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Abstract

Zero-shot learning (ZSL) tackles the problem of recog-
nizing unseen classes using only semantic descriptions, e.g.,
attributes. Current zero-shot learning techniques all assume
that a single vector of attributes suffices to describe each
category. We show that this assumption is incorrect. Many
classes in real world problems have multiple modes of ap-
pearance: male and female birds vary in appearance, for
instance. Domain experts know this and can provide at-
tribute descriptions of the chief modes of appearance for
each class. Motivated by this, we propose the task of multi-
modal zero-shot learning, where the learner must learn from
these multimodal attribute descriptions. We present a tech-
nique for addressing this problem of multimodal ZSL that
outperforms the unimodal counterpart significantly. We posit
that multimodal ZSL is more practical for real-world prob-
lems where complex intra-class variation is common.

1. Introduction
Recognition systems today are accurate but rely on large

training sets. In many domains, for example, in medical
imagery or scientific domains, acquiring such large scale
training sets is difficult. Images must be labeled by an ex-
pert, whose time is valuable. Further, acquiring the images
themselves can sometimes be difficult, as for X-ray images in
medicine. This has motivated research into alternatives that
use limited supervision. One alternative that is reminiscent
of how humans learn from experts is offered by zero-shot
learning. Here, an expert specifies a new class simply by
providing a semantic description of the class, for instance
in terms of its attributes: a grey heron has a “long beak”,
“black crown” and “grey body”. The system must then learn
to recognize this new class using these descriptions alone.

While many forms of semantic descriptions can be used,
the most accurate zero-shot learning descriptions use vec-
tors of attributes as semantic class descriptions [1, 21, 7,
23, 6, 31, 2, 26, 22, 16]. However, all attribute-based ZSL
work makes one key assumption: that every class can be
described with a single vector of attributes. Unfortunately,

Figure 1. The many faces of an American Goldfinch. From left to
right: Breeding male, breeding male, breeding female, immature,
immature/female and nonbreeding-male.

this assumption is not true in practice, because objects in a
class can vary dramatically in appearance, enough to have
very different attributes. For example, Figure 1 shows all the
many variations of an American Goldfinch. The body can be
a bright yellow in breeding males, a dull yellow in breeding
females, brown in non-breeding males or pale yellow in im-
mature birds. Even among breeding males, some males may
have large streaks of white in their wings while others don’t.
Breeding males have a black cap, while the cap is olive in
breeding females. Similar variations arise in other domains
as well. For example, in scene classification, a badminton
court can have different appearance based on the playing
surface (see Figure 3) (bottom right). Describing all these
variations with a single attribute vector as is done in past
work would either miss most of these modes of appearance
entirely, or result in an “average” attribute vector that is too
diffuse to be discriminative. The resulting classifiers are thus
doomed to be inaccurate.

While the entire distribution of appearance may be hard
to capture using a few attribute specifications, we posit that
an annotator with domain knowledge would know the chief
modes of appearance and can specify them. For example
an ornithologist can tell us what a breeding male, breeding
female or a juvenile American Goldfinch would typically
look like. Indeed, the many modes of appearance of the
American Goldfinch shown in Figure 1 were derived from
an online field guide about birds. However, current zero-shot
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learning techniques offer no way of learning from such a
specification. What is needed is a new family of zero-shot
learning techniques that can handle multimodal attribute
descriptions.

In this paper, we formalize this more practical zero-shot
learning problem, which we call multimodal zero-shot learn-
ing. We then propose a new zero-shot learning technique
that can leverage these multimodal attribute annotations. Our
technique generalizes prior work and can be applied to multi-
ple prior unimodal zero-shot learning methods. We evaluate
our approach on multimodal ZSL benchmarks that we cre-
ate using 3 existing attribute-based datasets commonly used
for ZSL: CUB [27], SUN [18] and DeepFashion [13]. We
show that reasoning about multiple modes can provide a
significant improvement in accuracy (∼ 5% improvement
on CUB). Our contributions are:

1. We show that existing zero-shot learning techniques
suffer by assuming a single attribute description for
each class, and we identify a need for descriptions that
specify multiple modes.

2. We define a new multimodal zero-shot learning task.

3. We present a new multimodal zero-shot learning tech-
nique that can dramatically improve accuracy by rea-
soning about multiple modes.

2. Related work
In zero-shot learning [10, 11], the model is given a set

of training classes and test classes. The model has access
to images in the training set and is also given side infor-
mation, like attribute descriptions for both the training and
test classes. The performance of models is judged by how
well they classify images from the test classes just using the
information about the new classes. Initial work by Lampert
et al. [10] proposed first predicting attributes from images
and then classifying images based on predicted attributes.
With the discovery that convolutional networks tend to learn
generalizable feature representations, a series of papers have
looked at projecting image features into attribute space, and
measuring similarity with class descriptions [5, 1, 21, 7, 24].

However, using attribute descriptions directly as a fea-
turization of a class might be a naive approach as the dis-
criminability of different attributes is unclear. Some work
proposes to learn in the reverse direction, by featurizing
classes in the visual feature space and learn a mapping from
attributes to images [23, 6].

As such, more recent work has tended to use the attribute
description to produce a more discriminative class embed-
ding. The general idea is to embed these descriptions as
well as images into a shared feature space [31, 2, 26, 17]
where classification is as easy as computing the inner prod-
uct similarity or euclidean distance. This shared space can

be trained to optimize a classification loss on some “base
classes” with labeled examples, although auxilliary losses
such as a reconstruction loss can be used to regularize the
problem [24]. Xian et al. provide a comprehensive survey
of these and other techniques [29]. Using generative models
for representation learning has lead to many new works out-
performing the discriminative learning models. The models
have successfully used adversarial learning [30], variational
auto-encoders[15, 8, 22], or VAEGANs[31, 16] to learn a
generative representation and then use it for zero-shot learn-
ing.

In this work we propose a new problem of learning from
multimodal attributes. We also show how our method can
use any zero-shot learning models where the attributes and
images are encoded into a common latent space. With multi-
modal attributes and our method, we surpass the correspond-
ing models that use unimodal attributes.

Several popular benchmarks have been proposed for zero-
shot learning in the past. These datasets have classes with
images and an associated attribute description. Lampert
et al. proposed Animals with Attributes dataset (AwA)[9]
consisting of 50 animal categories. Zero-shot benchmarks
for other domains are also proposed, including scenes (SUN)
[18], birds (CUB)[27] and common objects (aPascal/aYahoo)
[4]. While these datasets contain rich attribute information
for classes, all of described classes use a single fractional
attribute descriptor. We instead create new benchmarks with
multiple attributes descriptors capturing different modes of
variation as described in Sec. 4.2 and supplementary.

Several methods have been proposed for zero-shot learn-
ing from text descriptions such as Wikipedia articles [19,
32, 3, 2, 20] or learning from partial attributes [14]. While
such descriptions can potentially describe multiple modes
of a class efficiently, existing methods model them as a sin-
gle mode. This is partly due to the fact that text is hard to
interpret for the learner. As a result these methods have sig-
nificantly lower performance than the attribute based counter-
parts. Some zero-shot learning methods also try to implicitly
model the intra-class variance in image space[28]. But un-
like our work they assume zero-shot description does not
describe this variance. As such, the unimodal zero-shot de-
scriptions used during inference could mislead a classifier.
Our work is the first to note that zero-shot description itself
can include modes of variations.

3. Method

3.1. Problem Setup

We first describe the traditional (unimodal) zero-shot
learning setup, and then show how we generalize it to the
multimodal case.
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Figure 2. Overview of our method and new assignment module Ψ. Top left: Mallard with 2 primary modes of appearance (male and female)
that look very different. Bottom left: CADA-VAE model with 2 VAEs aligning the attribute embedding and image embedding with the loss
function L. Without our method, CADA-VAE and other similar models can only use a single attribute descriptor for the Mallard, irrespective
of whether the bird in the image is male of female. Right: Modified CADA-VAE model to handle multimodal attributes. The assignment
module Ψ uses the image embedding and attribute embedding to find the probability distribution p(i), and then interpolates the attributes.
As training progresses, the assignment module improves in finding the correct mode assignment.

Unimodal Zero-shot Learning. Zero-shot learning meth-
ods, typically run in two phases: a representation learning
phase and a deployment phase. During the representation
learning phase, the system (or learner) must learn how to
map attribute vectors to class distinctions. It does so on a set
of base (seen) classes B for which both images and attribute
descriptions are available. Thus, the learner has a large la-
beled training set D consisting of images xi, i = 1, . . . , n
and corresponding labels yi. In addition, for each base class
y ∈ B, the learner is provided with a vector of attributes
a(y).

Once trained, the learner is deployed. It now gets a set
of hitherto novel (unseen) classes N for which the only
available information is the corresponding vector of at-
tributes. The learner must then learn to recognize these
unseen classes.

As discussed above, this problem setup assumes that a
single attribute vector suffices to describe each class. We now
extend this setup to handle multimodal attribute descriptions.

Multimodal Zero-shot Learning. In multimodal zero-
shot learning (MZSL), for each class y, be they base or
novel, the learner gets a set of attribute vectors A(y) =
{a1, . . . ,am}, each of which corresponds to a particular
mode of appearance.

Having such multimodal attributes for each class provides
additional information for learning. However, properly lever-
aging this information requires solving additional challenges.
Because each class can have multiple modes of appearance,
an image of the class will only conform to one of the at-
tribute vectors. However, during representation learning, the
learner does not know which image conforms to which mode.
This poses a challenge in representation learning, making it

difficult for the learner to learn the visual signature of each
attribute.

Below we describe our proposed approach which solves
this challenge and learns effectively from multimodal de-
scriptions.

3.2. Learning from Multimodal Attributes

Background: We build upon zero-shot learning methods
that learn a common embedding space for attribute descrip-
tions and images. This is done in a variety of different ways,
ranging from linear mappings of image features to attributes
[21, 7], to learning the embedding using adversarial learning
[30, 16] and variational autoencoders [22]. In each case,
there is an image encoder ϕimg and an attribute encoder
ϕatt. In the representation learning phase, these encoders
are obtained by optimizing some representation learning loss
L:

minL(ϕimg, ϕatt, {(xi, yi,a(yi)}ni=1) (1)

In general, L pushes the image embedding ϕimg(xi) to align
with the embedding of the corresponding attribute vector,
ϕatt(a(yi)).

After the model learns a representation, it is deployed,
and must now train classifiers for novel classes for which
only attribute descriptions are available. One typically uses
the attribute encoder ϕatt to embed the description into latent
space, and then uses the embedded vectors to train a classifier.
Zero-shot methods can employ a variety of techniques to
build these classifiers, such as nearest neighbor classifiers[6],
SVMs [1] or linear classifiers [22].

We now describe how we adapt these techniques to the
multimodal benchmark. We describe in turn the representa-
tion learning phase and the deployment phase.
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3.2.1 Representation learning

In the multimodal setting, now for each class y we have
a set of attribute vectors A(y). Unfortunately, we do not
know which image belongs to which mode. To remedy
this, we introduce an assignment module, Ψ, that learns the
assignment of an image to its corresponding mode during
representation learning.

Concretely, consider an image xi with its correspond-
ing label yi. Suppose the set of attribute vectors for
this class is A(yi) = {a1, . . . ,am}. Denote by Φatt(yi)
the corresponding attribute embeddings: Φatt(yi) =
{ϕatt(ai), . . . , ϕ

att(am)}. The assignment module takes
these attribute embeddings as input along with the image
embedding, and produces a probability distribution p(i) of
the image belonging to each of the different modes:

p(i) = Ψ(ϕimg(xi),Φ
att(yi)) (2)

Using these predicted probabilities as weights, we construct
an attribute vector a(i) for this image:

a(i) =

m∑
j=1

p
(i)
j aj (3)

Our final training objective then simply slots in these esti-
mated attribute values into Equation (1):

L(ϕimg, ϕatt, {(xi, yi,a
(i)}ni=1) (4)

The assignment module is trained along with the zero-
shot model on the latent space of the model. This loss
function optimizes both, the assignment module to produce
better assignments and the zero-shot latent space to align
correct modes to the image. We next look at the architectural
design and the training procedure for the assignment module.

Assignment Module. The assignment module takes the
latent embedding of multimodal attribute descriptions and
images and uses it to produce an assignment probability. We
take advantage of the fact that these embeddings are being
trained to align the image and attribute spaces, and propose
to simply use the cosine similarity between attribute and
image embeddings to make the assignment. Denoting the
cosine similarity between vectors a and b as ⟨a,b⟩, our
assignment module takes the form:

Ψ(ϕimg(xi),Φ
att(yi))[j] =

e⟨ϕ
img(xi),ϕ

att(aj)⟩/T∑
ak∈A(yi)

e⟨ϕimg(xi),ϕatt(ak)⟩/T

(5)
Here T is a temperature: higher values lead to softer prob-

ability distributions. A challenge here is that this formulation
relies on good embeddings to match images to attribute de-
scriptions. But at the start of training, such good embeddings

do not exist. As such, the predicted probabilities might be
extremely noisy. To address this challenge, we divide the
learning into 3 stages:

1. For the first third of the training epochs, we set the
temperature to ∞ so that predicted probabilities are
uniform. This leads to every image being assigned an
attribute vector that is the mean of the provided modes.
While sub-optimal, this allows us to bootstrap our em-
beddings with what is essentially unimodal training.
Enough classes have few enough modes that this still
results in reasonable initial embeddings.

2. For the next third of the total training epochs, we de-
crease the temperature asymptotically (reciprocal of
temperature is increased linearly). This slowly forces
the model to commit to a single mode for each image.

3. Finally, in the last third of training we replace soft
probabilities with one-hot vectors obtained through an
argmax, so that at convergence, each image is assigned
to one and only one mode.

Note that argmax is not differentiable. In fact, even in
the earlier stages of training when the assignment module is
differentiable, we do not allow gradients to flow through the
assignment module. We found that this makes the training
both more stable and faster.

Our framework (eq. 1-5) can be applied to any existing or
future zero-shot learning model. For CADA-VAE[22] as the
base learner, Figure 2 shows the side-by-side comparison of
the original CADA-VAE model and our modified multimodal
version with the assignment module.

Other potential formulations. Observe that the output
of the assignment module is used to interpolate between
attribute vectors. It is also possible to interpolate in the latent
space instead and modify the loss accordingly. Interestingly,
this choice has a dramatic negative impact on performance
(4.5% drop on CUB), and it is crucial that the interpolation
be done in attribute space. This hints towards significant
differences in the semantics of the attribute space and the
latent space.

The assignment module in itself is non-parametric, but as
it works in the latent space of the zero-shot model it affects
the parameters of zero-shot model when training. We also
tried experiments with a parametric assignment module such
as with weighted distances, but preliminary experiments
suggested that the non-parametric architecture works best.

3.2.2 Deployment

Once trained, the learner will be deployed. Again, for each
novel class y, it will get a set of attribute descriptions A(y) =
{a1, . . . ,am}. The learner will now use Φatt to embed each
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of these descriptions, yielding a set of embedded vectors for
each class. These sets can then be used to train a classifier
in the embedding space as before. As such the model is
in principle similar to a unimodal zero-shot model during
deployment.

However, in practice, traditional zero-shot models use lin-
ear classifiers in the latent space, assuming that classes are
linearly separable in the learned representation. This works
for the unimodal case because each class is represented by a
single point in the embedding space. But with multimodal at-
tributes, the different modes for a class may be very different
and thus the resulting collection of embedded vectors may
not be cleanly separable from other classes. Hence, we also
consider non-linear classifiers . In experiments, we present
the results with the best classifiers for each method below.

4. Experimental setup
4.1. Base learner

Our method can be used with any zero-shot model out-of
the box. In our experiments, we explore two different base
learners: CADA-VAE[22] and TF-VAEGAN[16]. CADA-
VAE uses two variational auto-encoders to learn a common
embedding space for attribute descriptions and images. It
trains these autoencoders on base class examples during rep-
resentation learning. In deployment it trains a classifier with
the latent novel attribute encoding as inputs to learn about
novel classes. TF-VAEGAN uses a VAE-GAN [12] to gener-
ate realistic features from attributes and uses these generated
features from unseen classes to train a classifier. For fairness
in comparisons we use the same model hyperparameters and
training parameters for all the methods as in their original
implementation.

4.2. Benchmarks for Multimodal ZSL

In traditional zero-shot learning benchmarks every class
(base or novel) is associated with a single attribute de-
scription. Instead, our proposed method allows and makes
use of multiple attribute descriptions per class. Evaluat-
ing the promise of this approach requires benchmarks with
multiple attribute descriptions for each class. We created
such multimodal ZSL benchmarks from 3 existing datasets:
CUB-200-2011 [27] (CUB), SUN attributes [18] (SUN) and
DeepFashion[13] (DF).

CUB is annotated with 312 part-based attributes, whereas
SUN has 102 attributes. DeepFashion has 1000 attributes,
but these are very noisy and unreliable (in fact very few
attributes are consistent across a class). CUB and SUN
are commonly used in ZSL research, and we use the splits
proposed by Xian et al. [29]. Since DF is a new dataset for
this task, we filter to only include the clothing categories
with more than 300 instances. This results in 33 categories
that we split into 25 base classes and 8 novel classes.

Figure 3. The rows show the modes of attributes for different classes
of CUB (top 2 rows) found by manual grouping and SUN (bottom
2 rows) found using automatic grouping. The leftmost column
shows unimodal classes “Shiny Cowbird” and “Desert Road”. The
center two columns show bimodal classes “Hooded Oriole” and
“Airplane Interior”; and the rightmost 3 columns show trimodal
classes “Heerman Gull” and “Badminton Court Outdoor”.

In all 3 benchmarks, a class is annotated with multiple
modes of attribute descriptions that are intended to capture
the different modes of appearance. Different classes can
have different number of modes based on the different vari-
ations it can have. Figure 3 shows the modes for several
classes in the multimodal benchmark for CUB and SUN
dataset. Some classes are unimodal for example “Shiny
Cowbird” and “Desert Road” (left column). Others require
multimodal attribute descriptions, 2 modes: “Hooded Ori-
ole” and “Airplane Interior” (center 2 columns) and 3 modes
“Heerman Gull” and “Badminton Court Outdoor” (center
two columns). While the figure shows the images belonging
to these modes, the attribute vector also has differences. For
example, the modes of Hooded Oriole differ significantly in
their attributes “color (yellow and orange)”, “forehead color
(black and orange)”, and “bill color (orange and black)”.

We explored two ways of creating these multimodal an-
notation. In the “manual” approach, we asked annotators for
modes of variation, whereas in the “automatic” approach, the
modes were discovered automatically, using the same raw
data that is used in the traditional ZSL benchmarks. Both
benchmarks will be released upon acceptance. More details
on how we create these benchmarks are presented in the
supplementary; we focus here on the approach itself.

Binary vs. Real-valued Attributes. The traditional ZSL
benchmarks consider both binary and real-valued attribute
descriptors. We follow past work and similarly consider both
binary and real-valued attribute descriptors.

However, we note that obtaining real-valued attribute
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Method Real-valued Binary

MZSL (automatic) 60.4± 0.3 42.4± 0.2
MZSL (manual) 60.2± 0.4 44.0± 0.3

Table 1. Performance of MZSL in top-1 unseen class accuracy
when the multimodal data is collected automatically vs when it is
collected manually for CUB with CADA-VAE. Manual collection
leads to a 1.6% gain in accuracy in the binary setting.

descriptors for novel classes is practically unrealistic, since it
is difficult for human experts to provide precise floating point
values. In contrast a binary-valued attribute descriptor is
easy to provide. In our experiments, we find that multimodal
descriptions lead to greater improvement for binary attribute
descriptors and are thus more instrumental in a practical
setting. Nonetheless we evaluate our method on both settings.
Details for obtaining binary and real-valued attributes are
present in the supplementary.

Manual vs Automatic Benchmarks One might be con-
cerned that the automatically created benchmark may not
match expert judgments of the modes of appearance of a
class, and as such may yield incorrect results. We therefore
did a first experiment to ensure that the two benchmarks
yielded consistent results. Table 1 shows the zero-shot clas-
sification performance of our approach on unseen classes
on CUB, on the manual and automatic benchmarks. Man-
ual correction of the modes has a fairly small impact: a
1.6% improvement in the binary setting, and no change in
the real-valued setting. This suggests that the automatically
produced multimodal benchmark works almost as well as
manual curation. As such, for SUN and DF, we only use
the automatically created benchmarks. For CUB, all experi-
ments use the manually collected benchmarks.

5. Results
In this section we show that using multimodal attributes

indeed helps in improving the performance of the method.
We first present quantitative results demonstrating the superi-
ority of multimodal ZSL (MZSL) over traditional unimodal
ZSL (UZSL). We then compare our MZSL method to other
possible baseline approaches for multimodal ZSL. Finally,
we also present some qualitative visualizations of our learned
embeddings.

All results are averaged over 6 different runs of the model.

5.1. Are multimodal descriptions more helpful than
a unimodal description?

We first evaluate the performance of our MZSL against
the UZSL. Table 2 shows the performance (top-1 per class un-
seen accuracy) of our method MZSL when compared against
zero-shot learning with unimodal descriptions with CADA-
VAE. Having multimodal attributes leads to improvements

Real-valued Attributes

Method CUB SUN DF

UZSL 58.8± 0.2 59.4± 0.4 58.0± 0.3
MZSL 60.2± 0.4 62.0± 0.3 58.3± 0.4

Binary Attributes

UZSL 38.9± 0.3 40.5± 0.2 46.4± 0.8
MZSL 44.0± 0.3 47.0± 0.3 47.4± 0.7

Table 2. Comparison of UZSL with MZSL on all datasets with real-
valued and binary setup and CADA-VAE as base model. Results
show top-1 per class unseen accuracy averaged over 6 runs. Our
method MZSL performs better than its unimodal counterpart.

TF-VAEGAN
Real-valued Binary

UZSL 64.7± 0.2 42.4± 0.1
MZSL 65.6± 0.1 45.9± 0.2

Table 3. Comparison of UZSL with MZSL on CUB dataset with
TF-VAEGAN as the base learner, with real-valued and binary
attributes.

in performance with both real-valued and binary attributes
on all three datasets. The improvement is larger when us-
ing binary attributes (5.1% improvement for CUB and 6.5%
for SUN). As discussed in Section 4.2, binary attributes are
more akin to what the learner might get in practice, since the
annotator will not have access to multiple images to average
attribute values. Having multimodal attributes is especially
beneficial in this practical and realistic case.

As stated before, our method could be applied to any
model that has a common latent embedding space for images
and attributes. So we also compare the performance of
MZSL with TF-VAEGAN as the base model. Table 3 shows
the performance of our method MZSL on CUB with TF-
VAEGAN. In the binary setting our method again leads to an
improvement of 3.5% over unimodal attributes. This shows
that our method is generalizable to other backbone models
as well. Performance of TF-VAEGAN on other datasets is
presented in the supplementary.

We also evaluate the performance of our approach for
Generalized ZSL (GZSL), where the learner is evaluated on
both seen and unseen classes, and performance is measured
using the harmonic mean of seen and unseen accuracy. Table
4 shows the GZSL performance of MZSL for both CADA-
VAE and TF-VAEGAN. MZSL outperforms unimodal de-
scriptions in the GZSL setting as well. TF-VAEGAN is the
state-of-the-art model for GZSL with real-valued attributes
(on the proposed splits and features used by [29]). Our mul-
timodal approach achieves a higher accuracy (58.9%) thus
yielding a new state-of-the-art.
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CADA-VAE TF-VAEGAN
Real Binary Real Binary

valued valued

UZSL 52.1± 0.3 33.8± 0.4 57.8± 0.1 38.4± 0.2
MZSL 53.2± 0.4 37.8± 0.4 58.9± 0.1 41.9± 0.1

Table 4. Generalized ZSL metrics on the CUB dataset, for both the
CADA-VAE and TF-VAEGAN-based models.

5.2. Can unimodal methods leverage multimodal
descriptions?

Since there is no prior work that uses multimodal descrip-
tions, we construct baselines that reduce multimodal ZSL
into a unimodal ZSL problem. More specifically we look at
the following four baselines:

• Mean of Modes. This baseline aggregates the modes
by averaging together the attribute vectors of all the
modes for each class. This single attribute vector is
used during both training and deployment as in UZSL.

• Weighted Mean of Modes. Instead of a simple aver-
age, this baseline uses a weighted average of the at-
tribute vectors, with the weights being the fraction of
the class population that belongs to the corresponding
modes. This baseline thus uses additional data (popu-
lation statistics) that is not available for our approach.
Also note that in the real-valued setup this weighted
mean produces attribute descriptions that are exactly
the same as those used in traditional ZSL benchmarks.

• No aggregation. This approach does not aggregate the
provided modes. Instead, it simply treats all provided
attribute vectors as equally applicable to all images in
the class. Concretely, in the CADA-VAE framework,
each iteration randomly samples both images and at-
tribute vectors for each class. This has the effect of
creating a latent embedding space where all the images
of a class and the attribute vectors of all the modes
would be pushed closer to each other.

• Deployment only. This approach uses unimodal at-
tribute annotations during representation learning, but
leverages multimodal annotations during deployment,
where it operates exactly like MZSL.

All methods use CADA-VAE as the base learner. Table
5 compares our approach to these baselines. Our method
clearly performs better than all the baselines on CUB and
SUN. This is because it reasons about which images belong
to which modes, thus making better use of the multimodal
attributes. Also using multimodal attributes in deployment
with a model trained on unimodal attributes performs worse
than UZSL. This could be because, along with a poor rep-
resentation there is a distribution shift when going from
unimodal to multimodal descriptions. These results shows
that only having multimodal data is not enough, we also
need methods that can appropriately use such information.

In the real-valued setting, Mean of Modes performs worse
than its unimodal counterpart (see Table 2), which is iden-
tical to Weighted Mean of Modes. One of the reasons why
Weighted Mean of Modes works better than Mean of Modes
in this setting is that it has additional information about the
frequency of each mode. Since the train and test images are
coming from the same distribution, biasing the learner with
such population statistics is thus useful. However this bias
might be detrimental if the population statistics used during
training do not match that observed during deployment. Our
method on the other hand requires no population statistics
and hence is less likely to be perturbed by change in statistics
when deployed.

5.3. Do we need mode labels for images?

In our multimodal benchmarks, the annotator provides
us with multiple modes for each class, but the images in
the base dataset are only annotated at the class level. One
might consider a different alternative: to simply annotate
the dataset at a much finer grain, by annotating images in
the base dataset with the corresponding mode. While this
requires a much more expensive annotation effort , it might
lead to better representations and ultimately higher accuracy.

We compare our multimodal approach to this more ex-
pensive annotation strategy, which we call “Mode-annotated
multimodal ZSL” or “Mode-annotated MZSL”. Table 5
shows the performance of Mode Annotated MZSL in com-
parison to our approach as well as the multimodal ZSL base-
lines above. The base learner is CADA-VAE. On most of the
datasets CUB, SUN (real-valued and binary) MZSL is able
the achieve the maximum performance it can achieve without
requiring any mode annotations. On DF real-valued, there
is still a gap between MZSL and the upper-bound. Since
DF has very few classes (25) and many attributes (1000),
we speculate that our method cannot learn the optimal as-
signment for different modes and images leading to this
gap. Nevertheless, these results suggest that mode annota-
tions are in fact not necessary; we can get all the benefits of
multimodal reasoning without these expensive annotations.

5.4. Ablations

We now evaluate the importance of various components
of our approach. We first look at the learning schedule for
MZSL. We compare the performance of our method MZSL
on CUB, to MZSL without one of these phases. Table 6,
shows the performance of these methods with CADA-VAE.
Removing any of the three phases leads to a drop in perfor-
mance, and thus all three phases are important. Removing
the first phase leads to a very unstable mode assignment
initially as the network is randomly initialized. Hence, phase
1 is extremely important for the stability of training. Phase
2 is the smooth transition phase from soft assignments to
hard assignments. Hence, removing it also leads to a signifi-
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Real-valued Attributes Binary Attributes

Method CUB SUN DF CUB SUN DF

Mean of Modes 57.1± 0.5 55.5± 0.3 53.1± 0.3 42.2± 0.5 44.2± 0.3 47.1± 0.5
Weighted Mean of Modes 58.8± 0.2 59.4± 0.4 58.0± 0.3 42.4± 0.3 45.2± 0.5 47.6± 0.3
No aggregation 56.2± 0.3 55.6± 0.5 57.5± 0.5 38.9± 0.5 44.9± 0.5 46.4± 0.7
Deployment only 57.8± 0.3 58.9± 0.25 57.9± 0.3 40.4± 0.2 46.5± 0.28 47.0± 0.3

MZSL 60.2± 0.4 62.0± 0.3 58.3± 0.4 44.0± 0.3 47.0± 0.3 47.4± 0.7

Mode Annotated MZSL 60.5± 0.4 62.3± 0.2 59.4± 0.3 44.4± 0.3 47.2± 0.4 47.2± 0.9

Table 5. Comparison of MZSL with Mean ZSL and Weighted Mean ZSL on all datasets with real-valued and Binary setup and CADA-VAE
as base model. Results show top-1 per class unseen accuracy averaged over 6 runs. Our method MZSL performs better than both these
methods and is better at utilizing multimodal data.

Method Real-valued Binary

MZSL (no phase 1) 2.0± 0.0 2.0± 0.0
MZSL (no phase 2) 59.9± 0.3 40.1± 0.5
MZSL (no phase 3) 60.1± 0.3 42.2± 0.2
MZSL 60.2± 0.4 44.0± 0.3

Table 6. Performance of MZSL with one of the phase missing on
CUB. Removing any step from training leads to a drop in model
performance.

Method Real-valued Binary

MZSL (latent interpolation) 58.4± 0.5 39.5± 0.2
MZSL 60.2± 0.4 44.0± 0.3

Table 7. Performance of MZSL on CUB if we interpolate in the
latent space of the model rather than attribute space.

cant drop in performance on both benchmarks. Removing
phase 3 (hard assignments) has no impact on the real-valued
benchmark but reduces accuracy on the binary benchmark.

We next look at another variant of our method, where
instead of interpolating attributes in the attribute space we
interpolate it in latent space, as discussed in Sec. 3.2. Table
7, shows the performance of this variant with CADA-VAE.
Interpolating in latent space is not very useful and leads to
a very significant drop in the performance. This suggests
that the semantics of the learned latent space is substantially
different from that of the attribute space.

5.5. Qualitative Results

Figure 4, shows t-SNE [25] visualization of 2 CUB
classes in the representation space CADA-VAE trained with
UZSL (left) and MZSL (right). For both “Rusty Blackbird”
and “Cardinal” we see that in the latent embedding of UZSL
images of all different modes are closer together and not
clearly separable. Whereas, with MZSL we can clearly see
separated modes. For “Cardinal” the cluster in the top right
are females whereas the big cluster in the center are males.
For “Rusty Blackbird” the cluster of images in the top-left
are breeding males, clustered to the right are non-breeding
males and the small cluster at the center are females.

MZSL creates a better representation where visually dif-
ferent looking birds of the same species are not all closer
together. This results in a better generalization to unseen
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Figure 4. t-SNE visualization of CUB classes in the latent embed-
ding space of UZSL vs MZSL in the binary attribute setting. Bigger
images with black border show one of the images belonging to the
mode. For both classes, MZSL creates encodings that look sepa-
rable by different looking modes, while UZSL forces the modes
closer together (Zoom in to see more details).
classes and hence the better accuracies. See supplementary
for more examples.

6. Conclusion

In this work we have shown that single attribute vectors
are not sufficient to capture class appearance, negating a key
assumption in prior zero-shot learning work. As an alterna-
tive, we have proposed the problem of multimodal zero-shot
learning, where the annotator specifies an attribute vector for
each mode of appearance. We have presented a new bench-
mark (both automatic and manual) for this problem and as a
solution to this task, we have presented a multimodal tech-
nique that gains up to 5 points in accuracy compared to their
unimodal counterparts. We show that our technique is gen-
eralizable to many existing (and possibly future) zero-shot
learning models as long as they have a common embedding
space for images and attributes.
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