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Abstract

Class-imbalanced datasets can severely deteriorate the
performance of semi-supervised learning (SSL). This is due
to the confirmation bias especially when the pseudo la-
bels are highly biased towards the majority classes. Tra-
ditional resampling or reweighting techniques may not be
directly applicable when the unlabeled data distribution is
unknown. Inspired by the threshold-moving method that
performs well in supervised learning-based binary classi-
fication tasks, we provide a simple yet effective scheme to
address the multiclass imbalance issue of SSL. This scheme,
named SaR, is a Self-adaptive Refinement of soft labels be-
fore generating pseudo labels. The pseudo labels generated
post-SaR will be less biased, resulting in higher quality data
for training the classifier. We show that SaR can consis-
tently improve recent consistency-based SSL algorithms on
various image classification problems across different im-
balanced ratios. We also show that SaR is robust to the
situations where unlabeled data have different distributions
as labeled data. Hence, SaR does not rely on the assump-
tions that unlabeled data share the same distribution as the
labeled data.

1. Introduction

To circumvent the heavy reliance on a well-curated and
large-scale labeled dataset, semi-supervised learning (SSL)
has been actively studied by leveraging a large amount
of unlabeled data for training the classifier in addition to
a limited labeled set [47]. Recent SSL algorithms have
shown promising performance on standard image classifi-
cation benchmarks by combining both pseudo labeling and
consistency regularization to leverage unlabeled data effec-
tively [4, 5, 37]. Specifically, they predict pseudo labels on
unlabeled data, then use them to train the model with the
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consistency loss as a regularization item. However, these
SSL algorithms [4, 5, 37, 41] assume that the class distribu-
tions are balanced for both the labeled and unlabeled sets.

One challenge for the applicability of SSL in real-world
scenarios is that their performance can suffer from the po-
tential imbalance issue among the unlabeled data [8, 22, 24,
34]. Real-world datasets typically have skewed distribu-
tions, here we take “long-tailed” distribution [17,27,28,42]
as one example: as shown in Figure 1(a), the majority
classes have the most of the data points while the minority
classes have very few samples. In supervised learning (SL),
recent approaches including re-sampling [11,19,20,48] and
re-weighting [9, 10, 14, 39] based techniques have shown
their effectiveness. However, they are designed for SL and
relying on the distribution information of the entire dataset.
Hence they may not be directly applicable to SSL settings
where the majority samples are unlabeled. A few recent
works [22, 44] have tried to alleviate this issue under SSL
settings, but they require either complicated sampling-based
techniques or distribution alignment of the pseudo labels or
a combination of both. These processes can be computa-
tionally expensive, resulting in longer training time. Be-
sides, they rely on the assumptions about the distribution of
the unlabeled set [26, 44], which may not hold true in prac-
tice. Therefore, we seek a computation-efficient solution to
address the multiclass-imbalanced issue under SSL settings
without any reliance on the knowledge about the distribu-
tion of unlabeled sets.

To tackle this issue, we first take a deeper look into the
key component of these recent SSL algorithms [5, 31, 37,
41]: one-hot pseudo labels. Figure 1(b), (c) show the pre-
cision and recall of the pseudo labels for the unlabeled data
after 200 epochs of training with FixMatch [37]: the preci-
sion of majority classes are relatively lower while the recall
of minority classes are underestimated [44]. The model is
highly biased in this example, which deteriorates the qual-
ity of pseudo labels and further hurts the performance: in-
correct pseudo-label assignments may lead to misclassifica-
tions in subsequent iterations, resulting in a vicious cycle of
self-reinforcing errors [24, 38].
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Figure 1. Experimental results on CIFAR-10 under the imbalanced ratio γ = 100. (a) Class distribution of the labeled and unlabeled data.
(b) The precision of pseudo labels generated from the unlabeled set. (c) The recall of pseudo labels generated from the unlabeled set.

Therefore, it is crucial to improve the quality of pseudo
labels so that more of them can be predicted for represent-
ing the minority classes instead of biasing towards the ma-
jority classes. This motivates us to take a step backward
and observe the pseudo-labeling process: before generat-
ing the one-hot pseudo labels, the soft labels that are repre-
sented for the predicted probability for different classes are
already biased. Inspired by threshold-moving based meth-
ods in SL [13, 49], we propose Self-adaptive Refinement
(SaR) to refine the soft labels before generating pseudo la-
bels so that the minority classes can be easier to be assigned
with the correct pseudo labels. Moreover, following [47],
we define the biased degree by estimating the learning dif-
ficulty and propose Mitigating Vector to achieve the same
effect of threshold-moving [13, 49].

Contribution. In this work, we propose SaR (Self-
adaptive Refinement) to refine the soft labels before gener-
ating the one-hot pseudo labels (as shown in Figure 2) to al-
leviate the confirmation bias so that both the recall of minor-
ity classes and the precision of majority classes can be im-
proved. We demonstrate the compatibility of SaR with sev-
eral recently proposed pseudo-label based SSL algorithms.
SaR only introduces less than 5% additional running time
compared to the original SSL but it improves both ReMix-
Match [4] and FixMatch [37] by up to 28.7% and 32.5% on
the geometric mean (GM) score of class-wise accuracies [6]
respectively. We show that the proposed scheme outper-
forms the recent state-of-the-art imbalanced algorithms de-
signed for SSL on all the datasets and conditions tested: un-
labeled data can be of both either similar or different distri-
butions compared to the labeled data; hold-out test sets can
also have different distributions.

2. Related works
Semi-supervised learning. Semi-supervised learning

(SSL) aims to leverage the unlabeled data to improve the
performance of supervised learning. One type of SSL is
pseudo labeling based algorithms [25]: use the model itself
to generate predictive probability on unlabeled data, which

will be converted into a “soft” pseudo-label by tempera-
ture scaling or a “hard” pseudo-label by a manual thresh-
old [4, 5, 37, 45]. To promote the prediction consistency
on unlabeled data, consistency regularization [3, 35] can be
applied on different perturbed versions of the same image.
The recent state-of-the-art SSL algorithms, FixMatch [37]
and ReMixMatch [4], combine these two techniques and
achieve promising results. However, all of the aforemen-
tioned algorithms assume that the labeled and unlabeled
data are of the same uniform distribution. In practice,
they may face performance degradation by the imbalanced
scenarios since the pseudo labels can be significantly bi-
ased [8, 22, 34].

Class-imbalanced supervised learning. Supervised
learning (SL) on class-imbalanced datasets has been widely
studied due to its wide applicability. Recent approaches in-
clude re-weighting the loss function [2,9,10,14,21,39] and
re-sampling the training data [7, 11, 19, 20, 33, 48]. Both
of them require a pre-defined distribution to re-balance the
training data or the loss function. Another direction is the
use of threshold-moving based techniques in cost-sensitive
learning in which output thresholds are adjusted to han-
dle both class imbalance and different costs associated with
misclassification of different classes [13, 49]. Although the
aforementioned methods are effective, they are designed for
SL and heavily rely on the knowledge of the distribution of
the labeled data. Hence their applicability to SSL is ques-
tionable due to unknown distributions of the unlabeled data.

Class-imbalanced semi-supervised learning. Semi-
supervised AUC (area under a receiver operating character-
istic curve) optimization [16, 36, 46] has been proposed to
address the imbalanced issue but these methods are specifi-
cally designed for binary classification tasks. For the multi-
class classification problem, Wei et al. [44] found that the
pseudo labels for the minor classes from FixMatch [37] are
of high precision and low recall. Based on this observa-
tion, they proposed CReST to expand the labeled data by in-
corporating pseudo-labeled samples from the unlabeled set.

24092



Figure 2. Illustration of the SaR framework.

However, they only consider the situations where unlabeled
data have similar distribution as labeled data. Such assump-
tion is also used in [26]. Besides, CReST [44] can intro-
duce up to 20 times of computation cost compared to the
original SSL algorithms. DARP [22] proposed a technique
called distribution aligning refinery to refine the highly bi-
ased pseudo labels. DARP [22] also made an implicit as-
sumption that the confusion matrix of unlabeled data must
be the same as that of the labeled data. However, such an
assumption about the unlabeled data does not hold in many
practical applications such as medical data collected over
different subgroups [29, 40]. In this paper, we aim at al-
leviating the imbalance issue without any pre-defined in-
formation on the unlabeled set, which means the unlabeled
data can also have totally different distribution as the la-
beled data.

3. Methodology
3.1. Problem setup

We first set up the problem in class-imbalanced semi-
supervised learning (SSL). In an C-class classification task,
an input vector and its corresponding one-hot label are de-
noted as x ∈ Rd and y ∈ {0, 1}C , respectively. Here d is
the dimension of the input. There are a labeled set Dl ={
(x

(l)
i , y

(l)
i )

}m

i=1
and an unlabeled set Du =

{
x
(u)
j

}n

j=1
,

with m ≪ n. Let mk be the number of training labeled
instances in Dl of class k, i.e.,

∑C
k=1 mk = m. Simi-

larly, nk is for unlabeled instances in Du of class k with∑C
k=1 nk = n where nk is unknown. Without loss of gen-

erality, we assume {mk} and {nk} are sorted by cardinality
in descending order, i.e., m1 ≥ m2 ≥ · · · ≥ mC , and

n1 ≥ n2 ≥ · · · ≥ nC . Here the skewed class distribution
is considered, i.e., m1 ≫ mC or n1 ≫ nC . The fraction
γl =

m1

mC
and γu = n1

nC
measure the degree of class imbal-

ance in labeled and unlabeled data, respectively.
SSL aims to train a classifier h(x; θ) : Rd → [0, 1]C

using the above training data. Here the k-component
h(x; θ)k ∈ [0, 1] is the predictive probability for the k-th
class given an input x. To utilize Du effectively, many state-
of-the-art SSL algorithms infer their labels using pseudo la-
beling schemes denoted by

{
ŷ(u) ∈ [0, 1]C

∣∣∣ C∑
k=1

ŷ(u)(k) = 1
}n

j=1
.

Pseudo labels are generated based on the classifier h(x; θ)
with a stochastic data augmentation function α. Specifi-
cally, one can obtain a one-hot vector as pseudo label by

ŷ(u)(k) = δ(h(α(x(u)); θ)k), k = 1, · · ·C, (1)

where δ is an operator to transform a soft label h(α(x(u)); θ)
into a one-hot vector. With these pseudo labels, the training
process is to minimize the loss in both labeled and unlabeled
data

min
θ∈Θ

m∑
i=1

L(h(x(l)
i ; θ), y

(l)
i ) +

n∑
j=1

L̂(h(α̂(x(u)
j ); θ), ŷ

(u)
j ),

(2)
where L and L̂ are the per-sample losses (e.g., cross-
entropy). The first term works as a supervised loss function
for labeled data while the latter one is a regularization term.
Note that some SSL algorithms use different distance-based
loss function for labeled and unlabeled data. One of the
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widely used regularization is consistency loss [30, 37, 41].
This type of regularization forces SSL to predict consis-
tency on different views of the same sample. Here α̂ refers
to another augmentation different from α in (1). For sim-
plicity, in the following content, we will only consider con-
sistency loss as the regularization term.

3.2. Self-adaptive refinement on soft labels

Although traditional reweighting [2, 9, 10, 14, 39] and
resampling [11, 19, 20, 48] are popular techniques dealing
with imbalanced datasets and show their effectiveness on
supervised learning (SL), they cannot be directly applicable
to SSL since the majority of samples are unlabeled. In-
stead, we focus on the threshold-moving method [49] to
improve the quality of pseudo labels in class-imbalanced
SSL. One drawback of consistency loss-based SSL meth-
ods is that the imperfect class distribution is used to gen-
erate pseudo labels and the over-reliance on pseudo labels
makes it difficult to correctly update the class distribution.
It motivates us to take one step back and focus on refin-
ing the soft labels and adjusting the thresholds for pseudo
label generation. Threshold-moving is a classical method
for the binary-classification tasks. It has been extended
to multi-class problems for supervised learning. For ex-
ample, Zhou et al. [49] adjusted the output of neural net-
work to move the output threshold toward classes with
higher misclassification costs. This is very different from
re-sampling [7, 19, 20, 33, 48] as it relies on the manipula-
tion of the outputs of the classifier instead of re-balancing
training data. Threshold-moving is more applicable to SSL
than traditional re-sampling or re-weighting schemes since
it does not rely on the pre-defined distribution of the unla-
beled data.

Here we refine the pseudo labels (1) as

ŷ(u)(k) = δ(sk · h(α(x(u)); θ)k), k = 1, · · · , C. (3)

where s = [sk, k = 1, · · · , C] is a positive scaling vector to
mitigate the confirmation bias [1]. We refer to this vector as
Mitigating Vector and will describe how it is calculated in
the next subsection. Note that some SSL algorithms directly
use soft labels as pseudo labels. In that circumstance, (3)
becomes

ŷ(u)(k) =
sk · h(α(x(u)); θ)k∑C
j=1 sj · h(α(x(u)); θ)j

, (4)

with the normalization.

3.3. Mitigating Vector

Inspired by the cost-sensitive classification [49], we turn
our attention to the learning effect of unlabeled data dur-
ing the training process. Consider a long-tailed version of
the CIFAR-10 with the imbalance ratio (the ratio between
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Figure 3. Confirmation bias on CIFAR10-LT under imbalanced
ratio γ = 100: (a) the estimated distribution of majority classes;
(b) the estimated distribution of minority classes.

the number of samples of the most frequent class and that
of the least frequent class) as γ := γl = γu = 100, as
shown in Figure 3 (blue bars). In the same figure, we see
that pseudo labels generated from FixMatch [37] are highly
biased towards the majority classes. The original imbal-
ance ratio can be further accentuated from 100 to 1000 [22].
To address this issue, we propose Self-adaptive Refinement
(SaR) to take the confirmation bias of each class in SSL into
account. Specifically, we adjust the soft labels so as to re-
balance the contributions of samples from both the majority
and the minority classes. To achieve this, one can make the
value of sk proportional to the biased degree. In [47], the
degree of bias is estimated by counting the number of sam-
ples n̂k whose predictions fall into class k and above the
threshold, i.e.,

n̂k =

n∑
j=1

1(h(α(x
(u)
j ); θ)k > τ) · 1(argmax(ŷ

(u)
j ) = k),

(5)
where τ is pre-defined threshold and 1(·) is the indicated
function. In other words, the class that has more samples
with prediction confidence exceeds τ is considered to ex-
hibit a lower bias [47]. Hence we can design our Mitigating
Vector as follows:

sk = b(n̂k), k = 1, · · · , C. (6)

Here b(·) is a monotone decreasing function. Unlike the
FlexMatch [47], we fix the threshold τ during the train-
ing and focus on refining the soft labels. Besides, blindly
matching the distribution of the pseudo labels to the true dis-
tribution could bias the classifier [22]. We design a mitigat-
ing vector to smooth the distribution of the pseudo labels by
balancing the needs of representing the true distribution and
emphasizing the minority classes. Specifically, we use the
function b, which is inspired by the effective samples [14]
proposed for SL, i.e.,

b(n̂k) = (1− β)/(1− βn̂k). (7)

The degree of flattening is determined by the value of
β ∈ (0, 1). Here β = 0 nullifies the impact on the sam-
ple counts n̂k making all sk’s equal to 1. When β goes

44094



Algorithm 1 The SaR Framework

Data: Labeled data {(x(l)
i , y

(l)
i )}mi=1, unlabeled data

{x(u)
j }nj=1, number of classes C, learning rate η, max

epoch T
Initialize model parameter θ, Mitigating Vector s
while t < T do

for 1, . . .K do
Sample batches label data {x(l), y(l)}
Sample batches unlabeled data {x(u)}
Refine the soft labels from unlabeled data with s
Compute pseudo labels p(x(u); θ) and save them
Update θ by stochastic gradient decent with fixed s

end for
Estimate (n̂1, . . . , n̂C) based on (5)
Update sk = b(n̂k), k = 1, · · · , C

end while
Return: θ

to 1, b(n̂k) returns a larger value for a smaller n̂k, thereby
putting more emphasis on the minority classes. We select β
as 0.999 and fix it as suggested by [14]. After we refine the
soft labels, we will generate a new set of pseudo labels that
alleviate the confirmation bias: as shown in Figure 3(b), the
estimated distribution of the minority classes are closer to
the true distribution. The entire SaR framework is summa-
rized in Figure 2 and Algorithm 1.

4. Experiments
In this section, we evaluate our proposed SaR across

CIFAR-10, CIFAR-100 [23], and STL-10 [12] under var-
ious class-imbalanced situations, e.g., when 1) labeled and
unlabeled data share similar distribution; and 2) unlabeled
data are of different distribution from labeled data. We use
balanced accuracy (bACC) [15, 43] and geometric mean
scores (GM) [6] as the performance measuring metrics. To
have a fair comparison, all SSL algorithms use the same en-
coder (Wide ResNet-28-2 [32]) and batch size of 64. All of
the following results are collected via running three random
trials for each setting. Each random trial also randomizes
the classes in generating the long-tailed dataset.

4.1. CIFAR10-LT

Setup. We first consider the situations where unlabeled
data share similar distribution as labeled data [44]. Based on
this assumption, we construct a “synthetically long-tailed”
variant of CIFAR-10 [23], denoted as CIFAR10-LT. In the
training set, both labeled and unlabeled images are ran-
domly sampled based on the pre-defined imbalance ratios:
γl denotes for the labeled set and γu denoted for the unla-
beled set. We follow the same settings of DARP [22] where
m1 = 1500 and n1 = 3000, then we have mk = m1 · γϵk

l

and nk = n1 · γϵk
l , where ϵk = − k−1

C−1 . We vary γ to con-
struct various datasets of different imbalanced degree. The
hold-out test set remains balanced following similar settings
in previous studies [4, 9, 18, 20, 22, 32, 44].

Main results under γl = γu. When the unlabeled data
have similar distribution with the labeled data, we select
the following baselines for the comparison: 1) Supervised
learning using Wide ResNet-28-2 [32] on the labeled data
without re-balancing algorithms; 2) Re-sampling [18] the
labeled data based on its distribution; 3) Label distribution-
aware margin (LDAM-DRW) [9]; 4) classifier Re-Training
cRT [20]. To evaluate the efficacy, we apply SaR to two re-
cent state-of-the-art SSL algorithms: ReMixMatch [4] and
FixMatch [37].

We compare SaR with recent class-imbalanced tech-
niques designed for SSL, DARP [22] and CReST [44],
which outperform other methods. Hence we do not in-
clude other methods into our comparison. Note that
DARP [22] used two measuring metrics (bACC and GM)
while CReST [44] only used one metric (bACC). Be-
sides, we do not consider applying CReST [44] on ReMix-
Match [4] because the computational overhead is too large
(20x original run time), which renders it impractical. The
main results are summarized in Table 1. We show that SaR
can consistently improve both ReMixMatch [4] and Fix-
Match [37] with at least 3% absolute gain on bACC and at
least 4.4% on GM for all settings. The absolute gain on GM
can even be up to 9% with FixMatch [37]. Moreover, SaR
outperforms the recent imbalance technique (DARP [22])
on both bACC and GM for all settings, and outperforms
CReST [44] on bACC. Specifically, SaR achieves up to
4.6% increase on GM and 6.1% increase on bACC com-
pared to DARP [22].

Main results under γl ̸= γu. To make SSL more ap-
plicable to various settings, we also consider the situations
where the distributions of labeled and unlabeled set do not
match each other. We set γl as 100 but vary γu from 1, 50,
to 150. We even consider the situation where unlabeled data
are not only imbalanced but the distribution is the reverse of
that of labeled data (γu = 100 reversed). Under this setting,
since CReST [44] requires that labeled and unlabeled data
share similar distribution, which does not hold true in this
setting, we exclude it for our comparison. Our main results
are summarized in Table 2. Due to the unknown distribution
of the unlabeled data, the algorithms designed for SL such
as re-sampling [18], LDAM-DRW [9], cRT [20] will only
re-balance the labeled data.

From Table 2, when the unlabeled data have different
distribution from the labeled data, we find SaR improves
both ReMixMatch [4] and FixMatch [37] even more signif-
icantly. The absolute gain is up to 5% for ReMixMatch [4]
and 17% for FixMatch [37]. When compared to DARP [22],
SaR also achieves noticeable improvements for all settings,
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Table 1. Comparison of classification performance on CIFAR10-LT under the situations where the unlabeled data are of similar distribution
to the labeled data γ = γl = γu (hold-out test set is balanced). The evaluation criterion is bACC/GM.

CIFAR10-LT

Algorithm SSL RB γ = 50 γ = 100 γ = 150

Wide ResNet-28-2 [32] - - 65.2±0.05 / 61.1±0.09 58.8±0.13 / 51.0±0.11 55.6±0.43 / 44.0±0.98

Re-sampling [18] - ✓ 64.3±0.48 / 60.6±0.67 55.8±0.47 / 45.1±0.30 52.2±0.05 / 38.2±1.49
LDAM-DRW [9] - ✓ 68.9±0.07 / 67.0±0.08 62.8±0.17 / 58.9±0.60 57.9±0.20 / 50.4±0.30

cRT [20] - ✓ 67.8±0.13 / 66.3±0.15 63.2±0.45 / 59.9±0.40 59.3±0.10 / 54.6±0.72

ReMixMatch [4] ✓ - 81.5±0.26 / 80.2±0.32 73.8±0.38 / 69.5±0.84 69.9±0.47 / 62.5±0.35
ReMixMatch + DARP [22] ✓ - 82.1±0.14 / 80.8±0.09 75.8±0.09 / 72.6±0.24 71.0±0.27 / 64.5±0.68

ReMixMatch + SaR ✓ - 85.1±0.25 / 84.6±0.37 77.2±0.71 / 75.5±0.30 72.9±0.45 / 69.1±0.23

FixMatch [37] ✓ - 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43
FixMatch + DARP [22] ✓ - 81.8±0.24 / 80.9±0.28 75.5±0.05 / 73.0±0.09 70.4±0.25 / 64.9±0.17
FixMatch + CReST [44] ✓ ✓ 83.0±0.39 / 81.5±0.17 75.7±0.38 / 72.7±0.85 70.8±0.25 / 64.5±0.31

FixMatch + SaR ✓ - 83.9±0.09 / 82.9±0.15 77.6±0.42 / 75.9±0.76 71.5±0.23 / 66.9±0.25

Table 2. Comparison of classification performance on CIFAR10-LT under the situations where the unlabeled data are of different distribu-
tion from the labeled data γu ̸= γl (hold-out test set is balanced). The evaluation criterion is bACC/GM.

CIFAR10-LT (γl = 100)

Algorithm SSL RB γu = 1 γu = 50 γu = 150 γu = 100 (reversed)

Wide ResNet-28-2 [32] - - 58.8±0.13 / 51.0±0.11 58.8±0.13 / 51.0±0.11 58.8±0.13 / 51.0±0.11 58.8±0.13 / 51.0±0.11

Re-sampling [18] - ✓ 55.8±0.47 / 45.1±0.30 55.8±0.47 / 45.1±0.30 55.8±0.47 / 45.1±0.30 55.8±0.47 / 45.1±0.30

LDAM-DRW [9] - ✓ 62.8±0.17 / 58.9±0.60 62.8±0.17 / 58.9±0.60 62.8±0.17 / 58.9±0.60 62.8±0.17 / 58.9±0.60

cRT [20] - ✓ 63.2±0.45 / 59.9±0.40 63.2±0.45 / 59.9±0.40 63.2±0.45 / 59.9±0.40 63.2±0.45 / 59.9±0.40

ReMixMatch [4] ✓ - 48.3±0.14 / 19.5±0.85 75.1±0.43 / 71.9±0.77 72.5±0.10 / 68.2±0.32 49.0±0.55 / 17.1±1.48

ReMixMatch∗ ✓ - 85.0±1.35 / 84.3±1.55 77.0±0.12 / 74.7±0.04 72.8±0.10 / 68.8±0.21 75.3±0.03 / 72.3±0.04

ReMixMatch∗ + DARP [22] ✓ - 89.7±0.15 / 89.4±0.17 77.4±0.22 / 75.0±0.25 73.2±0.11 / 69.2±0.31 80.1±0.11 / 78.5±0.17

ReMixMatch∗ + SaR ✓ - 90.2±0.21 / 89.9±0.34 80.1±0.15 / 78.9±0.27 75.1±0.56 / 73.5±0.33 85.4±0.09 / 83.1±0.18

FixMatch [37] ✓ - 68.9±1.95 / 42.8±8.11 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11 65.5±0.05 / 26.0±0.44

FixMatch + DARP [22] ✓ - 85.4±0.55 / 85.0±0.65 77.3±0.17 / 75.5±0.21 72.9±0.24 / 69.5±0.18 74.9±0.51 / 72.3±1.13

FixMatch + SaR ✓ - 85.9±0.68 / 85.3±0.53 80.7±0.15 / 79.7±0.20 75.9±0.11 / 73.7±0.27 78.3±0.34 / 76.1±0.21

especially when the unlabeled data have reversed distribu-
tion as the labeled data: the absolute improvement can be up
to 5.3%. More results where the labeled data are of differ-
ent imbalanced ratios can be seen in Appendix B.1. Hence
we can conclude that SaR has the potential to widen the ap-
plicability of SSL in various real-world settings where the
distribution of unlabeled data is unknown.

4.2. CIFAR100-LT and STL-10

Setup. To make a more comprehensive comparison, we
also experiment with CIFAR-100 [23] and STL-10 [12]. We
follow the similar methodology described in Section 4.1 to
construct a “synthetically long-tailed” CIFAR-100 denoted

as CIFAR100-LT, where m1 = 150 and n1 = 300. For
STL-10, we set m1 as 450 to construct an imbalanced la-
beled set and add all unlabeled samples into the unlabeled
set since STL-10 does not provide annotations for them.
Hence STL-10 can be considered as a real-world example.

Main results. We summarize The main results of
CIFAR100-LT and STL-10 in Table 3. The results are simi-
lar to Section 4.1 in that SaR outperforms original SSL and
DARP consistently in all settings. We show that the im-
provement of SaR on the real-world example, STL-10, is
significant. Specifically, SaR can achieve up to 28.7% of
absolute gain on bACC and 32.5% on GM with ReMix-
Match [4]; 11.2% of absolute gain on bACC and 20.1% on
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Table 3. Comparison of classification performance on CIFAR100-LT under the situations where unlabeled data share similar distribution to
the labeled data, and STL-10 under the situations where the distribution of unlabeled data is purely unknown. Hold-out test set is balanced.
The evaluation criterion is bACC/GM.

CIFAR100-LT (γ = γl = γu) STL-10

Algorithm γ = 10 γ = 20 γl = 10 γl = 20

ReMixMatch [4] 59.2±0.03 / 52.1±0.13 53.5±0.03 / 42.3±0.13 67.8±0.45 / 61.1±0.92 60.1±1.18 / 44.9±1.52

ReMixMatch∗ + DARP [22] 59.8±0.20 / 52.9±0.41 54.4±0.07 / 44.2±0.07 79.4±0.07 / 78.2±0.10 70.9±0.44 / 67.0±1.62

ReMixMatch∗ + SaR 62.1±0.05 / 57.2±0.24 55.8±0.69 / 46.7±0.56 83.1±0.21 / 82.5±0.31 78.8±0.15 / 77.6±0.11

FixMatch [37] 60.1±0.05 / 54.4±0.11 54.0±0.04 / 44.4±0.17 72.9±0.09 / 69.6±0.01 63.4±0.21 / 52.6±0.09

FixMatch + DARP [22] 61.1±0.23 / 56.4±0.28 54.9±0.05 / 46.4±0.41 77.8±0.33 / 76.5±0.40 69.9±1.77 / 65.4±3.07

FixMatch + SaR 62.5±0.15 / 59.4±0.37 55.7±0.13 / 47.1±0.05 79.4±0.25 / 78.4±0.21 74.6±0.26 / 72.7±0.36

Table 4. Comparison of classification performance on CIFAR10-LT under γ = γl = γu (hold-out test set is of reversed distribution). The
evaluation criterion is bACC/GM. The best results are in bold.

CIFAR10-LT

Algorithm γ = 50 γ = 100 γ = 150

ReMixMatch [4] 71.0±0.55 / 83.5±0.29 54.7±0.51 / 74.4±0.47 41.5±1.69 / 66.4±1.22
ReMixMatch + DARP [22] 66.9±0.75 / 80.5±0.46 49.7±1.55 / 70.5±0.90 35.8±1.81 / 60.9±2.42

ReMixMatch + SaR 85.7±0.34 / 85.5±0.56 78.5±0.78 / 77.2±0.37 70.4±0.97 / 67.8±0.71

FixMatch [37] 70.5±0.26 / 82.2±0.31 51.0±1.65 / 71.5±1.24 38.5±1.15 / 63.4±0.31
FixMatch + DARP [22] 72.2±0.62 / 82.8±0.17 57.6±0.36 / 74.8±0.48 46.5±1.26 / 68.1±0.10

FixMatch + SaR 80.3±0.49 / 85.6±0.61 65.7±2.12 / 78.2±1.09 55.6±1.57 / 70.4±1.35

GM with FixMatch [37]. Even compared to DARP [22],
SaR can still achieve 7.9% absolute gain on bACC and
10.6% on GM with ReMixMatch [4]; 4.7% absolute gain
on bACC and 7.3% on GM with FixMatch [37] when the
imbalanced ratio is 20.

4.3. Empirical analysis on SaR

Stress-test. Both DARP [22] and CReST [44] only
consider the situation where the hold-out test sets are bal-
anced. To comprehensively study the effectiveness of these
algorithms in real-world applications, we must consider the
cases where the hold-out test sets can also be imbalanced,
or may even follow a different distribution compared to the
training set. We first evaluate all aforementioned methods
on a hold-out test set that shares similar distribution as the
training set. We find all of them perform very well as ex-
pected. To stress-test these algorithms, we construct another
hold-out test that has a reversed distribution compared to the
training set. In other words, the distribution of testing set is
totally different from that of our training set.

Table 4 summarizes the results on CIFAR10-LT when
labeled and unlabeled training data share similar distribu-
tion. We find that DARP [22] would even hurt the perfor-

mance of ReMixMatch [4] severely: with up to 5.7% abso-
lute decrease on bACC and 5.9% on GM. Another surpris-
ing finding is that SaR achieves impressive improvement
under this setting. SaR improves original ReMixMatch [4]
with up to 24.7% of absolute gain on bACC. Meanwhile, it
improves original FixMatch [37] with up to 17.1% absolute
gain on bACC and 7% on GM, especially when the imbal-
anced degree is more severe (e.g. γ = 150). Compared to
DARP [22], SaR has shown significant improvement: up to
34.8% absolute gain on bACC with ReMixMatch [4] and
9.1% with FixMatch [37]. This denotes that SaR has the
potential to perform more robust under different conditions
of various imbalanced settings in the real-world scenarios.

Per-class performance. Due to the surprising improve-
ment in our stress-test, we compare F1-score for each class
to investigate the source of the absolute gain. From Fig-
ure 4, we find that SaR improves all classes on the F1-
score. The improvements on the minority classes (index
as 8, 9, 10) can be significant. As SaR is to refine soft la-
bels before generating pseudo labels, the pseudo labels are
less biased. Thus the performance for each class can be
improved. Figure 4 shows the comparison of the confu-
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Figure 4. Per-class performance on the balanced test set of CIFAR-10 under the imbalanced ratio γ = 100. (a) F1-score for each class. (b)
Confusion matrix of original FixMatch [37]. (c) Confusion matrix of FixMatch [37] with SaR.

sion matrix from original FixMatch [37] and SaR. We find
that SaR improves the precision for the majority classes and
the recall for the minority classes without much penalty on
other metrics. This explains again why SaR achieves the
surprising improvement in our stress-test (Table 4) where
the hold-out test set is of a reversed distribution compared
to the training set.

Computation complexity. Besides the promising per-
formance of SaR, another advantage of SaR is that it in-
troduces trivial additional computation to the original SSL
algorithms during the training process. The additional run-
ning time incurred by DARP due to the pseudo-label align-
ment can be up to 20% of that of the original SSL al-
gorithms [22]. For CReST [44], as it iteratively samples
the training data and re-initializes the classifier’s network,
the additional running time can be an order of magnitude
longer than the original SSL algorithms. However, in SaR,
as we neither have any resampling actions nor alignment
optimization, the additional training time constitutes only
5% of the original SSL training as we simply refine the soft
labels. After the training process, the inference complex-
ity remains the same as the classifier is fixed. Hence, we
conclude that SaR is a simple yet effective approach to deal
with the imbalanced issue under SSL settings as it improves
the performance of SSL without any significant overhead.

Table 5. Comparison of bACC on CIFAR10-LT under γl = γu = 100
under different ratios (η) of labeled data.

CIFAR10-LT

Labeled Ratio η = 1% η = 10% η = 20%
FixMatch [37] 40.0±0.59 66.1±0.59 70.2±0.33

FixMatch + DARP [22] 43.7±1.95 68.5±0.98 72.5±0.89

FixMatch + CReST [44] 46.9±1.98 68.1±1.20 72.4±1.46

FixMatch + SaR 52.5±1.23 70.1±0.35 74.7±0.47

Different percentages of labeled data. We also test

SaR on the situations where the labeled data are more rare
(e.g., 1%). The results are summarized in Table 5: η denotes
the percentage of labeled data in the training set. We vary
η from 1%, 10%, to 20%. We set γl = γu = 100 so that
both DARP [22] and CReST [44] can be applied here for
our comparison study even though SaR does not require the
distributions to be the same. We find SaR can consistently
achieve better performance across all settings with different
amounts of labeled data.

5. Discussion & Limitation
In this work, we propose Self-adaptive Refinement (SaR)

to refine the soft labels before generating pseudo labels for
mutliclass imbalanced semi-supervised learning. We con-
sider different imbalanced situations where unlabeled data
can have both similar or different distribution as the labeled
data. We also conduct stress-tests where the hold-out test
sets have different distribution compared to the training set.
SaR consistently improves both FixMatch [37] and ReMix-
Match [4]. It also outperforms recent state-of-the-art SSL
imbalanced algorithms on both performance and computa-
tion cost. We conclude that SaR has the potential to achieve
stable performance on various real-world conditions. The
main advantages of SaR can be summarized as: 1) it is
compatible with consistency-loss based SSL algorithms; 2)
it does not rely on the pre-defined distribution information
of the unlabeled data; 3) it only introduces trivial additional
running time compared to the original SSL.

However, the limitation of this work is that we still as-
sume the unlabeled data have the same classes as the la-
beled data. There are also more severely class-imbalanced
scenarios that new classes appear in the unlabeled data. The
performance of SaR on such situations is still under study.
On the other hand, we only studied one Mitigating Vector
inspired by [14]. We will study more mitigating schemes
systematically in the future work.
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