Cluster-to-adapt: Few Shot Domain Adaptation for Semantic Segmentation across Disjoint Labels

Tarun Kalluri Manmohan Chandraker
University of California San Diego

Abstract

Domain adaptation for semantic segmentation across datasets consisting of the same categories has seen several recent successes. However, a more general scenario is when the source and target datasets correspond to non-overlapping label spaces. For example, categories in segmentation datasets change vastly depending on the type of environment or application, yet share many valuable semantic relations. Existing approaches based on feature alignment or discrepancy minimization do not take such category shift into account. In this work, we present Cluster-to-Adapt (C2A), a computationally efficient clustering-based approach for domain adaptation across segmentation datasets with completely different, but possibly related categories. We show that such a clustering objective enforced in a transformed feature space serves to automatically select categories across source and target domains that can be aligned for improving the target performance, while preventing negative transfer for unrelated categories. We demonstrate the effectiveness of our approach through experiments on the challenging problem of outdoor to indoor adaptation for semantic segmentation in few-shot as well as zero-shot settings, with consistent improvements in performance over existing approaches and baselines in all cases.

1. Introduction

In this work, we address the problem of knowledge transfer across domains with disjoint labels for semantic segmentation. In spite of massive strides in computer vision performance using deep learning [21], models trained on a large-scale labeled dataset are not guaranteed to generalize to data that lies outside the training distribution. This difficulty is amplified for applications like semantic segmentation, where collecting pixel level labeled data for all geographies, environments and weather conditions is restrictive, expensive or simply not feasible due to many practical and social implications [19].

Unsupervised domain adaptation emerged as a feasible alternative to transfer knowledge from a labeled source domain to unlabeled target domains by minimizing some notion of divergence between the domains [4, 12, 22, 23, 42, 48]. Prior works in domain adaptation are based on a global distribution alignment objective, assuming that the source and target datasets share the same label space so that domain alignment would invariably result in learning transferable feature representations.

In many cases, the source and target labels might be completely distinct and share only high level geometric and semantic relationships. This makes it hard, yet necessary in few-shot settings, to perform useful knowledge transfer. In particular we show this in case of adaptation between outdoor datasets, where synthetic datasets are readily available, and indoor scenes, where we have few labeled data and it is considered difficult to render or maintain synthetic datasets. To address this challenging setting of outdoor to indoor adaptation, we propose a novel framework for adaptation across disjoint labels. For disjoint labels, we posit that a more suitable objective is to achieve domain invariance with respect to related categories and domain equivariance with respect to unrelated categories between source and target,
thus avoiding negative transfer. For example, the categories that frequently occur in an indoor environment like wall, floor, ceiling, and chair are completely distinct from any outdoor categories, yet we show how we can leverage useful discriminative information through implicit geometric and semantic correspondences.

In practice, the distribution shift between such source and target domains arise from both low-level (lighting, contrast, object density etc.) and high-level (category, geometric orientation, pose etc.) variations [4]. To ease this extreme case of adaptation, we introduce an additional unlabeled auxiliary domain, which shares properties with both the source and target datasets and would act as a bridge to improve the adaptation. For instance, adaptation from synthetic outdoor to real indoor scenes can benefit from unlabeled images from real outdoor scenes, as explained in Figure 2.

To automatically discover related and unrelated categories across datasets, we propose a novel clustering based alignment approach called Cluster-to-adapt (C2A). C2A stems from the intuition that related categories from source and target should lie close to each other in the feature space for effective knowledge transfer. We realize this during training through a deep constrained clustering framework by posing the alignment as a clustering objective in a transformed feature space, which would force related categories to group close to each other while leaving room for unrelated categories to form independent clusters, as shown in Figure 1.

2. Related Work

Unsupervised Domain Adaptation (UDA) UDA is used to transfer knowledge from a large labeled source domain to an unlabeled target domain. Large body of works that perform adaptation from labeled source to unlabeled target rely on adversarial generative [3, 15, 31, 38, 58] or discriminative [12, 16, 47, 48] approaches to learn domain agnostic feature representations. A common assumption in most of these approaches is that the source and target label spaces completely overlap, so that a classifier learnt on the source domain can be directly applied on the target data. However, in most real world applications this assumption is invalid, and in most general case, the categories might be completely different. Very few works exist which address this more challenging setting. Previous works like open set adaptation [37], partial set adaptation [5, 6] and universal adaptation [19, 57] assume some degree of label overlap. [25] performs adaptation between distinct label spaces with few target labeled data using pairwise similarity constraints, while [40] addresses adaptation for verification tasks which is different from our focus on semantic segmentation. Similarly, more recent works for domain adaptation suited for semantic segmentation tasks [2, 26, 30, 32, 50, 55] achieve state of the art results for the case of completely overlapping label spaces in the source and target domains, and are not applicable in our setting of outdoor to indoor adaptation. In contrast to these existing works, we propose an efficient method to align only visually similar features across source and target domains which can have completely non-intersecting label spaces without re-annotation [20], while preventing potential negative transfer, specifically suited to cross domain semantic segmentation.

Deep Clustering Although clustering algorithms like k-means [27] are extremely useful in automatically discovering structure from unlabeled data [1], they work directly on the high dimensional input space like images which is often ineffective for classification. Recent works propose jointly
learning a suitable feature representation of data along with clustering assignments. For example, [17] uses pairwise similarity based constraints, while [14] uses self-training objective on the cluster assignment scores to successfully perform unsupervised transfer across categories from the same domain. Other works make use of deep clustering to learn more discriminative clusters [52] useful for classification, or as suitable pretext tasks in self supervised learning [7, 8, 54]. While deep clustering based approaches have been previously applied in the case of unsupervised category discovery [14], we extend this idea to additionally account for the domain shift between the source and target datasets.

Also, note that many prior works that use clustering for adaptation consider the classical setting of completely matching source and target domains [44, 45, 51] or partial overlap in open world setting [13], and hence use clustering as a means to achieve one-to-one alignment between source and target. In contrast, we use clustering to selectively align source and target across completely disjoint label spaces.

3. Framework

We now explain our proposed approach, which addresses the most general case of knowledge transfer between domains with different, and non-overlapping label spaces. Denote using \mathbb{D}_s the completely labeled source domain data with label space \mathbb{Y}_s, where $\mathbb{D}^s \sim p_s$(source distribution). The labeled target domain data is denoted by \mathbb{D}_t, with label space $\mathbb{Y}_t(\neq \mathbb{Y}_s)$, and $\mathbb{D}_t \sim p_t$(target distribution). We assume that a small subset \mathbb{D}_t^t of the target data is labeled, for learning some task specific information like classifier boundaries, and the rest \mathbb{D}_t^u as unlabeled, making our setting of few-shot adaptation across domains with disjoint labels. We denote this small fraction of labeled samples by $\sigma = |\mathbb{D}_t^t|/(|\mathbb{D}_t^u| + |\mathbb{D}_t^t|)$. Following the nomenclature of [33], we henceforth call this as cross-task adaptation and the source and target as different tasks. In section 4, we show results varying σ from 0.01 to 0.3. In our case, the domain gap between the target data and source data comes from two factors, namely domain shift due to $p_s \neq p_t$ as well as label shift due to $\mathbb{Y}_s \neq \mathbb{Y}_t$. Furthermore, we do not assume any partial overlap between the label spaces unlike other partial or open set adaptation approaches which makes our setting more challenging. To ease the adaptation process across these widely different datasets, we introduce another completely unlabeled auxiliary domain \mathbb{D}_{aux}, which serves as a useful bridge between the source and target datasets. For example, \mathbb{D}_{aux} could share task/content properties with \mathbb{D}_s and style properties with \mathbb{D}_t. We show how to best exploit this completely unlabeled intermediate domain to achieve our primary goal of learning transferable features from source to target.

Overview We present the overview of the proposed network architecture in Figure 3. We use a shared encoder $\mathcal{E} : (H, W, 3) \rightarrow (H', W', f_d)$ across all the datasets which aggregates spatial features across multiple resolutions of the input image x, and outputs a downsampled encoder map $\mathcal{E}(x)$. f_d is the size of features in the encoder map. Since shallow level features are known to be more task agnostic and transferable [56], a shared encoder helps us to learn generic features useful across source and target datasets. Task specific decoders \mathcal{G}_s and \mathcal{G}_t then upsample the output of the encoder and compute class assignment probabilities for each pixel of the input image over the label space \mathbb{Y}_s and \mathbb{Y}_t respectively. Individual decoders for source and target helps us to make predictions over respective label spaces.

The supervised loss computed using the labeled data from source and target datasets is given by

$$\mathcal{L}_{sup} = \mathcal{L}_{sup}(\mathbb{D}_s) + \mathcal{L}_{sup}(\mathbb{D}_t^t),$$

where

$$\mathcal{L}_{sup}(\mathbb{D}_s) = \frac{1}{N_s} \sum_{(x,y) \in \mathbb{D}_s} \frac{-1}{HW} \sum_{h,w} \log(\mathcal{G}_s(\mathcal{E}(x))^\text{sup}(h,w))$$

and N_s is the number of labeled samples in the source dataset, and H, W are the height and width of the output feature map respectively. The target supervised loss $\mathcal{L}_{sup}(\mathbb{D}_t^t)$ is defined similarly.

Next, we decouple the source to target alignment into two different objectives. The first is a within task alignment between \mathbb{D}_s and \mathbb{D}_{aux}, and the second is the cross task alignment objective between \mathbb{D}_{aux} and \mathbb{D}_t, as explained next.

3.1. Within Task Domain Alignment

We introduce the within task alignment objective between the source and intermediate domains \mathbb{D}_s and \mathbb{D}_{aux}. We assume that the domains share the same label space and exhibit only low-level differences, and use an adversarial alignment strategy using a domain discriminator \mathcal{D}.

Following the idea presented in [46], we send the output probability maps $\mathcal{P}_s(x) = \mathcal{G}_s(\mathcal{E}(x))$ to the discriminator \mathcal{D} as opposed to the encoder maps. This helps in better within-task alignment for pixel level prediction tasks and, as we found out, faster convergence during training. We train the discriminator $\mathcal{D} : (H, W, |\mathbb{Y}_s|) \rightarrow \{0, 1\}$ which takes as input the output map of the generator, to output the probability of the map coming from source data. The generator is then trained to produce outputs from \mathbb{D}_{aux} which are good enough to trick the discriminator into classifying them as coming from source. This alternative min-max optimization would then result in domain invariant output maps leading to successful feature alignment. The adversarial loss, using LS-GAN [28], is given by

$$\mathcal{L}_{adv} = \mathbb{E}_{x \sim \mathbb{D}_s}(\mathcal{D}(\mathcal{P}_s(x)))^2$$
and the discriminator objective L_D is given by

$$L_D = E_{x \sim D_s}(D(P_s(x)))^2 + E_{x \sim D_u}(D(P_s(x)) - 1)^2$$

Although we use this adversarial adaptation strategy for within-task alignment, we note that our method can also be applied in combination with any other adaptation strategy based on generative modeling or distribution matching [31, 49, 55] for within task alignment.

3.2. Cross Task Semantic Transfer

Training E and G with task specific supervised loss and adversarial alignment losses alone is insufficient to transfer useful semantic content to target dataset, since we do not explicitly transfer any semantic relations between the tasks. Naive adversarial training of yet another discriminator to distinguish outputs from two tasks would not work well, as we only want categories that share semantic cues to align with each other (selective alignment) as opposed to global alignment (Figure 1). Luo et. al. [25] propose using an entropy minimization objective after computing pairwise similarity of the features, but computing such pairwise similarity is computationally infeasible for pixel level prediction tasks. Towards this goal, we propose a novel deep clustering based approach, which lies at the core of our approach.

Constrained Clustering Objective Following the assumption that deep features form discriminative clusters in the feature space useful for classification tasks [9], we believe that better knowledge transfer would happen across tasks if the features of categories which share semantic information also form coherent clusters closer to each other. A major challenge with incorporating this constraint in deep neural networks is the lack of information regarding the correspondence between categories of the datasets useful in preventing negative transfer effects. We use a clustering based objective to discover the similarity across categories, and enforce the clustering constraint by performing k-means clustering of the feature vectors. This encourages the features corresponding to similar categories across tasks to form a single “meta-cluster”, while leaving room for unrelated categories to form independent clusters.

We first pass the outputs of the shared encoder E through a feature transfer module $F : (H', W', f_d) \rightarrow (H', W', f_c)$, where f_c is the feature dimension in the transformed space. F is necessary because the features learnt specific to a task might not be suitable for cross-task semantic transfer directly in the feature space. A learnable transformation function would, instead, find the best subspace amenable for alignment. Also, since $f_c \ll f_d$, the feature transformation would result in efficient computation of centers and similarity metrics for k-means. We formulate our constrained clustering objective using the cross-entropy loss, given by

$$L_c = \sum_{x \in \{D_u, D^c_u\}} \sum_{v_j \in F(E(x))} -\log(\max_k p(\mu_k|v_j))$$

where $p(\mu_k|v_j)$ is the probability score that a feature vector v_j belongs to a cluster with center μ_k, and

$$p(\mu_k|v_j) \propto \exp\left(\frac{v_j \cdot \mu_k}{||v_j||_2 ||\mu_k||_2}\right)$$

Avoiding Trivial Solution Direct optimization of Eq. (5) would quickly lead to a trivial solution where all the vectors are mapped to a single cluster. We found that initializing the cluster centers using features computed from pretrained
network on labeled target data alone (\mathcal{D}_t^i, trained offline) would reduce this problem to a large extent. Additionally, we follow the idea proposed in [52], and add a self-training constraint which encourages uniformity among the clusters and the cluster assignment probabilities are forced to be equal to an auxiliary target distribution. Specifically, we would like to have the target distribution $q(\mu_k | v_j)$ to hold the property that

$$q(\mu_k | v_j) \propto p(\mu_k | v_j) \cdot p(v_j | \mu_k)$$

The first term on the RHS would improve the association of correct points to clusters, while the second term would discourage very large clusters. Applying bayes rule would give us the form of the target distribution as

$$q(\mu_k | v_j) = \frac{p(\mu_k | v_j)^2/\sum_j p(\mu_k | v_j)}{\sum_k p(\mu_k | v_j)^2 / \sum_j p(\mu_k | v_j)}. \tag{7}$$

The constraint is now enforced in the form of a KL-Loss between the source distribution and the auxiliary target distribution.

$$\mathcal{L}_{kl} = KL(p || q) = \sum_j \sum_k q(\mu_k | v_j) \log \left(\frac{q(\mu_k | v_j)}{p(\mu_k | v_j)} \right) \tag{8}$$

The final training objective for the model can be summarised as follows,

$$\arg\min_{\mathcal{E}, \mathcal{G}, \mathcal{G}_t, \mathcal{F}} \mathcal{L}_{sup} + \lambda_{adv} \mathcal{L}_{adv} + \lambda_c(\mathcal{L}_c + \mathcal{L}_{kl})$$

$$\arg\min_{\mathcal{D}} \mathcal{L}_D \tag{9}$$

where λ_{adv} and λ_c are the coefficients which control the relative importance of the adversarial loss and clustering loss respectively. The optimization is done by alternating between the two objectives within every iteration. A crucial factor in our method is the initialization of cluster centers before training, and we discuss our strategy followed for it next.

3.3. Cluster Initialization

The cluster centers are initialized using networks pre-trained on the limited labeled data. Specifically, we use the same architecture as described in the paper to train a model on the labeled source data \mathcal{D}_s as well as sparsely labeled target data \mathcal{D}_t^i using pixel level cross entropy loss. We then pass the unlabeled images from the target \mathcal{D}_t^i and collect all the encoder maps corresponding to all the images. Each encoder map is of size $(H/8, W/8, 2048)$ for our ResNet-101 backbone. To match the dimension of the FTN output, which is 128 in our case, we apply PCA over these feature vectors to reduce their dimension. Then, a clustering is performed using the classical k-means objective with K cluster centers, and the resulting centers are used to initialize μ_ks in the downstream adaptation approach.

Efficient Computation of Centers

In traditional k-means, the centers μ_k are calculated using an iterative algorithm consisting of cluster assignment and centroid computation repeated until convergence. We mention a couple of issues persistent with this approach. Firstly, for dense prediction tasks like semantic segmentation, the encoder map consists multiple feature vectors which correspond to different patches of the input image. For example, an encoder map of size (H', W') has $H'W'$ vectors of size f_c. Performing k-means over these vectors collected over all images over all the tasks would demand huge storage and computation requirements. Secondly, switching between gradient based training of network parameters and iterative computation of cluster centers after every few iterations would lead to an inefficient procedure that is not end-to-end trainable. To counter these limitations, we follow the idea proposed in [14] and include μ_k as trainable parameters in the network, and update them after each iteration based on the gradients received from \mathcal{L}_C.

4. Experiments

4.1. Datasets

For the source dataset \mathcal{D}_s, we use synthetic images from the driving dataset GTA [35]. GTA consists of 24966 images synthetically generated from a video game consisting of outdoor scenes with rich variety of variations in lighting and traffic scenes. We also show results using the SYNTHIA-RAND-CITYSCAPES split from Synthia [36] dataset, which consists of 9600 synthetic images with labels compatible with Cityscapes. For the target dataset \mathcal{D}_t, we use real images from SUN-RGBD [41] consisting of images from indoor scenes. SUN-RGBD consists of 5285 training images and 5050 validation images containing pixel level labels of objects which frequently occur in an indoor setting like chair, table, floor, windows etc. We use the 13 class version from [29]. The background class is ignored during training and evaluation. Additionally, we use the 2975 training images from Cityscapes [11] dataset, which consists of outdoor traffic scenes captured from various cities in Europe, as the unlabeled auxiliary domain \mathcal{D}_u. Cityscapes shares its semantic categories with GTA, so that the variation between \mathcal{D}_s and \mathcal{D}_u is only due to synthetic and real appearance, while \mathcal{D}_s and \mathcal{D}_t have many low-level as well as high-level differences.

4.2. Training Details

We use the DeepLab [10] architecture with a resnet-101 backbone for the encoder framework \mathcal{E}. For the task-specific decoder \mathcal{G}, we use an ASPP convolution layer followed by an upsampling layer. The architecture of discriminator \mathcal{D} is similar to DC-GAN [34] with four 4×4 convolution layers, each with stride 2 followed by a leaky ReLU non-linearity.
The feature transformation module F is a 1×1 convolution layer with output channels equal to the embedding dimension, which is fixed as $f_e = 128$ for all the experiments. We use a default value for $\lambda_{adv} = 0.001$. Following [53], to suppress the noisy alignment during the initial iterations, we set $\lambda_c = \frac{2^{N-1}}{e^{\frac{c}{1+e^{-\frac{c}{\delta}}}}} - 1$, where δ changes from 0 to 1 over the course of training. The backbone architecture is trained using SGD objective, with an initial learning rate of 2.5×10^{-4}. For training the cluster centers, we follow a similar learning rate decay schedule, but start with a smaller learning rate of 2.5×10^{-5}. This is because the cluster centers are already initialized using networks trained on the labeled data, and would ideally like the centers to not drift too far away from their initial values.

Baselines and Ablations We provide ablation studies of the clustering module proposed in our approach and compare with the existing baselines. Specifically, we provide comparisons against the following. (i) **Target Labeled Only**: We train the segmentation encoder and decoder using only the limited labeled data from the target domain, \mathbb{D}^t_1. (ii) **Fine-tune**: We use a model trained on source dataset \mathbb{D}_s till convergence, and finetune it on the labeled target data, (iii) **Ours (C2A)**, $\lambda_c = 0$: Our cluster to adapt approach, without the clustering objective, and (iv) **Ours (C2A)**: our proposed approach with all the losses included.

Comparison with prior works We reiterate the paucity of existing works which tackle the same setting as ours, making direct comparison hard. Many traditional adaptation methods prevalent in literature for segmentation [16, 24, 43, 49] are not directly applicable in cases with disparate source and target label sets. Therefore, we compare against two competitive approaches that perform domain adaptation by extending them as follows. (i) **AdaptSegNet** [46]: We choose [46] as the backbone pixel level adaptation method for global adaptation across source and target datasets as it achieves high performance with a simple method. Since [46] is not directly applicable to our case due to different labels spaces, we extend their method to perform feature space adaptation. (ii) **LET** [25]: We compare against adaptation proposed in [25] using entropy minimization criterion. We extend it to suit the segmentation task by using class prototypes in the feature space instead of pairwise enumeration which keeps the computation feasible.

GTA to SunRGB We show in Table 1 our results by varying the amount of supervision by choosing $|\mathbb{D}^t_1| = \{50, 200, 500, 1500\}$ images which corresponds to $\sigma = \{1\%, \ 4\%, \ 10\%, \ 30\%\}$ respectively. Our method based on a novel clustering objective consistently outperforms other approaches by considerable margins, more so in cases when there is extreme scarcity of labeled data. We see up to 15% and 10% relative increase in mIoU for $\sigma = 1\%$ and $\sigma = 4\%$ respectively compared to training only on the labeled target dataset. It is also evident that the clustering loss L_c is important for the objective to successfully carry selective alignments from source and intermediate domains to the target domain, as seen from improvements in our results compared to prior works like [46] and [25]. We also observed that 30% is already sufficient data for supervised fine-tuning to do well without any adaptation. In this work, our goal is focused on boosting the adaptation performance when enough labeled examples are not present in the target domain ($\sigma \ll 1$).

Role of intermediate bridge domain The intuition behind using an intermediate domain is to ease the adaptation pro-
cess between the synthetic source domain data and real target domain data, which differ in both the appearance and the label spaces (categories). The use of an unlabeled domain bridge leads to no degradation with respect to a direct GTA to SUN adaptation for N = 200 (33.5% without and 33.4% with), while leading to a noticeable benefit for N = 50 (25.0% without and 26.0% with bridge domain).

Comparison with semi-supervised learning methods We also compare our work with existing semi-supervised segmentation algorithms in literature, namely AdvSemiSeg [18] and universal semi-supervised segmentation [19] and include results in Table 1. For [18], we use the unlabeled and labeled image sets from SUN-RGB to run the experiments. For [19], we follow the setting of their paper and use N=(50,200,500,1500) labeled examples from source and target, and use rest of images without annotations. From Table 1, we note that our method delivers much better performance compared to semi-supervised learning methods for lower amounts of target supervision, as the latter do not leverage rich supervision available from a source domain.

Category-wise Performance We show the classwise mIoU results of our method in Table 2 for both cases of using GTA and Synthia as the source dataset. The proposed C2A approach outperforms the baselines, that do not make use of the alignment strategy, on most of the classes. The gains are especially significant on classes like floor, wall and ceiling, which share many geometric as well as semantic properties with categories in Cityscapes and GTA (Figure 4). For example, the patches corresponding to road in GTA dataset can help to successfully identify the parts of indoor images that correspond to floor since both occur mostly in the lower parts of images and share many other appearance and geometric relations.

L_c and L_{KL} For the ablation into clustering losses, we discussed in Sec 3.3). The use of an unlabeled domain bridge leads to no degradation with respect to a direct GTA to SUN adaptation for N = 200 (33.5% without and 33.4% with), while leading to a noticeable benefit for N = 50 (25.0% without and 26.0% with bridge domain).

Comparison with semi-supervised learning methods We also compare our work with existing semi-supervised segmentation algorithms in literature, namely AdvSemiSeg [18] and universal semi-supervised segmentation [19] and include results in Table 1. For [18], we use the unlabeled and labeled image sets from SUN-RGB to run the experiments. For [19], we follow the setting of their paper and use N=(50,200,500,1500) labeled examples from source and target, and use rest of images without annotations. From Table 1, we note that our method delivers much better performance compared to semi-supervised learning methods for lower amounts of target supervision, as the latter do not leverage rich supervision available from a source domain.

Category-wise Performance We show the classwise mIoU results of our method in Table 2 for both cases of using GTA and Synthia as the source dataset. The proposed C2A approach outperforms the baselines, that do not make use of the alignment strategy, on most of the classes. The gains are especially significant on classes like floor, wall and ceiling, which share many geometric as well as semantic properties with categories in Cityscapes and GTA (Figure 4). For example, the patches corresponding to road in GTA dataset can help to successfully identify the parts of indoor images that correspond to floor since both occur mostly in the lower parts of images and share many other appearance and geometric relations.

L_c and L_{KL} For the ablation into clustering losses, we found that removing KL Loss (using only L_c) drops performance to 24.24%, removing clustering loss (using only L_{KL}) drops to 23.32%, while using both these losses gives 25.98% for the case of N = 50 in Table 1. We can conclude that both the clustering loss as well as the KL divergence loss are necessary as they offer complementary benefits (discussed in Sec 3.3).
Figure 4. Qualitative segmentation outputs for examples from the SUNRGB validation set. Compared to a baseline model that is only trained on the few-shot target domain data, the proposed model (C2A) consistently produces better segmentation maps compared to the baselines in all cases.

Table 3. Effect of K: Influence of the number of clusters K on the performance of segmentation in the case of $N=50$.

Table 4. Zero Shot Unsupervised Adaptation: Our approach significantly outperforms all the baselines, even in the extreme case of having 0 real target images during training.

5. Conclusion

We introduce C2A, a clustering based approach called C2A to study the most general, yet largely understudied setting of adaptation between domains with non-overlapping label spaces for feature alignment across source and target datasets with disjoint labels. C2A encourages positive alignment of visually similar feature representations while preventing negative transfer. We experimentally verify the effectiveness of our approach on the task of outdoor to indoor adaptation for semantic segmentation and demonstrate significant improvements over existing approaches and prevalent baselines in both few-shot and zero-shot adaptation settings.

References

on Computer Vision and Pattern Recognition, pages 15384–15394, 2021. 2

