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Abstract

Siamese network architectures trained for self-
supervised instance recognition can learn powerful
visual representations that are useful in various tasks.
Many such approaches maximize the similarity between
representations of augmented images of the same object.
In this paper, we depart from traditional self-supervised
learning benchmarks by defining a novel methodology for
new challenging tasks such as zero shot pose estimation.
Our goal is to show that common Siamese networks can
effectively be trained on frame pairs from video sequences
to generate pose-informed representations. Unlike par-
allel efforts that focus on introducing new image-space
operators for data augmentation, we argue that extending
the augmentation strategy by using different frames of a
video leads to more powerful representations. To show the
effectiveness of this approach, we use the Objectron and
UCF101 datasets to learn representations and evaluate
them on pose estimation, action recognition, and object
re-identification. Furthermore, we carefully validate our
method against a number of baselines.

1. Introduction
The recent progress in unsupervised visual represen-

tation learning is owed to multiple orthogonal efforts in
improving self-supervision objectives, model architectures,
and data transformation techniques. For these objectives,
so-called “pretext” tasks were previously used for content
understanding through structural manipulations (e.g. ro-
tations [16] and crop-based puzzles [31]). The limited
complexity of these tasks resulted in weak feature extrac-
tors that would fail to deliver on practical vision tasks.
Consequently, they have now been superseded by various
forms of instance recognition tasks where each image in
a dataset is considered a unique instance. The contrasting
of instances across “views” obtained by data augmentation
(coined “contrastive learning”) has been a very successful
approach [7, 8, 32]. Today, various self-supervised learning
methods perform on-par with supervised ones on common
vision benchmarks. Although it is evident that data transfor-
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Figure 1. Examples of view generation processes used in self-
supervised pre-training: (a) strong data augmentations as proposed
in [8] on a single images; (b) simpler augmentations applied to an
object viewed across multiple frames. Our experiments show that
the latter leads to better representations for pose-sensitive tasks.

mations play a role in the successes and failures of models,
we still do not know exactly what attributes are encoded into
scene and object representations as a consequence of their
choice. As observed in [3,8], strong data augmentation that
is not helpful in supervised learning is beneficial in self-
supervised learning. The augmentation operations that are
used essentially dictate which invariances are built into the
model’s representations. Re-using representations across a
wide variety of tasks becomes problematic if the invariances
required by the pre-training and downstream objectives are
mismatched. A number of methods aim to avoid such issues
(e.g. [47]), but these come at an engineering, architectural,
or efficiency cost.

In this paper, we advance self-supervised learning by
introducing a novel methodology for learning image and
scene representations by leveraging the temporal structure
of videos. Specifically, we show that a common Siamese
network can effectively and efficiently be trained on frame
pairs from videos to learn a representation for objects and
their surroundings. Depending on the frame pairing strategy
used, this representation can be either sensitive or insensi-
tive to the object pose itself, which we refer to as “pose-
informed”. Please note that we do not aim at video repre-
sentation learning, but instead only use the temporal struc-
ture of videos as a form of weak supervision. This enables
us to solve challenging computer vision tasks, such as pose
estimation and object re-identification, in a self-supervised
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manner.
To this end, we argue that video sequences provide ex-

amples of natural geometrical and morphological transfor-
mations that cannot be adequately emulated using image-
space data augmentation operations (see Figure 1 for a com-
parison). Our results show that training with diverse views
of an object instance enables us to significantly outperform
existing methods that only rely on single view training. We
also argue that this strategy is more appropriate when com-
bined with recent self-supervised learning approaches that
do not rely on negative samples, as the use of these could
lead to unwanted biases in the learned representations. We
conduct experiments by pre-training on two different video
datasets and evaluate the performance of the resulting mod-
els on pose estimation, object re-identification, and action
recognition tasks. We show that “natural” views obtained
from videos are complementary to traditional data aug-
mentation and that they improve model performance across
these tasks.

To summarize, our main contributions are: (1) we de-
fine a novel methodology for self-supervised training that
uses frame pairs from videos as a form of data augmen-
tation strategy with weak supervision; (2) we show that
our method can learn both pose-variant and pose-invariant
representations (depending on the frame selection strategy
used) that can be used to address challenging computer vi-
sion tasks for real world applications; (3) our method can
directly be used with existing Siamese architectures with-
out the requirement to change the model architecture or loss
function; (4) we validate our method on large-scale state-of-
the-art datasets, such as Objectron and UCF-101.

2. Related Work
Representation learning is a long-standing research topic

in which techniques are proposed to build generic feature
extractors for high-dimensional data [5]. These extractors
should embed the data in a way that allows high-level at-
tributes (e.g. class labels) to be easily separated or pre-
dicted. In practice, they should also be agnostic to the
downstream tasks they will tackle, and they should be train-
able in an unsupervised fashion. The combination of all
these goals is however somewhat paradoxical. In conse-
quence, recent progress has been empirically driven and
mostly measured on a small subset of object classifica-
tion and detection benchmarks. Feature extractors pre-
trained on ImageNet rarely perform well when applied to
less object- (or instance-) centric tasks such as scene recog-
nition or surface normal estimation [18]. Our goal is to
study how view selection could help widen the number of
potential applications for pre-trained feature extractors.

Representation learning via instance recognition. As
mentioned in the introduction, many researchers have
turned their focus towards instance recognition (or discrim-

ination) tasks for self-supervised learning. This kind of
task dates back several years [14, 45] but found signifi-
cant success with the InfoNCE formulation of [32]. Their
method uses an autoregressive model to predict embeddings
of sequentially structured data across a set of positive and
negative samples (or instances). The underlying idea of
“contrastive learning” on positive and negative pairs was
then substantially simplified in [8, 23]. Recently, alterna-
tive methods which are not so dependent on negative sam-
ples were proposed [6, 7, 11, 19]. Many of these were also
demonstrated to scale well on very large datasets that are
less curated than ImageNet [9, 17]. The principles behind
the success of all these methods are still the subject of ac-
tive research [10, 40, 44]. The consensus seems to be that
most state-of-the-art unsupervised representation learning
approaches rely on the pursuit of two objectives: 1) the
representations of different views obtained from a common
instance must be aligned; and 2) the set of all representa-
tions should be dispersed across the latent space. These two
objectives can be explicitly defined as part of the training
loss or implicitly through the inductive bias of the model
architecture. For our own experiments, we opted to use the
SimSiam framework [11] which is a simple formulation that
scales well across different training regimes.

On the importance of view generation. Popular rep-
resentation learning approaches propose different formula-
tions of the instance recognition task, but they all require
a view generation process. This process is typically de-
rived from the one of [8]: strong data augmentation is used
to make views diverse and thus make the recognition task
challenging. In turn, the learned representations become in-
variant to the set of operations that are used. As discussed
in [34, 39, 47], the adopted invariances can sometimes be
detrimental to downstream task performance, e.g. rotations
and flips may prevent representations from being sensitive
to pose variations. According to [39], views that are “good”
for downstream performance should only share information
that is relevant to the downstream task, which is incompat-
ible with the fundamental goals of general-purpose feature
extractors. Furthermore, [4, 15, 28, 29, 33] have noted that
independent views obtained by processes that consider the
semantic proximity of instances result in much better down-
stream performance. This motivates our investigation into
the usefulness of video sequences for natural and semanti-
cally linked view generation.

Representation learning using video sequences. Al-
though numerous works have used video data for represen-
tation learning, many of them sought to build feature extrac-
tors with 3D CNNs or RNNs specifically for spatiotemporal
data analysis [12, 20, 35, 48]. Here, we are more interested
in the use of the temporal structure of video sequences as a
form of weak supervision for generic representation learn-
ing. Early examples of this concept include the work of [42]
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which used a representation prediction task as a way to un-
derstand and anticipate actions and object detection. The
original autoregressive formulation of the contrastive learn-
ing approach of [32] also falls into this category: it is a good
example of how temporal data can be used to learn good
representation for non-temporal tasks. The time-contrastive
view sampling strategy of [37] can be easily combined with
more recent contrastive learning approaches, but it would
still lead to representations that are more time- (and thus
action-) sensitive than pose- (or geometry-) sensitive. This
is because of the dependency on negative samples that must
be extracted from the same video sequence as the positive
samples. More recently, [34] investigated temporal view
sampling as a way to measure and compare these sensitiv-
ity biases on object-centric datasets. For our own study, we
investigate the impact of temporal view sampling across a
wider range of vision tasks, and using a baseline approach
that does not require negative view sampling. We argue that
training on video frame pairs leads to the implicit construc-
tion of an embedding space that is sensitive to additional
object attributes, thus leading to better performance on tasks
that also require motion, pose, or geometry awareness.

3. Methodology
In this section, we describe the experimental protocol for

the study of a video-based view generation process on self-
supervised learning approaches. More specifically, we give
an overview of the self-supervised learning framework that
we use, the datasets that we pre-train on, the view prepara-
tion process itself, and the benchmarks used for evaluation.
Note that additional information about the network archi-
tecture we used for our experiments, a link to our source
code, and additional analysis results are provided as sup-
plementary material.

3.1. Self-Supervised Learning Framework

We rely on SimSiam, the self-supervised learning frame-
work of [11], as a baseline for representation learning.
SimSiam distils the idea of view-based instance recogni-
tion down to a simple Siamese network architecture where
back-propagation is only done on one branch. Many recent
self-supervised learning approaches (e.g. [8, 19, 23]) can be
retroactively seen as derivations of SimSiam with modifi-
cations that increase sample efficiency or that replace its
“stop-gradient” with another mechanism to avoid collapses.
We choose this particular framework because of its simplic-
ity and because it avoids the need for negative samples.

SimSiam can be described as follows: given an image x
and a set of transformations T , we first compute two views
v1 = t1(x) and v2 = t2(x) where t1, t2 ∼ T . These views
are then embedded using a shared backbone encoder (noted
f ) and projected using a shared MLP head (noted g) so that
we obtain feature vectors zi = g(f(vi)) for i ∈ {1, 2}.

Next, a prediction MLP head denoted as h is used on one
vector to get a prediction of the other. The training loss
is defined as the average of the negative cosine similarities
between the two pairs of predicted and real vectors, that is:

L(z1, z2) =
1

2
D(h(z1), z2) +

1

2
D(h(z2), z1), (1)

where D(a, b) measures the negative cosine similarity be-
tween a and b. The last important detail is that the gradient
of the second term passed to D is not computed during train-
ing, i.e. z2 is detached from the computational graph when
measuring its similarity to h(z1) (and vice versa for z1).

3.2. View Preparation Strategies

A key idea of our method is to sample frame pairs from
video sequences. The frame pairs should be selected dif-
ferently depending on what invariance we want to build
into the learned representations; we refer to this as “pose-
informed”. If we choose to sample frames that are close
in time, the resulting representations become pose-variant,
which is useful for pose estimation. Conversely, if we
choose frames randomly from anywhere in the sequence,
we get pose invariant representations that are useful for ob-
ject re-identification or action recognition.

SimSiam, like many approaches before it, relies on a
set of data augmentation operations T to produce multi-
ple views from a single data point. Among typically used
augmentations are affine transformations (e.g. rotations,
rescaled crops, distortions, flips) that drastically increase
the diversity of the views but also result in the suppression
of geometric features in the learned representations.

We sample frames in video sequences under the assump-
tion that variations in camera extrinsics create novel views
that cannot be equalled with data augmentation alone. On
the other hand, if the camera does not move, changes in the
appearance of animated objects can still result in views that
help understand the behavior of these objects. The combi-
nation of both provides an ideal setting for robust represen-
tation learning.

With SimSiam, video-based view sampling is fairly
straightforward: given an initial frame at time t that we con-
sider as the base image x1, we select a nearby frame x2 at
time t + ∆, where the time offset ∆ is a constant. Then,
x1 and x2 are augmented into views v1 and v2 using a set
of “weak” transformations sampled from T ′, which is com-
posed of pixel-wise operations (e.g. color jittering, blur-
ring) and distortion-free cropping. Since SimSiam does not
require negative views for its objective, we do not have to
fetch distant frames from the same video (or random frames
from other videos) under the assumption that their seman-
tic link is weaker. This is quite advantageous in reality be-
cause it could lead to the suppression of distant temporal re-
lationships between frames which are useful for some tasks
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(e.g. action recognition). Using positive views from nearby
frames also means that we do not need to track the exact
movement of object instances, as the encoder should be ro-
bust to partial matches between same-position crops. Our
experiments in Section 4.2 assess this robustness by evalu-
ating pre-trained models on re-identification tasks.

3.3. Studied Video Datasets

Representation learning is a data-hungry pursuit, espe-
cially when training without supervision. State-of-the-art
approaches often rely on the 1M+ images of ImageNet [13],
and sometimes even 100 to 1000 times that amount [9, 17].
Interestingly, self-supervised methods can lead to good rep-
resentations with very little raw data as long as diversified
views can be generated [3]. This supports our idea that there
may be alternatives to the use of large image datasets. For
our experiments, we focus on contrasting the performance
of baselines on new tasks and pre-train using video datasets
that contain roughly 14,000 clips each. We first use an
object-centric dataset that can be tailored into a distribution
fairly similar to ImageNet’s (Objectron, [2]), and a second
not-so-object-centric dataset focused on action recognition
(UCF101, [38]).

Objectron. This dataset contains 14,819 videos anno-
tated with 3D bounding boxes over unique objects. These
objects are split into nine different categories (bikes, books,
bottles, cameras, cereal boxes, chairs, cups, laptops, and
shoes) and filmed using mobile phones in an object-centric
fashion. The dataset is primarily meant for 3D object de-
tection and localization tasks. The annotations are manu-
ally fitted on each object and automatically tracked across
videos to ensure every frame has a 3D bounding box. The
videos are 10 seconds long on average and mostly feature
wide orbital movement around a single focal object. Given
proper crops of these objects, the distribution of the frames
is fairly similar to the distribution of the corresponding ob-
jects in ImageNet. We obtain such crops by simply using
the 2D projections of the object’s 3D bounding box vertices.
In practice, similar results could be obtained by training a
category-wise object detector or a salient region proposal
network, but we chose to eliminate that source of noise from
our experiments to focus on the learned representations. Fi-
nally, although the object category sizes are imbalanced, we
prefer training on the entire dataset at once instead of train-
ing a separate model on each category (as done in [2]). This
way, the downstream performance of our model will not
be unduly influenced by the knowledge of the imbalanced
classes or by easily learnable geometric priors.

UCF101. This dataset contains 13,320 videos anno-
tated with 101 action labels. In contrast with older ac-
tion recognition datasets, UCF101 proposes a large diver-
sity in terms of video content, recording settings, and ac-
tion recognition challenges. The action labels are grouped

into 5 types, namely: human-object interactions, body-
motion only, human-human interaction, playing musical in-
struments, and sports. Compared to Objectron, it is much
less object-centric but much more human-centric, as all ac-
tions are related to human activities. The action clips have
an average duration of 7 seconds, and we use entire frames
as views without cropping.

3.4. Evaluation Benchmarks

Our models are pre-trained without supervision on Ob-
jectron or UCF101 and then evaluated for the quality
of their learned representations on several “downstream”
tasks. These are described next.

Zero-shot pose estimation. We first evaluate the qual-
ity of the representations learned on video data by using the
Objectron annotations for pose estimation. Given a single
crop of a unique (and never-seen-before) object from the
test set as a query, we use a pre-trained model to compute
an embedding of this crop, search for its nearest neighbor in
the training set, and fit the bounding box associated to this
result back into the query image. The quality of the repre-
sentations in terms of pose-awareness is then determined by
proxy using 3D bounding box overlap metrics as proposed
in [2]. We consider this approach to be zero-shot since the
instance and category of the query are not known before-
hand. In our case, the pre-trained model is never trained
with a pose-related objective, and it remains completely
frozen during its evaluation. This is compatible with the
standard evaluation procedure used in most self-supervised
learning benchmarks [8], and it allows us to compare pre-
training strategies without fine-tuning.

Besides, note that the zero-shot formulation of the Ob-
jectron benchmark is a 9 degrees-of-freedom (DoF) monoc-
ular pose estimation problem. Other popular pose estima-
tion benchmarks (e.g. [25,26,46]) focus on the easier 6 DoF
problem where instances are the same in the training and
test sets. Full pose estimation pipelines for the 9-DoF prob-
lem (such as the two proposed in [2]) require the training
of a 2D keypoint regression module on top of a backbone.
They then rely on object category-aware scale estimates to
properly lift the regressed 2D keypoints into 3D bounding
boxes. Our zero-shot pose estimation approach allows us
to to ignore these extra steps and focus on evaluating the
quality of the representations directly. For this, we propose
a simple nearest neighbor bounding box fitting algorithm,
described next.

Given a crop of a query object and its nearest match in
the training set (i.e. the “reference” object), we want to
transpose the 3D bounding box of the reference frame back
to the query frame. To do so, we use the camera intrinsics
matrix and the ground plane estimates provided in Objec-
tron. We first calculate the 3D rotation matrix between the
query and reference plane normals. This matrix is used to
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roughly place the reference bounding box in the query cam-
era space. Then, we “snap” the bounding box to the query
ground plane while aligning the 3D reference object center
to its estimated 2D location in the query image. Finally, we
repeat the snapping step n = 3 times while readjusting the
bounding box scale to get a better result. For more informa-
tion on this algorithm, we refer readers to our implementa-
tion which is linked in the supplementary material.

Re-identification and recognition. As a secondary set
of benchmark tasks, we evaluate how well the represen-
tations learned using video data can be used for the re-
identification of instances and the recognition of categories
in wide datasets. Such capabilities are especially useful for
downstream tasks related to classification and tracking. The
pose estimation task does not require that embeddings con-
tain category- or instance-wise features in order to achieve
good performance. Simply put, a model that closely em-
beds all objects with similar shapes, sizes, and orientations
would get good results on our pose estimation benchmark,
but not necessarily on instance re-identification or category
recognition tasks. If our pre-trained models simultaneously
perform well on all these tasks, it means that they did not
significantly suppress any particular sets of features.

We first assess object re-identification performance us-
ing Objectron. We embed all object crops that are part of
our validation and test sets and then use cosine similarity to
find the nearest neighbors of crops from the test set only.
For the evaluation, we compute the Average Precision (AP)
using the precision-recall curve for each frame and report
the mean; this is referred to as the “Re-ID mAP“ in our ta-
bles. Moreover, we verify that the object category of the
picked nearest neighbors matches the object category of the
query object. We report the result using average accuracy
across all categories (noted as “Classif. Acc.”). Finally, we
assess action recognition performance on UCF101 using a
nearest neighbor retrieval approach. In this case, we fol-
low the protocol proposed in prior works [12,21] where the
performance is the top-k accuracy for k = {1, 5, 10, 20}
nearest neighbors. This protocol also avoids having to train
a classifier on top of our frozen backbones and instead di-
rectly evaluates the usefulness of the frame embeddings.

3.5. Implementation Details

To keep a fairly balanced ratio between the number of
frames of the same object and the number of videos of
unique objects in both of our datasets, we subsample each
video to roughly 5 frames per second. Then, we either set
the time offset ∆ to its minimum possible value (200 ms),
meaning that consecutive frames in the subsampled video
can directly form a positive view pair, or uniformly sample
frame pairs from the same sequence.

Frame crops are augmented using independent trans-
forms as suggested in [20]. This helps prevent our encoder

from simply learning to estimate pixel-level feature flow in-
stead of high-level motion. However, we randomly apply
synchronized (video-level) horizontal flips to all views to
further increase the diversity of our data. The remaining
transformations that are used are a combination of grayscale
conversion, color jitter, and gaussian blur, all with parame-
ters similar to the ones proposed in [8].

For Objectron, we use a 90%-10% random split along
video sequences for training and validation, and test on the
proposed withheld set of videos. As we are using the ini-
tial release of the public dataset, we had to preprocess the
data to remove instances with invalid annotations (due to
TFRecord encoding errors) and blurred input frames (which
are a result of the anonymization of personal identifiers in
the data). This reduced the original dataset size by roughly
15%.

For SimSiam, our default model configuration relies on
a ResNet-50 backbone [24], which is fairly standard across
the self-supervised learning literature. The capability of this
backbone to scale well with more parameters and larger
datasets is already well studied [7–9, 11, 19, 23]. There-
fore, we focus our experiments on smaller and faster train-
ing regimes that are also better suited to our compute lim-
itations. We rely on the hyperparameter setup of [11] and
train using a 10-epoch “warm-up” period followed by co-
sine annealing over 15 more epochs for Objectron and 90
more epochs for UCF101, which both take roughly the same
amount of time (24 hours). Based on preliminary experi-
ments, this training regime results in models that show good
baseline performance across all our benchmark tasks.

4. Experiments and Results
In this section we report experimental results that

demonstrate the capabilities of pose-informed representa-
tions under three different aspects. First, we examine
whether our approach leads to representations that encode
useful information for pose estimation. Second, we exam-
ine whether these representations can still solve other com-
puter vision tasks with good performance. Lastly, we evalu-
ate the impact of using negative samples with our proposed
view generation process.

4.1. Qualitative Analysis
We start off with a high-level analysis of our learned rep-

resentations when using nearby frames as view pairs. In
Figure 2, we show how video frames are projected into an
intriguingly structured space by a model trained using our
proposed methodology. On the left, we can observe that
sequences of frames with objects of the same category con-
verge when the object pose becomes more similar. On the
right, when focusing on a handful of videos in the same pro-
jection, we observe that consecutive frames are co-located
and form coherent trajectories. If camera paths diverge, the
trajectories bifurcate in the embedding space. This indicates
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Figure 2. Left: close-up of a t-SNE plot showing the bifurcation of partially co-located trajectories; in the red region, all frames correspond
to unique objects (chairs) with roughly the same pose. The frames of separate videos are shown in a different color. Right: two examples
of PCA projections of the embeddings of video frame sequences. The color of each point indicates its position in the video sequence (on
the viridis scale), which shows the smooth nature of the embedding space.

Figure 3. Nearest neighbors of objects found in the validation set
where the leftmost crop in each row shows the query. Top: nearest
neighbors including frames from the query video; note that two of
the results are outliers as they originate from a different yet sim-
ilar video (shown with a different border color). Bottom: nearest
neighbors across frames of other videos (each with a unique bor-
der color); note the diversity in background but the consistency in
object poses.

that the trained embeddings can meaningfully encode pose
variations.

Next, we visualize the relationship between frames
across videos using the learned embedding space. To do
so, we embed the entire validation dataset and find the near-
est neighbors for individually sampled frames that are used
as queries. When a query frame comes from the valida-
tion set itself, the nearest neighbors are almost always other
frames from the same video (Figure 3, top row). If we omit
results from the query video, we observe that the pose and
appearance of all the new nearest neighbors are similar to
the query, regardless of the background (Figure 3, bottom
row). This matching behavior translates very well to the
pose estimation task, as bounding boxes of similar shape
and orientation can often be found and fitted to queries de-
spite large appearance variations; some examples are shown
in Figure 4.

4.2. Quantitative Results

Zero-shot pose estimation. We report in Table 1 the
performance of embedding strategies combined with our

bounding box matching and alignment algorithm for zero-
shot pose estimation. For a comparison with the state-of-
the-art, we provide the evaluation results of two recent su-
pervised learning methods: MobilePose [27], denoted as
“Objectron Baseline (1-stage)”, and an EfficientNet-based
keypoint regression approach, denoted as “Objectron Base-
line (2-stage)”. Both are detailed in [2]. Furthermore, to
provide an idea of the lower bound performance on this task
with our alignment algorithm, we apply it to randomly se-
lected bounding boxes from the training set (“Random fit”),
and to randomly selected bounding boxes from the same
object category as the query (“Random in-category fit”).
Our results show that our proposed self-supervised train-
ing approach outperforms the baselines and state-of-the-art
methods in several categories. Given the large differences in
model sizes and training regimes with the supervised meth-
ods, these results indicate that pose-informed representa-
tions provide a significant advantage for pose estimation.
We remind readers however that we use “perfect” object de-
tection results derived from bounding box annotations to get
our crops, and the performance in practice would be slightly
lower when considering object detection noise.

As a quick validation, we evaluated the impact of us-
ing smaller sets of usable embeddings: when only 10% of
the training video sequences are used for nearest neighbor
lookup, the overall performance of our approach is compa-
rable to the 1-stage baseline. Furthermore, when we reduce
the number of used sequences to 1%, we still outperform
the 1 stage baseline on some object categories. Besides,
note that the 2-stage baseline of [2] is actually composed of
9 models in total, i.e. one for each object category. These
models were trained in a supervised fashion for a total of
864 GPU-hours on a Tesla V100 [2]. In comparison, our
proposed embeddings were obtained after training a sin-
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Figure 4. Examples of pose estimation for chairs (left) and shoes (right): our method enables us to obtain similar bounding boxes for pose
estimation for each query frame. Furthermore, the fetched nearest neighbors also show similar attributes (e.g. shape) compared to the
query frames. The ground truth and obtained 3D bounding boxes are shown as yellow line overlays.

Table 1. 3D mAP @ 0.5 IoU results for zero-shot pose estimation on Objectron. Our results show that our unsupervised learning approach
competes with supervised learning baselines [2].

Method bike book bottle cam. box chair cup lapt. shoe overall
Random fit 0.06 0.04 0.04 0.07 0.02 0.10 0.09 0.07 0.05 0.06
Random in-category fit 0.15 0.23 0.26 0.26 0.13 0.46 0.43 0.26 0.11 0.25
Objectron Baseline (1-stage) 0.34 0.18 0.54 0.47 0.55 0.71 0.37 0.55 0.42 0.57
Objectron Baseline (2-stage) 0.61 0.52 0.57 0.80 0.62 0.85 0.54 0.67 0.66 0.65
ImageNet embeddings 0.46 0.45 0.55 0.74 0.51 0.77 0.72 0.66 0.49 0.59
Our embeddings 0.65 0.54 0.60 0.82 0.68 0.78 0.72 0.73 0.66 0.69
Our embed. (10% of labels) 0.48 0.46 0.54 0.73 0.48 0.70 0.65 0.66 0.57 0.58
Our embed. (1% of labels) 0.23 0.32 0.47 0.46 0.39 0.61 0.55 0.46 0.30 0.47

gle self-supervised model for only 24 GPU-hours on a RTX
2080 Ti.

Finally, we also report in Table 1 how embeddings ob-
tained using a model pre-trained on ImageNet perform
when combined with our bounding box matching and align-
ment procedure. In short, the performance with these em-
beddings is decent, i.e. it slightly surpasses the 1-stage
baseline in terms of overall score. However, the 1-stage
baseline is also outperformed in the cup and book cate-
gories by the random in-category bounding box fitting ap-
proach. This means that our proposed bounding box align-
ment strategy is quite strong itself. Therefore, the most
valuable comparisons we present in Table 1 are between the
ImageNet embeddings and our proposed “pose-informed”
embeddings, where the latter show a strong upper hand.

Re-identification and recognition on Objectron. Next,
we present the evaluation results for classification and re-
identification tasks on Objectron in Table 2. We can
observe that in the absence of strong data augmenta-
tion (“Same frame pairs”), in comparison with a stan-
dard self-supervised training methodology (i.e. [8]), we
get a marginal improvement in pose estimation accuracy
(3D mAP), and a notable decrease in classification and re-
identification performance. On the other hand, using pairs
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Figure 5. PR curve for our baseline model for object re-
identification. Performance is best on categories that have distinc-
tive features across their instances.

across different frames (i.e. “Nearby” which corresponds
to sampling with ∆ = 200 ms, and “Distant” which cor-
responds to uniform sampling in the entire video), we get
large improvements in either pose or re-identification per-
formance while maintaining high classification accuracy.
This shows that using multiple natural views per video se-
quence is beneficial to train high-performing models. The
combination of these results indicates that different-frame-
pair embeddings can be used effectively across multiple
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Table 2. Classification, pose estimation, and re-identification re-
sults for different setups.

Method Classif. Acc. 3D mAP Re-ID mAP
Nearby frame pairs 95.70% 0.69 0.53
Distant frame pairs 94.84% 0.58 0.85
Same frame pairs 91.19% 0.65 0.26
NT-Xent [8] 96.36% 0.64 0.63
TCN [37] 78.20% 0.59 0.19
ImageNet embeddings 96.06% 0.59 0.73
Random embeddings 30.49% 0.17 0.03

Table 3. Action recognition top-k retrieval accuracy on UCF101
for neighbor counts.

Method R@1 R@5 R@10 R@20
VCOP [48] 10.7 25.9 35.4 47.3
VCP [30] 19.9 33.7 42.0 50.5
Pace Pred [43] 25.6 42.7 51.3 61.3
CoCLR-2Stream [22] 55.9 70.8 76.9 82.5
Nearby frame pairs 41.4 57.3 62.1 66.2
Single frame 41.6 57.1 61.7 65.2

tasks; using nearby frame pairs leads to more pose-aware
embeddings, and using distant frame pairs leads to more se-
mantically robust ones. Besides, we note that for object re-
identification, the performance is lowest in categories that
show less diversity across instances (e.g. cameras); this is
illustrated in Figure 5.

Re-identification and recognition on UCF101. We re-
port the action recognition performance on UCF101 based
on the nearest neighbor retrieval protocol in Table 3. For
comparison purposes, we provide the results of four state-
of-the-art self-supervised learning methods [22, 30, 43, 48]
that were specifically designed to learn video representa-
tions. Here, we can see that simply using non-temporal
embeddings learned using SimSiam on individual frames
(“Single frame”) achieves good performance. Nonetheless,
our proposed pose-informed embeddings (“Nearby frame
pairs”) surpass the classic embeddings when using more
than one neighbor. This shows that our embeddings are not
only sensitive to camera-object pose relationships, but also
to the motion of objects in a scene.

Impact of using negative pairs. To assess the impact of
using negative view pairs in the pre-training objective, we
evaluated two competing approaches on Objectron; these
are shown in Table 2. First, we implemented the time con-
trastive sampling approach of [37] where negative samples
are distant frames from the same video sequence and where
the cosine similarity objective of SimSiam is replaced by a
triplet loss. This results in worse overall performance than
our method, which indicates that sampling frames within a
video sequence as negatives results in relevant feature sup-
pression or that the triplet loss is significantly outperformed
by the cosine similarity objective. The second approach we
investigate is the Normalized Temperature Cross-Entropy

(“NT-Xent”) loss used in [8]. In this case, negative sam-
ples are defined as other view embeddings present in the
same minibatch. The results indicate a good average per-
formance across all metrics, but not ideal performance for
pose estimation or re-identification compared to using pose-
informed embeddings. This shows that some level of fea-
ture suppression happens across all tasks when using nega-
tive samples.

5. Conclusion
We have introduced a novel methodology for the self-

supervised learning of pose-informed representations based
on the temporal structure of videos. Specifically, we have
shown that a common Siamese network can effectively and
efficiently be trained on frame pairs to learn pose-informed
representations. We employ a training strategy that max-
imizes the similarity between views of the same object,
which is standard in the self-supervision literature, but we
do so by using views of the same object taken at different
times in a video.

Pose-informed representations can be used to serve as a
foundation for enabling a variety of challenging computer
vision tasks where it is important to disentangle camera
and object relationships. To showcase the capabilities of
our framework, we have trained numerous models on the
Objectron and UCF101 datasets and have evaluated them
on pose estimation and action recognition tasks. Overall,
we observe that using cautious data preparation in conjunc-
tion with common Siamese networks allows us to train the
networks from scratch more efficiently than previous su-
pervised methods. Consequently, our approach may need
fewer training instances due to better data utilization on
video datasets.

There are a number of interesting avenues for future
works. First, we used what would be considered “large-
scale” video datasets for our experiments, but these are still
small in comparison to the size and diversity found in large
image datasets such as ImageNet. We believe applying
the same methodology to much larger video datasets such
as YouTube-8M [1] would lead to even more robust and
generic representations. Second, our evaluation focused
on tasks relevant to the pre-training video datasets, but it
would be interesting to evaluate the learned representations
on popular benchmarks such as VTAB [49], such as done
in [36, 41]. We however expect that our already-trained
models would likely underperform on such benchmarks due
to the limited diversity of their pre-training datasets, hint-
ing once again that pre-training on larger video datasets is
needed. Finally, it would be interesting to confirm whether
our training methodology still leads to pose, geometry and
motion sensitive representations when applied on datasets
of videos that are not as object- or action-centric as Objec-
tron and UCF101.

4014



References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. YouTube-8M: A large-
scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016. 8

[2] Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom
Ablavatski, and Matthias Grundmann. Objectron: A large
scale dataset of object-centric videos in the wild with pose
annotations. arXiv preprint arXiv:2012.09988, 2020. 4, 6, 7

[3] Yuki M Asano, Christian Rupprecht, and Andrea Vedaldi.
A critical analysis of self-supervision, or what we can learn
from a single image. arXiv preprint arXiv:1904.13132, 2019.
1, 4

[4] Mehdi Azabou, Mohammad Gheshlaghi Azar, Ran Liu, Chi-
Heng Lin, Erik C Johnson, Kiran Bhaskaran-Nair, Max
Dabagia, Keith B Hengen, William Gray-Roncal, Michal
Valko, et al. Mine your own view: Self-supervised
learning through across-sample prediction. arXiv preprint
arXiv:2102.10106, 2021. 2

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-
resentation learning: A review and new perspectives. arxiv
e-prints. arXiv preprint arXiv:1206.5538, 2012. 2

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 132–149, 2018. 2

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020. 1, 2, 5

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1, 2, 3, 4,
5, 7, 8

[9] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised mod-
els are strong semi-supervised learners. arXiv preprint
arXiv:2006.10029, 2020. 2, 4, 5

[10] Ting Chen and Lala Li. Intriguing properties of contrastive
losses. arXiv preprint arXiv:2011.02803, 2020. 2

[11] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. arXiv preprint arXiv:2011.10566,
2020. 2, 3, 5

[12] Ishan Dave, Rohit Gupta, Mamshad Nayeem Rizve, and
Mubarak Shah. Tclr: Temporal contrastive learning for video
representation. arXiv preprint arXiv:2101.07974, 2021. 2, 5

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 4

[14] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springen-
berg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with exemplar convolutional
neural networks. IEEE transactions on pattern analysis and
machine intelligence, 38(9):1734–1747, 2015. 2

[15] Jonathan Frankle, David J Schwab, Ari S Morcos, et al. Are
all negatives created equal in contrastive instance discrimi-
nation? arXiv preprint arXiv:2010.06682, 2020. 2

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. arXiv preprint arXiv:1803.07728, 2018. 1

[17] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu,
Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy Liptchin-
sky, Ishan Misra, Armand Joulin, et al. Self-supervised
pretraining of visual features in the wild. arXiv preprint
arXiv:2103.01988, 2021. 2, 4

[18] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6391–6400,
2019. 2

[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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