3,48], order prediction [7,8,26,33,51,54], future frame pre-
diction [5, 6, 14, 15] or by tracking patches [49], pixels [50]
or color [47] across neighboring frames. More recently, sev-
eral approaches [22,38,40,53] adopted contrastive learning
objectives from the image domain to learn stronger video
representations. Among these, CVRL [38] was the first to
propose a video-specific solution for sampling pairs (posi-
tives and negatives) for contrastive video learning. In de-
tail, CVRL proposed to sample positive pairs of clips from
within the same video (their only constraint is that they
cannot be too close to each other temporally) and nega-
tives from other videos. This achieves impressive results
on downstream tasks and it inspired this work (SCVRL).
Specifically, it inspired us to design a novel sampling strat-
egy that is even more suitable for contrastive video learn-
ing and that encourages the representation to learn both se-
mantic (as CVRL) and motion cues (using our novel shuf-
fling contrastive learning). Finally, note how CVRL also in-
spired other very recent works [22, 40]. [40] tried to match
the representation of a short clip to the one of a long clip,
while [22] tried to incorporate temporal context using an or-
der verification pretext task. We argue that none of these ap-
proaches explicitly enforce the representation to learn mo-
tion information like our SCVRL.

Vision Transformers. In recent years, transformer mod-
els [13, 45] have achieved unprecedented performance on
many NLP tasks. Dosovitskiy et al. [16] adapted them to the
image-domain with a convolution-free architecture (ViT)
achieving competitive results on image classification and
sparking a new research trend in the field. Since then, many
works have been proposed, including some in the video do-
main [1,4,55,56]. Among these, MViT [55] is of particular
interest to this paper, as we use it as the feature encoder for
SCVRL. MViT proposes a multiscale feature hierarchy for
transformers to effective model dense visual inputs with-
out the need for external data. It produces state-of-the-art
results on various video classification benchmarks and we
believe its architecture design is well suited to learn the con-
trastive objective of SCVRL.

3. Method
SCVRL is a novel contrastive learning framework that

learns representations which are both rich in semantics and
sensitive to motion cues. To achieve this, it leverages two
objectives: a classic visual contrastive objective to learn the
semantics of the video (e.g., CVRL [38]) and a novel objec-
tive which compares a video clip and the same clip tempo-
rally shuffled (Fig. 1), such that the learnt representation is
aware of the temporal order of an action and can distinguish
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Figure 2. Method overview. Our framework consists of two contrastive objectives: (i) our novel shuffled contrastive learning (left) is
computed using the same clip (Video A, Clip 2) for all three samples, in fact anchor (top) and positive (middle) only differ by their spatial
augmentation, then the positive is shuffled (π) over the time dimension to produce the negative sample (bottom); (ii) visual contrastive
learning (right), similarly to CVRL [38] uses two clips from the same video (Video A) are used as anchor (Clip 1, top) and positive (Clip
2, middle) and a clip from a different video (Video B) constitutes the negative sample (bottom). Each sample is then run through the
respective network composed of a shared backbone and two different heads, one for each loss. The visual contrastive loss extracts only
semantic information and forces temporal invariance. The shuffled contrastive loss encourages the network to learn temporal information
since it is the only characteristic that distinguishes positive from negative.

its different phases.

3.1. Preliminaries on Contrastive Learning

The objective of contrastive learning is to produce an
embedding space by attracting positive pairs, xa (anchor)
and xp (positive), while pushing away a set of N nega-
tives xn = {xn1

, . . . , xnN
}. This is achieved by training

an encoder f which embeds a given video clip x to a L2

normalized feature vector using the InfoNCE [21, 36] loss
L = IN(f ;xa, xp,xn) which is formulated as follows:

L = − log
ef(xa)

T ·f(xp)/τ

ef(xa)T ·f(xp)/τ +
∑N

i=1 e
f(xa)T ·f(xni

)/τ
, (1)

with τ > 0 as a temperature parameter. It is clear from
this formulation that what the model learns largely depends
on how the positive and negative pairs are sampled. In the
next section we delve into how we construct training sam-
ples for our shuffled contrastive learning objective and in
the following one we then present our SCVRL framework.

3.2. Shuffled Contrastive Learning

The key to ensure that L learns a motion-aware represen-
tation space lies in how positive, negative, and anchor clips

are sampled during training. Differently from previous ap-
proaches (e.g. CVRL [38]), that sample positive pairs from
one video and negatives from other videos, we use a sin-
gle clip to produce anchor, positive and negatives and only
change the temporal order of its frames as a mean to learn
temporal sensitive features.

Specifically, we extract a single clip from a video and
apply two different spatial augmentations to obtain our pos-
itive pair xT

a and xT
p (Fig. 2). Our negatives are then gener-

ated by applying a series of temporal permutations πi ∈ Π
to the positive clip: xT

ni
= πi(x

T
p ) (i.e., shuffling). In the

context of Eq. 1, we define our temporal shuffled contrastive
objective as LT = IN(f ;xT

a , x
T
p ,xn). This objective forces

the encoder to push apart the representations of the anchor
clip xT

a (which is in normal order) and the shuffled clip xT
n .

This makes the learned representation sensitive to frame or-
dering (i.e., motion-aware), as these pairs xT

a and xT
n share

the same semantics and the model can only repel them using
motion information. Furthermore, in order to avoid trivial
solutions, an important design choice is to make sure xT

ni

and xT
a do not share the same spatial extent. To achieve this,

we generate xT
ni

by permuting xT
p rather than xT

a . This crit-
ical design avoids the shortcut where the encoder solves the
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Figure 3. Targeted Sampling. During self-supervised training,
we select clips with high motion. For each video, we compute the
frame difference (middle), select the top 4K pixels and calculate
the media over 1 second (bottom plot). In this example, the first
and last clip (green boundaries) are selected given that the tennis
player is moving (hitting the ball). The middle clip (red bound-
aries) is excluded from self-supervised training since the subject is
only preparing the ball and not moving, therefore shuffling these
frames would not produce different enough samples to learn mo-
tion information.

task with a simple pixel-level comparison between frames.

At the same time, this design also carries a potential risk:
if xT

p is a clip containing almost no motion (e.g., static
scenes), then its shuffled representation xT

ni
would look

identical to it and the encoder would not be able to push
them apart and learn correctly. To overcome this problem
and take full advantage of our shuffling contrastive learning
method, we propose a new targeted sampling approach that
aims at selecting the right clips for shuffling.

Probabilistic targeted sampling. Given a video, we want
to sample clips that have strong motion for shuffling, as vi-
sualized in Fig. 3. To measure the motion of each clip, we
use optical flow edges [53], which have been shown to be
more robust to global camera motion compared to raw op-
tical flow. We estimate flow edges by applying a Sobel fil-
ter [42] onto the flow magnitude map and take the median
over the highest 4k flow edge pixels values in each frame.
Then, we aggregate them in time by taking the median over
all the frames in a 1-second temporal window (mi). Rather
than deterministically sampling the clip with the highest
motion (which would disregard a lot of useful clips), we
propose to sample from a multinomial distribution based on
the probability pi computed from window i by inserting its

stages operators output sizes
data layer stride 4× 1× 1 3×16×2242

cube1
2× 7× 7, 96

96× 8× 562
stride 2× 4× 4

scale2

[
MHPA(96)
MLP(384)

]
×1 96× 8× 562

scale3

[
MHPA(192)
MLP(768)

]
×2 192× 8× 282

scale4

[
MHPA(384)
MLP(1536)

]
×11 384× 8× 142

scale5

[
MHPA(768)
MLP(3072)

]
×2 768× 8× 72

Output: CLS token

Table 1. SCVRL backbone architecture. The network is the
same as MViT-B [55] except for the first layer (cube1) where the
temporal kernel size is reduced to avoid shortcuts (see Sec. 4.1).
The dimensions of the output size is denoted as C × T ×H ·W .

motion amplitude mi into a softmax function:

pi =
emi/β∑C
j emj/β

, (2)

where β is the temperature which regularizes the entropy of
the distribution and C is the number of temporal windows
inside the video.

3.3. SCVRL Framework

Our self-supervised SCVRL framework learns a video
representation that is both semantic-rich and motion-aware.
To achieve this, it combines two contrastive objectives: our
Temporal shuffled contrastive learning objective LT and a
Visual contrastive learning objective LV :

LF = LT + λLV , (3)

where λ is a weighting parameter and LV is the contrastive
objective used in CVRL [38] that helps SCVRL learn se-
mantic features. Its objective is illustrated in Fig. 2 (right)
and is defined as: LV = IN(f ;xV

a , x
V
p ,x

V
n ), where xV

a =

xT
a , xV

p is a different clip from the same video of xV
a and

the negative clips xV
n are sampled from entirely different

videos. To the best of our knowledge, SCVRL is the first
work that explicitly models both motion and visual cues
within the same self-supervised contrastive learning frame-
work. Finally, we note that one cannot naively combine
these two competing objectives as LV wants to pull together
the representation of all the clips within a video, while LT

wants to push them away when shuffled. To circumvent
this, we design SCVRL with a shared backbone encoder
f , but two independent MLP heads ϕV and ϕT , one for
each of the objectives (Table 8b, Fig. 2) [30, 31]. For the
backbone video encoder, we adopt Multiscale Vision Trans-
former [55] (MViT), which has a large temporal receptive
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Method Shuffle UCF Diving-48

Rand Init ✗ 13.4 (– 6.7) 9.5 (–6.7)
Rand Init ✓ 12.8 (–0.6) 8.7 (–0.8)
CVRL ✗ 67.4 (–6.7) 12.0 (–6.7)
CVRL ✓ 62.9 (–3.5) 9.5 (–2.5)
SCVRL ✗ 68.0 (–6.7) 11.9 (–3.7)
SCVRL ✓ 56.2 (–11.8) 8.1 (–3.8)

Table 2. Dependency on motion information. We evaluate the
performance drop when shuffling the input during inference as in-
troduced by [41,55]. A large drop indicates that the network relies
on temporal information to solve the task. A small drop, on the
other hand, the model is basing the decision only on per-frame
semantic. The models are trained using the linear evaluation pro-
tocol for the corresponding dataset and we report top-1 accuracy.
The performance drop is indicated in red brackets.

field that makes it particularly suitable for learning motion
cues using our shuffled contrastive learning objective.

4. Experiments
In this section, we first describe the implementation de-

tails and the benchmark datasets we use in our experiments.
Then, we investigate the motion information extracted by
our SCVRL compared to the baseline. Finally, we evalu-
ate our model on the downstream task of action recognition
and perform several ablation studies to better understand the
impact of our design choices.

4.1. Implementation Details

Training protocol. We pretrain SCVRL on the Kinetics-
400 (K400) dataset [24], which contains around 240k 10-
seconds videos, without the use of the provided action an-
notations. Our final model is pretrained on K400 for 500
epochs. Since the training of transformers is computation-
ally very expensive, we validate the strong performance of
our model by comparing to the CVRL baseline on a training
scheme using 100 epochs. For efficiency, we only train for
50 epochs for our ablation study on a subset of K400 con-
taining 60k videos that we call Kinetics400-mini. We train
SCVRL with a learning rate of 1× 10−4 with linear warm-
up and cosine annealing using AdamW optimizer [29] with
a batch size of 4 per GPU and weight decay of 0.05. We set
the warm-up and the end learning rate to 1×10−6. We set λ
in Eq. 3 to 1. The temperature β for our targeted sampling
is set to 5 as ablated in Fig. 8a. The spatial augmenta-
tions are generated with random spatial cropping, temporal
jittering, p = 0.2 probability grayscale conversion, p = 0.5
horizontal flip, p = 0.5 Gaussian blur, and p = 0.8 color
perturbation on brightness, contrast and saturation, all with
0.4 jittering ratio. The same augmentation is applied to all
frames within a clip. To effectively train SCVRL with LV

we follow [21,52] and construct a memory bank of NV neg-

Category Motion ∆ Acc. ↑
Turning the camera downwards while filming sth 0.69 22.5
Turning the camera left while filming sth 0.95 17.8
Digging sth out of sth 0.64 12.1
Turning the camera upwards while filming sth 0.89 11.6
Uncovering sth 0.65 10.8
Showing a photo of sth to the camera 0.25 -1.9
Showing sth on top of sth 0.08 -2.6
Scooping sth up with sth 0.43 -2.9
Pulling two ends of sth so that it gets stretched 0.43 -3.3
Throwing sth against sth 0.42 -5.0

Table 3. Performance gain related to motion. For each SSv2 ac-
tion class, we compare the absolute difference in accuracy between
SCVRL and CVRL (∆ Acc.) using linear evaluation and the nor-
malized motion. For this table, we show five of the highest and
lowest performing classes, sorted by ∆ Acc. The result shows that
SCVRL improves on actions with high motion by a large margin.
At the same time, CVRL outperforms on classes with low motion
by only a marginal difference.

ative samples. To train with LT , instead, we generate neg-
atives on the fly by randomly permuting the positive clip
NT times. For the visual contrastive objective, we use a
memory bank size NV of 65536 negative samples, while
for the temporal counterpart we set NT to 12. For both ob-
jective we set the temperature τ to 0.1. As suggested in [21]
we maintain a momentum version of our model and process
anchor clips with our online model while positive and negat
clips are processed with the momentum version.

Architecture. We use the MViT-Base (MViT-B) version of
MViT and operate on clips of 16 frames which are extracted
with a stride of 4. Our architecture is shown Tab. 1. As
in previous works [1, 55] we use a cube projection layer
to map the input video to tokens. This layer is designed
as a 3D convolution with a temporal kernel size of 3 and
stride of 2 with padding of 1. However, when the input se-
quence is shuffled, the projection layer has direct access to
the seams between the shuffled frames. This would allow
the network to learn shortcuts by directly detecting if a se-
quence is shuffled. We ablated this behavior in Tab. 8e. To
overcome this issue, we propose to shuffle groups of two
frames and use a temporal kernel size to 2 with a stride of
2, thus avoiding convolutional kernels overlapping across
shuffled tokens. Finally, each MLP head in SCVRL is a
two-layer network that consists of a linear layer that trans-
forms the CLS token to a 2048 dimensional feature vector,
followed by a ReLU activation function, and a second linear
layer that maps to an embedding of 128-D.

Evaluation protocol and Baselines. Following [38,40], we
employ two evaluation protocols to quantify self-supervised
representations: (i) Linear: Training a linear classification
layer on top of the frozen pretrained backbone (ii) Full:
finetuning the whole network in an end-to-end fashion on
the target dataset. For all evaluations we report the top1 ac-
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Figure 4. Video retrieval comparison. For each query, we show the top three nearest-neighbor based on CVRL and SCVRL representa-
tions. For each video, we show the first, middle and last frame. The ground-truth class is provided on top. The figure illustrates that CVRL
is biased towards appearance while SCVRL is aware of motion patterns. For example, in Query 1 CVRL retrieves videos of the same scene
even if the motion (i.e. action class) is different, while SCVRL retrieves nearest neighbors with different appearance but similar motion.

curacy. We follow previous works and use a standard of 10
temporal and 3 spatial crops during testing. We compare
against two baselines: (i) CVRL [38], a state-of-the-art self-
supervised contrastive learning method trained using the vi-
sual contrastive loss LV of Eq. 3; and (ii) Supervised, which
is a fully supervised model trained for actions on K400. All
baselines use the same MViT-B backbone as SCVRL.

4.2. Datasets

Diving-48 [28] is a fine-grained action dataset capturing 48
unique diving classes. It has around 18k trimmed video
clips, each containing a diving sequence that consists of a
mix of takeoff, the motion during the dive and water enter-
ing. It is a challenging dataset due to the semantic similarity
across all diving classes (e.g., similar foreground and back-
ground, similar diving outfits, etc.). As the original Diving-
48 dataset had some annotation issues, we follow [4] and
use their cleaned annotations.
Something-Something-v2 [18] (SSv2), similarly to
Diving-48, is a benchmark that was specifically devel-
oped to evaluate a model’s capability to learn temporal
dynamics. SSv2 consists of video clips showing complex
human-object interactions, such as “Moving something up”
and “Pushing something from left to right”. It contains
a total of 174 unique actions, 168k training videos, 24k
validation videos and 24k test videos.
UCF101 [44] and HMDB [25] are both standard bench-
mark datasets for the classification of sport activities and
daily human actions. UCF contains 13320 YouTube videos
labelled with 101 classes, while HMDB contains 6767
video clips labelled with 51 actions. Differently from the
previous two datasets, these can reliably be solved using

mostly semantic cues, as their action classes are quite dis-
tinct. For all experiments on UCF101 and HMDB51, we
report results using split1 for train/test split.

4.3. Analysis of Motion Information

The goal of our shuffled contrastive learning objective
is to learn stronger temporal features. We now quantify the
amount of temporal information learned by SCVRL in com-
parison to CVRL.

Dependency on motion information. First, we investigate
to what extend SCVRL has learnt to distinguish temporally
coherent sequences compared to shuffled ones. For this,
we follow previous works [41, 55] and compute the perfor-
mance change between running inference on a test clips vs.
its shuffled version. Results using the Linear evaluation pro-
tocols are presented in Tab. 2. These show that SCVRL is
very sensitive to the temporal order of the frames and its
performance drops by ∼ 12 points Top-1 accuracy on UCF.
This validates the effectiveness of our shuffled contrastive
learning strategy. On the contrary, CVRL’s performance on
UCF is barely affected (-3.5), confirming that CVRL’s rep-
resentations are temporal invariant when trained on datasets
that mostly rely on semantic cues (i.e., UCF).

Correlation between motion quantity and performance.
We now compare per-class performance change between
SCVRL and the baseline CVLR in Tab. 3 and correlate it
to the amount of motion each action contains. For this,
we calculate the median motion magnitude in the pixel
space for all videos of each class. We show five high (top)
and five low performing (bottom) classes sorted by their
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Method Pretrain data Sup. Full Linear
10

0
E

po
ch

s Rand Init – ✗ 18.4 6.9
CVRL K400 ✗ 52.6 12.1
SCVRL K400 ✗ 53.8 11.9
MViT K400 ✓ 68.8 22.3
SCVRL K400 ✗ 66.4 18.1

Table 4. Action classification on Diving-48. We pretrain on K400
and then transfer the representation to Diving48 for finetuning un-
der both Linear and full protocols. Results are reported as top-1
accuracy. SCVRL outperforms the CVRL baseline by a significant
margin. For context, we also compare to supervised video models
pre-trained on Imagenet-1K and show that our model outperforms
them.

Method Pretrain Arch. Sup.
UCF HMDB

Full Linear Full Linear

10
0

E
po

ch
s Rand Init K400 MViT-B ✗ 68.0 18.7 32.4 13.6

CVRL K400 MViT-B ✗ 83.0 67.4 54.6 42.4
SCVRL K400 MViT-B ✗ 85.7 68.0 55.4 40.8
Supervised K400 MViT-B ✓ 93.7 93.4 68.8 67.6
SCVRL K400 MViT-B ✗ 89.0 74.4 62.6 50.1
CVRL [38] K400 R3D-50 ✗ 92.9 89.8 67.9 58.3

Table 5. Action classification on UCF and HMDB. We pre-
train on K400 and then transfer the representation to UCF101 and
HMDB for Linear and Full finetuning. Results are reported as top-
1 accuracy.

performance gains. First and foremost, the improvement
brought by SCVRL is substantial (top: 10-20 Top-1 accu-
racy points) compared to its loss (bottom: 2-5 points). Sec-
ond, SCVRL improves particularly on actions with large
motion, like “Turning the camera left”, showing that it is
important to model motion cues in video representations
and that SCVRL is capable to do that well.

Video retrieval comparison. In Fig. 4, we compare the
nearest neighbors obtained using the representation space
learned by SCVRL to the one from CVRL on the SSv2
dataset. For each query we show the top-3 nearest neigh-
bors. For both queries we observe that SCVRL better cap-
tures the temporal information in the query and the top-3
nearest neighbor are very similar in motion while having a
large variation in semantics. In Query 1, the nearest neigh-
bor from CVRL have all the same appearance, yet, com-
pletely different progressions. Also in Query 2 CVRL top-
1 nearest neighbor displays a similar object as the query
(green cup) but different motion, while SCVRL correctly
retrieves a clip with the same motion even if the cup has
a different color. This illustrates that the learned features
from SCVRL better captures the missing temporal informa-
tion in CVRL.

4.4. Downstream Evaluation

Next, we evaluate SCVRL on four datasets introduced
in Sec. 4.2 for action recognition, using the two evaluation

Method Arch. Pretrain Sup. Full Linear

10
0

E
po

ch
s Rand Init MViT-B – ✗ 38.7 3.2

CVRL MViT-B K400 ✗ 45.3 11.4
SCVRL MViT-B K400 ✗ 46.8 13.8
MViT MViT-B K400 ✓ 53.7 19.4
SCVRL MViT-B K400 ✗ 53.5 19.4
MViT [55] MViT-B K400 ✓ 64.7 –

Table 6. Action classification on SSv2. We pretrain on K400 and
then transfer the representation to SSv2 for finetuning under both
Linear and Full protocols. Top-1 accuracy is reported in the table.

Method 1% 5% 10% 25% 50% 100%
Rand Init 1.5 2.9 7.8 18.7 28.5 40.0
CVRL 4.4 15.4 23.3 31.0 40.1 45.3
SCVRL 6.1 19.4 26.3 34.4 43.0 46.8
rel. ∆% +27.9 +20.6 +11.4 +9.9 +6.7 +3.2

Table 7. Low-shot learning on SSv2. Rows indicate different
pretraining method on K400, while columns vary the % of SSv2
training data used for finetuning. All results are top-1 accuracy.
Our method (SCVRL) consistently provides an higher gain than
CVRL and, in particular, achieves higher gain when the amount of
annotations are lower.

protocols of Sec. 4.1.

Action Classification on Diving-48. Tab. 4 shows that our
SCVRL achieves better performance than baseline for full
finetuning on Diving-48 while being on par for the linear
evaluation protocol.

Action Classification on UCF and HMDB. In Table 5 we
show the top-1 accuracy on UCF and HMDB for both eval-
uation protocols after pretraining on Kinetics400 for 100
epochs (details in sec. 4.1). SCVRL outperforms its corre-
sponding baseline CVRL on UCF and HMDB when fine-
tuning the full model. For the linear evaluation settings, we
observe a marginal gain on UCF and a small loss on HMDB.
We argue this is likely due to the semantic-heavy nature of
these datasets (as opposed to motion, like Diving-48 and
SSv2). Our fully trained model achieves inferior perfor-
mance when comparing to CVRL trained using a ResNet
R3D-50 architecture. Note, this gap is not caused by the
method, instead, it is due to the architecture choice.

Action Classification on SSv2. In Table 6 we com-
pare SCVRL and the baseline CVRL, both pretrained on
Kinetics-400. SCVRL consistently outperforms its base-
line, by 1.5% on full-finetuning and 2.4% on linear. Finally,
note how we omit the recent state-of-the-art CORP [22]
from the table since it is not compatible on SSv2 (i.e., dif-
ferently from previous methods, it directly pretrains on the
target dataset).
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Temp. β UCF SSv2
∞ 75.0 43.8
10 75.1 43.9
5 75.5 44.3
3 74.1 43.1

(a) Targeted sampling

Method UCF SSv2
CVRL 70.3 41.9

SCVRL shared 69.6 40.7
SCVRL separate 75.5 44.3

(b) Contrastive heads

Method UCF SSv2
CVRL 70.3 41.9
+ cls shuffle 70.3 42.6
SCVRL 75.5 44.3

(c) Ablate LT

Method UCF SSv2
CVRL 70.3 41.9

SCVRL CLS 75.5 44.3
SCVRL AVG 74.2 43.9
(d) CLS vs AVG pooling

Method kt UCF SSv2
CVRL 2 70.3 41.9

SCVRL 2 75.5 44.3
CVRL 3 72.6 41.7

SCVRL 3 72.7 41.9
(e) Proj. layer kernel size

Table 8. Ablating SCVRL. We present top-1 classification accuracy using the Linear evaluation protocol on UCF and SSv2. For efficiency,
we train the corresponding model on K400-mini since we are looking at relative improvements.

4.5. Low-Shot Learning on SSv2

In Table 7 we evaluate our model in the context of low-
shot (or semi-supervised) learning, i.e. given only a frac-
tion of the available train-set during finetuning. Both CVRL
and SCVRL are pretrained on the full Kinetics400 training
set. The train-data ratio (top of the table) only applies to
SSv2 finetuning. We perform the finetuning for 1%, 5%,
10%, 25%, 50% and 100% of SSv2 train data and show
that SCVRL consistently outperforms CVRL by a signifi-
cant margin. In particular, the relative gain of SCVRL is
higher when the amount of supervised data for the target
domain (i.e., SSv2) is lower. This shows that learning repre-
sentations that capture both semantic and motion informa-
tion, as in SCVRL, leads to representations that are more
generalize and more transferable.

4.6. Ablation studies

We now provide detailed ablation studies on different
components and design choices. For these, we pretrain on
the Kinetics-400-mini and finetune on UCF and SSv2.

Targeted sampling (Table 8a). We evaluate the effect
of our probabilistic targeted sampling on the final perfor-
mance. We observe a performance boost with targeted sam-
pling (temperature β = 5) compared to uniform sampling
(temperature β = ∞). Interestingly, with a low tempera-
ture value (3), which corresponds to a low entropy of the
distribution of weights wi, we experience a significant loss
in performance. This is likely caused by the fact that this
choice excludes a lot of valuable training clips and mostly
focuses on a (relatively) fixed subset.

Head configurations (Table 8b). In Sec. 3.3 we conjec-
tured about the importance in SCVRL of having two MLP
heads, one dedicated to each contrastive objective. Here
we now evaluate this choice and compare against SCVRL
trained using a single head (ϕv = ϕt). The results validate
our design, as they show that the performance degrades con-
siderably when we use a single head, to the point where it
is even worse than the CVRL baseline.

Importance of contrastive formulation (Table 8c). In this
ablation we compare our proposed objective LT against a

traditional pretext task approach [7,35] based on a classifier
trained using a cross-entropy loss to detect if a sequence is
shuffled. This loss objective is combined with the visual
contrastive objective LV as in SCVRL. The results show
that the proposed objective achieves much higher perfor-
mance for both UCF and SSv2, validating the importance
of reformulating pretext tasks using contrastive learning.

Used output feature representation (Table 8d). As stud-
ied in the supervised setting [39], the design choice between
using a CLS token or a representation computed from spa-
tial average pooling induces different model behaviors, es-
pecially on how localized each tokens are. However, it is not
clear how that affects representations in a self-supervised
setting. Hence, we compare SCVRL, which is trained on
the output CLS token from MViT-B, against a different ver-
sion trained using the average pooled token over the time
and space dimensions (AVG). We obtain stronger results for
the model which operates on the CLS token.

Shortcuts in projection layer (Table 8e). In Sec. 4.1 we
discussed how for SCVRL we modify the temporal kernel
size of MViT to avoid the network from learning shortcuts.
We now ablate two potential choices: 2 and 3. The results
show that SCVRL only significantly improves upon CVRL
only for kt = 2. This is likely caused by the projection layer
having directly access to the gaps between shuffled frames
and with that, can detect if a sequence is shuffled. Thus,
the remaining part of the transformer is not challenged by
the loss. That is why it is crucial for our framework to be
trained with a kernel size which is aligned with the number
of frames shuffled in each group.

5. Conclusion
We presented SCVRL, a novel shuffled contrastive learn-

ing framework to learn self-supervised video representa-
tions that are both motion and semantic-aware. We refor-
mulated the previously used shuffle detection pretext task in
a contrastive fashion and combined it with a standard visual
contrastive objective. We validated that our method better
captures temporal information compared to CVRL which
led to improved performances on various action recognition
benchmarks.
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[40] Adrià Recasens, Pauline Luc, Jean-Baptiste Alayrac, Luyu
Wang, Florian Strub, Corentin Tallec, Mateusz Malinowski,
Viorica Patraucean, Florent Altché, Michal Valko, et al.
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