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Abstract

Domain adaptation for semantic segmentation across
datasets consisting of the same categories has seen sev-
eral recent successes. However, a more general scenario
is when the source and target datasets correspond to non-
overlapping label spaces. For example, categories in seg-
mentation datasets change vastly depending on the type of
environment or application, yet share many valuable seman-
tic relations. Existing approaches based on feature align-
ment or discrepancy minimization do not take such category
shift into account. In this work, we present Cluster-to-Adapt
(C2A), a computationally efficient clustering-based approach
for domain adaptation across segmentation datasets with
completely different, but possibly related categories. We
show that such a clustering objective enforced in a trans-
formed feature space serves to automatically select cate-
gories across source and target domains that can be aligned
for improving the target performance, while preventing neg-
ative transfer for unrelated categories. We demonstrate the
effectiveness of our approach through experiments on the
challenging problem of outdoor to indoor adaptation for se-
mantic segmentation in few-shot as well as zero-shot settings,
with consistent improvements in performance over existing
approaches and baselines in all cases.

1. Introduction
In this work, we address the problem of knowledge trans-

fer across domains with disjoint labels for semantic seg-
mentation. In spite of massive strides in computer vision
performance using deep learning [21], models trained on
a large-scale labeled dataset are not guaranteed to general-
ize to data that lies outside the training distribution. This
difficulty is amplified for applications like semantic seg-
mentation, where collecting pixel level labeled data for all
geographies, environments and weather conditions is restric-
tive, expensive or simply not feasible due to many practical
and social implications [19].

Unsupervised domain adaptation emerged as a feasible al-
ternative to transfer knowledge from a labeled source domain
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Figure 1. We illustrate the major challenge in our setting arising due to
negative transfer. In our setting where source and target do not contain
shared label space, traditional adversarial methods relying on global
adaptation might lead to unrelated classes aligning with each other.
In contrast, our method encourages only related classes to align with
each other (selective alignment), while preventing negative transfer
among unrelated classes.

to unlabeled target domains by minimizing some notion of
divergence between the domains [4, 12, 22, 23, 42, 48]. Prior
works in domain adaptation are based on a global distribu-
tion alignment objective, assuming that the source and target
datasets share the same label space so that domain align-
ment would invariably result in learning transferable feature
representations.

In many cases, the source and target labels might be
completely distinct and share only high level geometric and
semantic relationships. This makes it hard, yet necessary
in few-shot settings, to perform useful knowledge transfer.
In particular we show this in case of adaptation between
outdoor datasets, where synthetic datasets are readily avail-
able, and indoor scenes, where we have few labeled data
and it is considered difficult to render or maintain synthetic
datasets. To address this challenging setting of outdoor to
indoor adaptation, we propose a novel framework for adapta-
tion across disjoint labels. For disjoint labels, we posit that a
more suitable objective is to achieve domain invariance with
respect to related categories and domain equivariance with
respect to unrelated categories between source and target,
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Figure 2. Overview of the proposed adaptation across disjoint labels using unlabeled bridge domains. Note that the source and target
domains have completely disjoint label spaces here, which is a very realistic setting for real world transfer learning scenarios. We tackle this
challenging setting in our problem using an unlabeled bridge domain. In this case, where synthetic driving data is acting as the labeled
source domain with real indoor scenes as the target domain, real driving scenes can be used as the bridge as it shares properties with both of
these, enabling few shot adaptation to the target domain.

thus avoiding negative transfer. For example, the categories
that frequently occur in an indoor environment like wall,
floor, ceiling and chair are completely distinct from any out-
door categories, yet we show how we can leverage useful
discriminative information through implicit geometric and
semantic correspondences.

In practice, the distribution shift between such source and
target domains arise from both low-level (lighting, contrast,
object density etc.) and high-level (category, geometric ori-
entation, pose etc.) variations [4]. To ease this extreme case
of adaptation, we introduce an additional unlabeled auxil-
iary domain, which shares properties with both the source
and target datasets and would act as a bridge to improve the
adaptation. For instance, adaptation from synthetic outdoor
to real indoor datasets can benefit from unlabeled images
from real outdoor scenes, as explained in Figure 2.

To automatically discover related and unrelated categories
across datasets, we propose a novel clustering based align-
ment approach called Cluster-to-adapt (C2A). C2A stems
from the intuition that related categories from source and
target should lie close to each other in the feature space for
effective knowledge transfer. We realize this during training
through a deep constrained clustering framework by posing
the alignment as a clustering objective in a transformed fea-
ture space, which would force related categories to group
close to each other while leaving room for unrelated cate-
gories to form independent clusters, as shown in Figure 1.

2. Related Work
Unsupervised Domain Adaptation (UDA) UDA is used
to transfer knowledge from a large labeled source domain
to an unlabeled target domain. Large body of works that
perform adaptation from labeled source to unlabeled target

rely on adversarial generative [3, 15, 31, 38, 58] or discrimi-
native [12, 16, 47, 48] approaches to learn domain agnostic
feature representations. A common assumption in most of
these approaches is that the source and target label spaces
completely overlap, so that a classifier learnt on the source
domain can be directly applied on the target data. However,
in most real world applications this assumption is invalid,
and in most general case, the categories might be completely
different. Very few works exist which address this more chal-
lenging setting. Previous works like open set adaptation [37],
partial set adaptation [5, 6] and universal adaptation [19, 57]
assume some degree of label overlap, [25] performs adap-
tation between distinct label spaces with few target labeled
data using pairwise similarity constraints, while [40] ad-
dresses adaptation for verification tasks which is different
from our focus on semantic segmentation. Similarly, more
recent works for domain adaptation suited for semantic seg-
mentation tasks [2, 26, 30, 32, 50, 55] achieve state of the art
results for the case of completely overlapping label spaces in
the source and target domains, and are not applicable in our
setting of outdoor to indoor adaptation. In contrast to these
existing works, we propose an efficient method to align only
visually similar features across source and target domains
which can have completely non-intersecting label spaces
without re-annotation [20], while preventing potential neg-
ative transfer, specifically suited to cross domain semantic
segmentation.

Deep Clustering Although clustering algorithms like k-
means [27] are extremely useful in automatically discovering
structure from unlabeled data [1], they work directly on the
high dimensional input space like images which is often
ineffective for classification. Recent works propose jointly
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learning a suitable feature representation of data along with
clustering assignments. For example, [17] uses pairwise
similarity based constraints, while [14] uses self-training
objective on the cluster assignment scores to successfully
perform unsupervised transfer across categories from the
same domain. Other works make use of deep clustering to
learn more discriminative clusters [52] useful for classifi-
cation, or as suitable pretext tasks in self supervised learn-
ing [7, 8, 54]. While deep clustering based approaches have
been previously applied in the case of unsupervised category
discovery [14], we extend this idea to additionally account
for the domain shift between the source and target datasets.

Also, note that many prior works that use clustering for
adaptation consider the classical setting of completely match-
ing source and target domains [44, 45, 51] or partial overlap
in open world setting [13], and hence use clustering as a
means to achieve one-to-one alignment between source and
target. In contrast, we use clustering to selectively align
source and target across completely disjoint label spaces.

3. Framework
We now explain our proposed approach, which addresses

the most general case of knowledge transfer between do-
mains with different, and non-overlapping label spaces. De-
note using Ds the completely labeled source domain data
with label space Ys, where Ds ∼ ps(source distribution).
The labeled target domain data is denoted by Dt, with la-
bel space Yt(̸= Ys), and Dt ∼ pt(target distribution). We
assume that a small subset Dl

t of the target data is labeled,
for learning some task specific information like classifier
boundaries, and the rest Du

t as unlabeled, making our set-
ting that of few-shot adaptation across domains with disjoint
labels. We denote this small fraction of labeled samples
by σ = |Dl

t|/(|Du
t | + |Dl

t|). Following the nomenclature
of [33], we henceforth call this as cross-task adaptation and
the source and target as different tasks. In section 4, we
show results varying σ from 0.01 to 0.3. In our case, the
domain gap between the target data and source data comes
from two factors, namely domain shift due to ps ̸= pt as
well as label shift due to Ys ̸= Yt. Furthermore, we do not
assume any partial overlap between the label spaces unlike
other partial or open set adaptation approaches which makes
our setting more challenging. To ease the adaptation process
across these widely different datasets, we introduce another
completely unlabeled auxiliary domain Da, which serves as
a useful bridge between the source and target datasets. For
example, Da could share task/content properties with Ds and
style properties with Dt. We show how to best exploit this
completely unlabeled intermediate domain to achieve our
primary goal of learning transferable features from source to
target.
Overview We present the overview of the proposed net-
work architecture in Figure 3. We use a shared encoder

E : (H,W, 3) → (H ′,W ′, fd) across all the datasets which
aggregates spatial features across multiple resolutions of the
input image x, and outputs a downsampled encoder map
E(x). fd is the size of features in the encoder map. Since
shallow level features are known to be more task agnostic
and transferable [56], a shared encoder helps us to learn
generic features useful across source and target datasets.
Task specific decoders Gs and Gt then upsample the output
of the encoder and compute class assignment probabilities
for each pixel of the input image over the label space Ys and
Yt respectively. Individual decoders for source and target
helps us to make predictions over respective label spaces.
The supervised loss computed using the labeled data from
source and target datasets is given by

Lsup = Lsup(Ds) + Lsup(Dl
t), (1)

where

Lsup(Ds) =
1

Ns∑
(x,y)∈{Ds}

−1

HW

∑
h,w

log(Gs(E(x))y(h,w))) (2)

and Ns is the number of labeled samples in the source
dataset, and H,W are the height and width of the output fea-
ture map respectively. The target supervised loss Lsup(Dl

t)
is defined similarly.

Next, we decouple the source to target alignment into two
different objectives. The first is a within task alignment be-
tween Ds and Da, and the second is the cross task alignment
objective between Da and Dt, as explained next.

3.1. Within Task Domain Alignment

We introduce the within task alignment objective between
the source and intermediate domains Ds and Da. We assume
that the domains share the same label space and exhibit
only low-level differences, and use an adversarial alignment
strategy using a domain discriminator D.

Following the idea presented in [46], we send the output
probability maps Ps(x) = Gs(E(x)) to the discriminator
D as opposed to the encoder maps. This helps in better
within-task alignment for pixel level prediction tasks and, as
we found out, faster convergence during training. We train
the discriminator D : (H,W, |Ys|) → {0, 1} which takes as
input the output map of the generator, to output the proba-
bility of the map coming from source data. The generator
is then trained to produce outputs from Da which are good
enough to trick the discriminator into classifying them as
coming from source. This alternative min-max optimization
would then result in domain invariant output maps leading
to successful feature alignment. The adversarial loss, using
LS-GAN [28], is given by

Ladv = Ex∼Da
(D(Ps(x)))

2 (3)
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Figure 3. C2A: Proposed Architecture. The labeled data from the source (Ds, in red) and target (Dl
t, in blue) are used to train the

task specific decoders using supervised losses Ls
sup and Lt

sup. The unsupervised images from auxiliary domain (Da, in green) is used in
adversarial adaptation from source to intermediate domain using loss Ladv . The target unlabeled data (Du

t , in orange), along with Da, is
used to compute the clustering loss Lc in a feature space transformed by F . The encoder E is common for all the images.

and the discriminator objective LD is given by

LD = Ex∼Ds
(D(Ps(x)))

2 +Ex∼Da
(D(Ps(x))− 1)2 (4)

Although we use this adversarial adaptation strategy for
within-task alignment, we note that our method can also be
applied in combination with any other adaptation strategy
based on generative modeling or distribution matching [31,
49, 55] for within task alignment.

3.2. Cross Task Semantic Transfer

Training E and G with task specific supervised loss and
adversarial alignment losses alone is insufficient to transfer
useful semantic content to target dataset, since we do not
explicitly transfer any semantic relations between the tasks.
Naive adversarial training of yet another discriminator to dis-
tinguish outputs from two tasks would not work well, as we
only want categories that share semantic cues to align with
each other (selective alignment) as opposed to global align-
ment (Figure 1). Luo et. al. [25] propose using an entropy
minimization objective after computing pairwise similarity
of the features, but computing such pairwise similarity is
computationally infeasible for pixel level prediction tasks.
Towards this goal, we propose a novel deep clustering based
approach, which lies at the core of our approach.

Constrained Clustering Objective Following the assump-
tion that deep features form discriminative clusters in the
feature space useful for classification tasks [9], we believe
that better knowledge transfer would happen across tasks if
the features of categories which share semantic information
also form coherent clusters closer to each other. A major
challenge with incorporating this constraint in deep neural

networks is the lack of information regarding the correspon-
dence between categories of the datasets useful in preventing
negative transfer effects. We use a clustering based objec-
tive to discover the similarity across categories, and enforce
the clustering constraint by performing k-means clustering
of the feature vectors. This encourages the features corre-
sponding to similar categories across tasks to form a single
“meta-cluster”, while leaving room for unrelated categories
to form independent clusters.

We first pass the outputs of the shared encoder E through
a feature transfer module F : (H ′,W ′, fd) → (H ′,W ′, fe),
where fe is the feature dimension in the transformed space.
F is necessary because the features learnt specific to a task
might not be suitable for cross-task semantic transfer directly
in the feature space. A learnable transformation function
would, instead, find the best subspace amenable for align-
ment. Also, since fe ≪ fd, the feature transformation would
result in efficient computation of centers and similarity met-
rics for k-means. We formulate our constrained clustering
objective using the cross-entropy loss, given by

Lc =
∑

x∈{Da,Du
t }

∑
vj∈F(E(x))

− log(max
k

p(µk|vj)) (5)

where p(µk|vj) is the probability score that a feature vector
vj belongs to a cluster with center µk, and

p(µk|vj) ∝ exp

(
vj · µk

||vj ||2||µk||2

)
(6)

Avoiding Trivial Solution Direct optimization of Eq. (5)
would quickly lead to a trivial solution where all the vectors
are mapped to a single cluster. We found that initializing
the cluster centers using features computed from pretrained
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network on labeled target data alone (Dl
t, trained offline)

would reduce this problem to a large extent. Additionally,
we follow the idea proposed in [52], and add a self-training
constraint which encourages uniformity among the clusters
and the cluster assignment probabilities are forced to be
equal to an auxiliary target distribution. Specifically, we
would like to have the target distribution q(µk|vj) to hold
the property that

q(µk|vj) ∝ p(µk|vj) · p(vj |µk)

The first term on the RHS would improve the association
of correct points to clusters, while the second term would
discourage very large clusters. Applying bayes rule would
give us the form of the target distribution as

q(µk|vj) =
p(µk|vj)2/

∑
j p(µk|vj)∑

k′ p(µk′ |vj)2/
∑

j p(µk′ |vj)
. (7)

The constraint is now enforced in the form of a KL-Loss
between the source distribution and the auxiliary target dis-
tribution.

Lkl = KL(p||q)

=
∑
j

∑
k

q(µk|vj) log
(
q(µk|vj)
p(µk|vj)

)
(8)

The final training objective for the model can be summarised
as follows,

argmin
E,Gs,Gt,F

Lsup + λadvLadv + λc(Lc + Lkl)

argmin
D

LD (9)
where λadv and λc are the coefficients which control the
relative importance of the adversarial loss and clustering
loss respectively. The optimization is done by alternating
between the two objectives within every iteration. A crucial
factor in our method is the initialization of cluster centers
before training, and we discuss our strategy followed for it
next.

3.3. Cluster Initialization

The cluster centers are initialized using networks pre-
trained on the limited labeled data. Specifically, we use the
same architecture as described in the paper to train a model
on the labeled source data Ds as well as sparsely labeled
target data Dl

t using pixel level cross entropy loss. We then
pass the unlabeled images from the target Du

t and collect all
the encoder maps corresponding to all the images. Each en-
coder map is of size (H/8,W/8, 2048) for our ResNet-101
backbone. To match the dimension of the FTN output, which
is 128 in our case, we apply PCA over these feature vectors
to reduce their dimension. Then, a clustering is performed
using the classical k-means objective with K cluster centers,
and the resulting centers are used to initialize µ′

ks in the
downstream adaptation approach.

Efficient Computation of Centers In traditional k-means,
the centers µk are calculated using an iterative algorithm
consisting of cluster assignment and centroid computation
repeated until convergence. We mention a couple of is-
sues persistent with this approach. Firstly, for dense pre-
diction tasks like semantic segmentation, the encoder map
consists multiple feature vectors which correspond to differ-
ent patches of the input image. For example, an encoder map
of size (H ′,W ′) has H ′W ′ vectors of size fe. Performing
k-means over these vectors collected over all images over
all the tasks would demand huge storage and computation
requirements. Secondly, switching between gradient based
training of network parameters and iterative computation
of cluster centers after every few iterations would lead to
an inefficient procedure that is not end-to-end trainable. To
counter these limitations, we follow the idea proposed in
[14] and include µk as trainable parameters in the network,
and update them after each iteration based on the gradients
received from LC .

4. Experiments
4.1. Datasets

For the source dataset Ds, we use synthetic images from
the driving dataset GTA [35]. GTA consists of 24966 images
synthetically generated from a video game consisting of out-
door scenes with rich variety of variations in lighting and
traffic scenes. We also show results using the SYNTHIA-
RAND-CITYSCPAES split from Synthia [36] dataset, which
consists of 9600 synthetic images with labels compatible
with Cityscapes. For the target dataset Dt, we use real im-
ages from SUN-RGBD [41] consisting of images from in-
door scenes. SUN-RGBD consists of 5285 training images
and 5050 validation images containing pixel level labels
of objects which frequently occur in an indoor setting like
chair, table, floor, windows etc. We use the 13 class version
from [29]. The background class is ignored during train-
ing and evaluation. Additionally, we use the 2975 training
images from Cityscapes [11] dataset, which consists of out-
door traffic scenes captured from various cities in Europe,
as the unlabeled auxiliary domain Da. Cityscapes shares its
semantic categories with GTA, so that the variation between
Ds and Da is only due to synthetic and real appearance,
while Ds and Dt have many low-level as well as high-level
differences.

4.2. Training Details

We use the DeepLab [10] architecture with a resnet-101
backbone for the encoder framework E . For the task-specific
decoder G, we use an ASPP convolution layer followed by
an upsampling layer. The architecture of discriminator D is
similar to DC-GAN [34] with four 4× 4 convolution layers,
each with stride 2 followed by a leaky ReLU non-linearity.
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Few-shot settings (our goal)←−−−−−−−−−−−−−
Method σ = 0.01 σ = 0.04 σ = 0.1 σ = 0.3

N = 50 N = 200 N = 500 N = 1500

Target Labeled Only 22.62 30.43 36.62 43.17
Fine Tune 21.44 29.46 34.84 44.10

AdaptSegNet* [46] 25.20 32.51 36.9 43.83
LET* [25] 25.19 32.44 35.87 42.96

UnivSeg [19] 22.21 31.32 36.08 42.10
AdvSemiSeg [18] 24.72 33.22 38.46 45.10

C2A (Ours, λc = 0) 24.10 32.22 35.89 43.08
C2A (Ours, full, K=10) 25.98±0.03 33.37±0.07 37.41±0.04 43.16±0.03

Table 1. Few Shot Adaptation: mIoU values on SUN-RGB validation set for the proposed few shot segmentation approach. σ is the
fraction of labeled examples from the total number of images from SUNRGB dataset. Note that our method particularly shows improvement
in cases when the amount of labeled examples is very low. K is the number of clusters. (* denotes our extension of the existing works to suit
our task.)

The feature transformation module F is a 1× 1 convolution
layer with output channels equal to the embedding dimen-
sion, which is fixed as fe = 128 for all the experiments. We
use a default value for λadv = 0.001. Following [53], to
suppress the noisy alignment during the initial iterations, we
set λc =

2
1+e−10∗δ −1, where δ changes from 0 to 1 over the

course of training. The backbone architecture is trained us-
ing SGD objective, with an initial learning rate of 2.5×10−4.
For training the cluster centers, we follow a similar learning
rate decay schedule, but start with a smaller learning rate of
2.5× 10−5. This is because the cluster centers are already
initialized using networks trained on the labeled data, and
we would ideally like the centers to not drift too far away
from their initial values.

Baselines and Ablations We provide ablation studies of
the clustering module proposed in our approach and compare
with the existing baselines. Specifically, we provide compar-
isons against the following. (i) Target Labeled Only: We
train the segmentation encoder and decoder using only the
limited labeled data from the target domain, Dl

t, (ii) Fine-
tune: We use a model trained on source dataset Ds till con-
vergence, and finetune it on the labeled target data, (iii) Ours
(C2A), λc = 0: Our cluster to adapt approach, without the
clustering objective, and (iv) Ours (C2A): our proposed
approach with all the losses included.

Comparison with prior works We reiterate the paucity of
existing works which tackle the same setting as ours, making
direct comparison hard. Many traditional adaptation meth-
ods prevalent in literature for segmentation [16, 24, 43, 49]
are not directly applicable in cases with disparate source
and target label sets. Therefore, we compare against two
competitive approaches that perform domain adaptation by

extending them as follows. (i) AdaptSegNet* [46]: We
choose [46] as the backbone pixel level adaptation method
for global adaptation across source and target datasets as it
achieves high performance with a simple method. Since [46]
is not directly applicable to our case due to different labels
spaces, we extend their method to perform feature space
adaptation. (ii) LET* [25]: We compare against adaptation
proposed in [25] using entropy minimization criterion. We
extend it to suit the segmentation task by using class proto-
types in the feature space instead of pairwise enumeration
which keeps the computation feasible.

GTA to SunRGB We show in Table 1 our results by
varying the amount of supervision by choosing |Dl

t| =
{50, 200, 500, 1500} images which corresponds to σ =
{1%, 4%, 10%, 30%} respectively. Our method based on
a novel clustering objective consistently outperforms other
approaches by considerable margins, more so in cases when
there is extreme scarcity of labeled data. We see upto 15%
and 10% relative increase in mIoU for σ = 1% and σ = 4%
respectively compared to training only on the labeled tar-
get dataset. It is also evident that the clustering loss Lc is
important for the objective to successfully carry selective
alignments from source and intermediate domains to the
target domain, as seen from improvements in our results
compared to prior works like [46] and [25]. We also ob-
served that 30% is already sufficient data for supervised
fine-tuning to do well without any adaptation. In this work,
our goal is focused on boosting the adaptation performance
when enough labeled examples are not present in the target
domain (σ ≪ 1).

Role of intermediate bridge domain The intuition behind
using an intermediate domain is to ease the adaptation pro-
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GTA to SunRGB

Target Labeled 36.47 9.25 27.15 45.0 71.13 25.21 6.76 22.88 25.86 36.13 0.0 58.55 31.16 65.02 30.43
Fine tune 29.46 8.09 33.71 44.33 70.89 23.75 9.06 25.4 24.3 35.76 0.0 61.05 25.5 64.60 29.46
C2A [Ours] 40.75 12.8 37.77 46.73 75.7 25.56 9.52 23.3 30.33 36.5 0.0 61.51 33.42 66.71 33.37

Synthia to SUNRGB

Target Labeled 36.47 9.25 27.15 45.0 71.13 25.21 6.76 22.88 25.86 36.13 0.0 58.55 31.16 65.02 30.43
Fine tune 31.87 9.76 34.98 43.89 71.44 25.67 7.76 15.74 24.44 36.12 0.0 61.30 32.98 65.08 30.46
C2A [Ours] 40.84 14.32 36.39 47.76 73.33 25.95 12.11 19.26 31.16 39.98 0.0 63.92 32.77 67.37 33.68

Table 2. Classwise IoU values for the 13 classes in SUN RGB validation set compared against baselines for σ = 4%(N = 200). Classes like floor,
wall and ceiling which share rich geometric and semantic properties with categories in outdoor GTA benefit the most, thus validating our approach of
selective knowledge transfer across indoor and outdoor datasets.

cess between the synthetic source domain data and real target
domain data, which differ in both the appearance and the
label spaces (categories). The use of an unlabeled domain
bridge leads to no degradation with respect to a direct GTA
to SUN adaptation for N = 200 (33.5% without and 33.4%
with), while leading to a noticeable benefit for N = 50 (25.0%
without and 26.0% with bridge domain).

Comparison with semi-supervised learning methods We
also compare our work with existing semi-supervised seg-
mentation algorithms in literature, namely AdvSemiSeg [18]
and universal semi-supervised segmentation [19] and in-
clude results in Table 1. For [18], we use the unlabeled
and labeled image sets from SUN-RGB to run the experi-
ments. For [19], we follow the setting of their paper and
use N=(50,200,500,1500) labeled examples from source and
target, and use rest of images without annotations. From
table Table 1, we note that our method delivers much better
performance compared to semi-supervised learning methods
for lower amounts of target supervision, as the latter do not
leverage rich supervision available from a source domain.
Category-wise Performance We show the classwise mIoU
results of our method in Table 2 for both cases of using GTA
and Synthia as the source dataset. The proposed C2A ap-
proach outperforms the baselines, that do not make use of
the alignment strategy, on most of the classes. The gains are
especially significant on classes like floor, wall and ceiling,
which share many geometric as well as semantic properties
with categories in Cityscapes and GTA (Figure 4). For exam-
ple, the patches corresponding to road in GTA dataset can
help to successfully identify the parts of indoor images that
correspond to floor since both occur mostly in the lower parts
of images and share many other appearance and geometric
relations.

Lc and LKL For the ablation into clustering losses, we
found that removing KL Loss (using only Lc) drops per-

formance to 24.24%, removing clustering loss (using only
LKL) drops to 23.32%, while using both these losses gives
25.98% for the case of N = 50 in Table 1. We can conclude
that both the clustering loss as well as the KL divergence
loss are necessary as they offer complementary benefits (dis-
cussed in Sec 3.3).

Number of clusters An important aspect of our formula-
tion is the choice of number of clusters K for the clustering
approach in Eq. (5). From Figure 3, K=10 clusters works
well for the case of N = 50. This concurs well with our
intuition that a small value of K, like 5, would adversely
affect the discriminative performance of the original task
while a large value of K, like 20, would not encourage the
semantic transfer we are after, as even related categories
might form distinct clusters with no overlap

Unsupervised Zero Shot Adaptation With a slight modifi-
cation, our approach also works well for the problem of zero
shot adaptation, when no (labeled, or unlabeled) examples
are available from the target domain. For learning some task
specific information, we assume availability of synthetically
generated samples from the target domain. In our case, we
render artificial indoor scenes from SceneNet [29] dataset
and use it in conjunction with our approach. We use this
synthetically generated data from SceneNet instead of SUN-
RGB in the formulation, in Eq. (1) and Eq. (5) instead of
Dt.

We compare our approach against the baselines where we
use a classifier trained on SceneNet directly on SUNRGB.
We report the results in Table 4, and our method which jointly
optimizes a clustering objective along with an adversarial
objective performs much better than the baselines that use
only synthetic images from SceneNet. We believe that is due
to the complementary knowledge that the network is able to
infer through our approach. Our method even improves upon
plain joint training on labeled GTA and SceneNet datasets
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(a) Input (b) Target-Only (c) Proposed C2A (d) GT Map

Figure 4. Qualitative segmentation outputs for examples from the SUNRGB validation set. Compared to a baseline model that is only
trained on the few-shot target domain data, the proposed model (C2A) consistently produces better segmentation maps compared to the
baselines in all cases.

Table 3. Effect of K: Influence of the number of clusters
K on the performance of segmentation in the case of
N=50.

Method SUN NYUv2

Train on SceneNet [29] 14.09 15.05
Joint train on SN+GTA 16.99 18.39

Ours (C2A); K=5 21.64 22.06
Ours (C2A); K=10 21.89 20.27
Ours (C2A); K=20 22.79 23.08

Table 4. Zero Shot Unsupervised Adaptation:
Our approach significantly outperforms all the
baselines, even in the extreme case of having 0
real target images during training.

from ∼ 17% to ∼ 22.8%, indicating that the benefit is not
only due to increase in labeled data, but due to alignment as
well. Additionally, a network which learns without any real
data from target domain should ideally generalize well to any
similar datasets. Indeed, we observe from Table 4 that the
improvement on performance is not restricted to SUNRGB
alone, but also observed on NYUv2 [39] validation set across
all the baselines.

5. Conclusion
We introduce C2A, a clustering based approach called

C2A to study the most general, yet largely understudied set-
ting of adaptation between domains with non-overlapping
label spaces for feature alignment across source and tar-
get datasets with disjoint labels. C2A encourages positive

alignment of visually similar feature representations while
preventing negative transfer. We experimentally verify the
effectiveness of our approach on the task of outdoor to indoor
adaptation for semantic segmentation and demonstrate signif-
icant improvements over existing approaches and prevalent
baselines in both fewshot and zeroshot adaptation settings.
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