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Abstract

Despite the rapid progress in deep visual recognition,
modern computer vision datasets significantly overrepresent
the developed world and models trained on such datasets
underperform on images from unseen geographies. We inves-
tigate the effectiveness of unsupervised domain adaptation
(UDA) of such models across geographies at closing this
performance gap. To do so, we first curate two shifts from
existing datasets to study the Geographical DA problem,
and discover new challenges beyond data distribution shift:
context shift, wherein object surroundings may change signif-
icantly across geographies, and subpopulation shift, wherein
the intra-category distributions may shift. We demonstrate
the inefficacy of standard DA methods at Geographical DA,
highlighting the need for specialized geographical adap-
tation solutions to address the challenge of making object
recognition work for everyone.

1. Introduction

As deep-learning based computer vision systems gain
widespread adoption, it is crucial that they perform equitably
across diverse geographical deployments. However, prior
work [1] has found that in practice modern computer vision
datasets significantly overrepresent the developed world and
models trained on such datasets systematically underperform
on images from the rest of the world [2] (see Fig. 1). La-
beling images from target geographies is a natural solution
but may be expensive and difficult to scale. Unsupervised
domain adaptation [3–5] (UDA) has extensively studied the
problem of adapting models trained on a labeled source to an
unlabeled target domain. However, UDA typically considers
specific kinds of shifts in data generating distributions (e.g.
synthetic to real data [6], or clipart to sketch images [7]),
rather than distribution shifts across space and time in the
real world. In this work, we investigate the effectiveness
of UDA techniques at the practical application of adapting
trained object recognition models to novel geographies.

*Work done partially as intern at Salesforce Research.
†Work done at Salesforce Research.
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Figure 1. Modern computer vision datasets overrepresent the de-
veloped world [1]. This leads object recognition models trained on
them (left) to underperform on images from novel geographies [2]
(right – we show country of origin and model prediction above each
image). In this work we investigate the effectiveness of domain
adaptation [3] methods in bridging this performance gap.

Geographical domain adaptation presents two novel chal-
lenges beyond shifting data distributions: context shift and
subpopulation shift. Context shift arises from a change in
visual context for a given category across geographies (e.g.
predominantly indoor v/s outdoor basketball courts). Sub-
population shift arises from a change in within-category data
distributions (e.g. for a ‘toothbrush’ category, the relative
proportion of electric v/s mechanical varieties may change
across geographies). In our experiments, we demonstrate the
inefficacy of conventional adaptation strategies in addressing
these additional challenges.

Some prior work has studied the problem of transferring
deep visual models to new geographies. De Vries et al. [2]
benchmark the drop in performance of publicly available
vision API’s on images from diverse geographies from the
Dollar Street dataset [8], but do not propose a mitigation strat-
egy. Recently, Dubey et al. [9] formulate this as a domain
generalization problem and propose a solution that makes
use of auxiliary target domain embeddings. We instead pose
the problem as one of domain adaptation so as to leverage
the full potential of unlabeled target data by allowing model
updates on it. We make the following contributions:

1. To study the Geographical DA problem, we propose
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Dollar Street-DA: Domain shift label histogram (58 categories)

Source=North America+Europe (2.9k imgs)
Target=Africa+South America+Asia (8.8k imgs)

(a) Dollar Street-DA: {North America, Europe} ) {Asia, Africa, South America}
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GeoYFCC-DA: Domain shift label histogram (68 categories)
Source=North America (24.1k imgs)
Target=Asia+South America+Australia (59.4k imgs)

(b) GeoYFCC-DA: {North America} ) {Asia, Australia, South America}

Figure 2. Source (blue) and target (orange) label histograms for proposed Geographic DA shifts based on (a) Dollar Street [8] (b):
GeoYFCC [9].

two adaptation shifts curated from the Dollar Street [8]
and GeoYFCC [9] datasets.

2. We validate the existence of context and subpopulation
shift within these shifts, and experimentally verify that
they pose significant challenges to model transfer.

3. We benchmark the performance of representative do-
main adaptation techniques from the literature on these
shifts and find them to achieve limited success, illus-
trating the need for specialized adaptation solutions for
Geographical DA.

2. Related Work
Unsupervised domain adaptation (UDA). UDA seeks to
transfer a model trained on a labeled source to an unla-
beled target domain, primarily via minimizing domain dis-
crepancy statistics [10], domain-adversarial learning [4], or
self-training [5]. We formulate the problem of transferring
trained image classification models to images from unseen
geographies as UDA, and study how standard DA methods
fare in this setting.

Geographical transfer learning. Geographical transfer
learning has received limited attention. Wang et al. [11] fo-
cus on cross-country adaptation of 3D object detectors, and
propose a simple correction solution based on differences
in average car sizes. Dubey et al. study the problem of geo-
graphical domain generalization, and propose an adaptive
solution that uses auxiliary target domain embeddings but
unlike our setting does not allow training on unlabeled target
data. Concurrent work [12] extends the recently proposed
WILDS [13] domain generalization benchmark to the un-
supervised DA setting, and include one shift (FMoW [14])
for geographical adaptation of models trained for land use
prediction from satellite imagery. In contrast, we study ge-
ographical adaptation of object recognition models trained
on standard internet imagery from the Dollar Street and
YFCC datasets, which poses unique challenges of context
and subpopulation shift.
Context and subpopulation shift. Singh et al. [15] study
the problem of contextual biases learned by deep models
based on frequently co-occuring categories. Some recent
works [16, 17] study the problem of minimizing contextual
biases when learning self-supervised representations from
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Figure 3. Context shift for select categories across domains. Left: Dollar Street-DA Right: GeoYFCC-DA.

scene-level imagery. Recent work proposes the BREEDS
benchmark [18] to study model robustness against subpopu-
lation shift—the ability to generalize to novel data subclasses
not seen during training. Cai et al. [19] study propose a input-
consistency based label propagation algorithm to overcome
subpopulation shift. To our knowledge, we are the first to
study these challenges in the context of geographical DA.

3. Benchmarks and Challenges
We first present our two shifts for geographical domain

adaptation curated from the Dollar Street and GeoYFCC
datasets. We describe our curation process and analyze the
characteristics of each geographical domain shift. We then
describe and visualize the context and subpopulation shift
present in these benchmarks.

3.1. Benchmarks

Dollar Street-DA. The Dollar Street dataset was collected as
part of the GapMinder project with the aim of using “photos
as data to kill country stereotypes”. It contains photographs
and videos of everyday objects from peoples’ homes span-
ning 66 unique countries. We restrict our study to image
data and download images belonging to 128 unique cate-
gories. We filter out categories that are scene-level or too
broad (“agriculture lands”, “play areas”) or abstract / sub-
jective (“most loved items”, “things I dream of having”), as
well as categories with less than 50 images, resulting in 62
categories. We further deduplicate the dataset and merge
some highly similar categories (e.g., “plates of food” and
“plates”), leaving us with images of 58 unique and distinct
curated categories from 60 countries. We set up an adap-
tation problem from North America and Europe as source
(2930 images) and Africa, South America, and Asia as target

(8813 images). Fig. 2a presents a label histogram of each
domain.
GeoYFCC-DA. The GeoYFCC dataset [9] contains 1.1 mil-
lion images from 62 countries curated from the subset of
YFCC100M [20] images with geotags that were then au-
tomatically labeled based on keyword matching of image
tags against ImageNet-5K categories excluding those in
ILSVRC12 [21]. We create an adaptation problem from
countries in North America as source and countries in Asia,
South America, and Australia as our target domain. Due to
the automatic labeling pipeline, we notice a large amount of
label noise in the dataset and take two measures to curate the
dataset further: i) We train a ResNet50 [22] model on the
source domain and measure heldout test accuracy, and only
retain classes with > 25% accuracy. ii) We manually inspect
100 random qualitative examples from the source and target
domains for the remaining categories and exclude categories
with significant label noise. At the end of this process, we
select 68 categories with 24.1k images in the source domain
and 59.4k images in the target domain. See Fig. 2b for a
label histogram of each domain.

3.2. Challenges: Context and subpopulation shift

Notation. Let X and Y denote input and ouput spaces,
with the goal being to learn a convolutional neural network
h : X → Y parameterized by Θ. In unsupervised DA we
are given access to labeled source examples (xS , yS) ∼
PS(X ,Y), and unlabeled target examples xT ∼ PT (X ),
where S and T denote the source and target domains. The
goal is to maximize model accuracy on the target domain,
and we consider adaptation of models trained to perform K-
way object recognition: the inputs x are images, and labels
y are categorical variables y ∈ {1, 2, ..,K}.
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Figure 4. Subpopulation shift for select categories across domains. We plot normalized cluster assignments per-domain as approximate
subpopulation distributions – blue denotes within-category subpopulation distribution on source and orange denotes target. As seen,
subpopulation distributions shift significantly across domains. On the right we visualize random images from some of the discovered clusters,
and verify that they generally correspond to distinct subpopulations.

Data and label distribution shift. As in conventional do-
main adaptation, geographical DA also presents data distri-
bution shift (PS(x) ̸= PT (x)) as object appearances change
across geographies (see Fig. 1), and label distribution shift
(PS(y) ̸= PT (y)), as task label distributions change across
domains (see Fig. 2).

In addition, geographical adaptation presents two new
challenges: context and subpopulation shift.
Context shift. We define context c(x) for image x with
label y as the task-irrelevant information in the image—this
loosely corresponds to the background or surroundings of the
object of interest. We define context shift as PS(c(x)|y) ̸=
PT (c(x)|y), representing a change in object context across
geographical domains.

In Fig. 3 we show qualitative examples of context shift
within our proposed Dollar Street-DA and GeoYFCC-DA
shifts for a few categories. For example, we find that in
Dollar Street-DA, most “toothbrush” images in the source
domain tend to be photographed inside bathrooms, whereas
the surroundings in the target domains are significantly more
diverse (e.g. walls and roofs). We see similar trends in
the GeoYFCC-DA shift (e.g. indoor v/s outdoor basketball
games). As deep neural networks are known to often employ
“shortcut learning” [23] of potentially spurious features (e.g.
object backgrounds) to make predictions, we hypothesize
(and experimentally verify in Sec. 4.4) that such a context
shift will present a challenge to visual recognition models
deployed in new geographies.
Subpopulation shift. We define subpopulation shift as
PS(x|y) ̸= PT (x|y), representing a change in within-
category distribution across domains.

In Fig. 4, we show examples of subpopulation shift in
the Dollar Street-DA and GeoYFCC-DA benchmarks. In
the absence of subpopulation-level annotations, we use a
simple strategy to obtain approximate annotations: we use
a pretrained model (ResNet50 [22] trained on ImageNet)
to extract features for source and target images of a given
category, and perform agglomerative clustering on the com-
bined set of embeddings. We then use the inferred cluster
assignments as subpopulation annotations. We also plot the
normalized within-class distribution of cluster assignments
on the source and target domains, and measure the Wasser-
stein distance between the two as a measure of the degree of
subpopulation shift.

As seen, this simple strategy discovers distinct clusters
corresponding to semantically distinct subpopulations: e.g.
for “cleaning equipment” on Dollar Street-DA we discover
separate clusters roughly corresponding to brooms, vaccuum
cleaners, mops, and miscellaneous cleaning items. Crucially,
we find that the intra-class distribution of many categories
changes significantly across geographies (e.g. brooms make
up a significantly larger proportion of cleaning equipment in
the target domain than in the source).

Dollar Street-DA GeoYFCC-DA
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Cr
os

s-
do

m
ai

n 
av

g.
 W

D

Verifying subpopulation shift
Random
Geographic

Figure 5. Verifying sub-
population shift.

To quantitatively validate
the subpopulation shift, we
compute the degree of per-
class subpopulation shift: for
each class, we compute the
normalized subpopulation dis-
tribution per-domain (as visu-
alized in Fig. 4, left), measure
the cross-domain Wasserstein
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Method Dollar Street-DA GeoYFCC-DA

source 54.66±0.62 42.88
target oracle* 67.73± 0.30 56.78

MMD [10] 55.77±0.75 43.53
DANN [4] 54.80±0.38 42.64
SENTRY [5] 55.73±0.34 42.58
SST 58.71±0.53 45.22

Table 1. Average accuracy on the target test set (20%) for the Dollar
Street-DA and GeoYFCC-DA shifts. * denotes that the target oracle
was trained on target data non-overlapping with the test set (80%)
whereas DA methods were adapted without labels on the entire
target dataset.

distance, and average across classes. Fig. 5 presents results
for this measure for our proposed geographical shifts versus
randomly constructed source and target domains of the same
size, for the Dollar Street and GeoYFCC datasets. As seen,
geographical shifts lead to significantly higher subpopulation
shift.

4. Experiments

4.1. Setup

To account for label imbalance, we report per-class av-
erage accuracy as our metric. As described in Sec. 3, we
consider adaptation on two shifts:
Dollar Street-DA: We consider images from North America
and Europe as the source domain (2.9k) and images from
Asia, Africa, and South America as the target domain (8.8k).
GeoYFCC-DA: We consider images from North America as
the source domain (24.1k) and images from Asia, Australia,
and South America as the target domain (59.4k).

On both shifts we create a 90%-10% train-test split on
the source domain and report transfer performance on 20%
heldout target data, but use the entire target dataset for un-
supervised adaptation. On Dollar Street-DA, due to the
relatively small size of the dataset, we report performance
mean and standard deviation over three experimental runs.

4.2. Domain Adaptation Baselines

We benchmark 4 representative DA methods from the
literature on our Geographical DA shifts: one domain
discrepancy-based method, one domain adversarial method,
and two self-training based methods.
1) MMD [10]: Aligns domains by computing mean source
and target embeddings in a reproducing kernel hilbert space
and minimizing their distance as a maximum mean discrep-
ancy measure.
2) DANN [4]: Domain-adversarial neural networks adver-
sarially learn a domain discriminator to distinguish source

and target features against a feature encoder that is trained
to fool the discriminator.
3) SENTRY [5]: SENTRY measures model predictive con-
sistency across randomly augmented versions of each target
image and selectively increases predictive entropy on highly
consistent instances, while decreasing it on highly inconsis-
tent ones. SENTRY also uses pseudolabel-based approxi-
mating class balancing on the target domain, and employs a
slightly modified ResNet50 architecture [24].
4) Selective Self-training (SST): We implement a simpli-
fied self-training baseline that self-trains against predicted
labels on target instances on which the model is atleast 90%
confident, and also employs pseudolabel-based target class
balancing and a modified ResNet50 architecture [24].

Finally, we also report performance for a target oracle
that is trained in a supervised fashion on the target domain.
The target oracle is meant to represent a performance upper
bound in the absence of domain shift.
Implementation details. We use a ResNet50 [22] as our
CNN architecture, and for SENTRY and SST use a modified
few-shot variant [24] that replaces the last linear layer with
a K-way (where K is the number of classes) fully-connected
layer without bias. Input activations to this layer are L2-
normalized and its output is passed into a softmax layer with
a temperature of 0.05. For optimization, we use Adam [25]
with a learning rate of 0.001 and weight decay of 5e−4.
We use a batch size of 128 across experiments. All DA
methods are applied to a source model that is first trained
using supervised training on the source domain for 50 epochs.
We employ 100 epochs of adaptation on Dollar Street-DA
and 40 epochs on GeoYFCC-DA. All methods additionally
minimize a supervised cross-entropy loss on source labels
during adaptation (with a loss weight of 1.0 and 0.1 on Dollar
Street-DA and GeoYFCC-DA respectively). To combat label
distribution shift, we follow Tan et al. [26] and use class-
balanced sampling on the source domain across experiments.

4.3. Results

Table 1 presents average accuracy on the target test set for
the Dollar Street-DA and GeoYFCC-DA shifts. We observe:
▷ Geographical shifts lead to significant performance
drops (Row 1 v/s 2). As seen, the target oracle achieves
67.7% and 56.78% whereas the source model achieves a
significantly lower performance of 54.66% (-13.1%) and
42.88% (-13.9%). Clearly, geographical variations pose a
significant challenge to transfer.
▷ DA methods offer limited improvements (Rows 3-6).
All the benchmarked methods achieve limited success at
geographical adaptation, sometimes performing no better
than the source model. Surprisingly, we find the simple SST
method to achieve the best (albeit small) improvement over
the source model (+4.1% / +2.3%), but still well short of
the target oracle (-9% / -11.6%). Altogether, these results
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Dollar Street-DA: Per-class accuracy on target test set

target oracle (avg acc.=67.52)
SST (avg acc.=58.81)

(a) Dollar Street-DA
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GeoYFCC-DA: Per-class accuracy on target test set
target oracle (avg acc.=56.78)
SST (avg acc.=45.20)

(b) GeoYFCC-DA
Figure 6. Per-category target test accuracy for a model trained on blue: target train set and orange: source train set and adapted to the target
domain via the SST method. Categories are ordered in decreasing order of accuracy drop.

indicate the need for specialized adaptation solutions for the
Geographical DA problem.

4.4. Analyzing failure modes

We now analyze the performance of our best-performing
SST model and contrast it with the target oracle.
Per-class performance. In Fig. 6 we show per-category
accuracies on the target test set for i) blue: a target oracle
model trained on the target train set and ii) orange: the
best performing SST model which was trained on the source
train set and adapted to the entire target domain. We order
categories in descending order of accuracy drop. As seen,
the SST model performance lags behind the target oracle on
most categories. We further analyze failure modes arising
from context shift and subpopulation shift:
Context shift. In Fig. 7 we show examples of model errors
on the target domain arising from context shift. We also vi-
sualize GradCAM [27] explanations along side each image,
and find that, in most cases, the model makes erroneous pre-
dictions on target images with contexts that are uncommon
in the source domain (see Fig. 3 for source examples) while
fixating on spurious background features.
Subpopulation shift. To verify that subpopulation shift is a

failure mode, we measure per-class average subpopulation
accuracy, using the approximate subpopulation-level annota-
tions described in Sec. 3.2. We then measure the correlation
between the drop in per-class average subpopulation accu-
racy for the SST model compared to the target oracle (that
does not experience subpopulation shift), against the degree
of subpopulation shift measured via the per-category average
of cross-domain Wasserstein distance between subpopula-
tion distributions. On the 40 classes with the highest sub-
population shift in Dollar Street-DA, we observe a Pearson
correlation coefficient of 0.44, and 0.39 on GeoYFCC-DA.
This indicates the tendency of the adapted model to under-
perform to a larger degree—when compared to the target
oracle—on categories with high subpopulation shift.

5. Limitations & Conclusion

Our work has some important limitations: we do not
consider semantic drift, where the meaning of a category
itself may change across geographies e.g. a “chair” in one
country might be considered as a “sofa” in another. We also
restrict our study to adaptation across continent-level shifts,
but analyzing shifts across a more fine-grained (e.g. country)
level is also potentially valuable. Moreover, variation in
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Figure 7. Context shift as a failure mode for Geographical DA. We visualize incorrect predictions from the best-performing SST model on
the target test set alongside visual explanations generated with GradCAM [27] for Dollar Street-DA (left) and GeoYFCC-DA (right). As
seen, the model frequently attends to spurious background features and makes incorrect predictions.

visual appearance within a geography can sometimes be
larger than that across geographies, due to other confounding
factors like income and demographics—we do not study
these differences here. Finally, in the absence of human
annotations, we are restricted to using inferred subpopulation
annotations for our analysis.

To summarize, we studied the problem of domain adapta-
tion of trained object recognition models to new geographies,
and investigated the effectiveness of off-the-shelf adaptation
methods. We proposed two shifts to study this problem and
demonstrated the existence of two unique challenges: cross-
domain context shift and subpopulation-shift. We found ex-
isting DA methods to offer limited success at Geographical
DA, suggesting the need for future work to develop special-
ized adaptation solutions for this important but understudied
problem.
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