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Abstract

Recently, the notion of closed-set few-shot domain adap-
tation (FSDA) has been introduced where limited supervi-
sion is present in the source domain. However, FSDA over-
looks the fact that the unlabeled target domain may contain
new classes unseen in the source domain. To this end, we
introduce the novel problem definition of few-shot open-set
DA (FosDA) where the source domain contains few labeled
samples together with a large pool of unlabeled data, and
the target domain consists of test samples from the known
as well as new categories. We propose an end-to-end model
called FosDANet to tackle such a scenario which operates
on two principles: to generate confident pseudo-labels for
the unlabeled source samples and to classwise align the
source and target domains for the known classes while re-
jecting the unknown-class data. A combination of a self-
supervised loss and a novel triplet-based relation learning
module is devised to aid in confident pseudo-labeling, and
a dual adversarial learning scheme is proposed for domain
alignment. Extensive experiments were performed on five
datasets: Office-31, Office-Home, Adoptiape, and two new
datasets we designed: Mini-domainNet and a remote sens-
ing benchmark called NPU-RSDA. FosDANet is found to
consistently outperform the relevant literature.

1. Introduction
The unsupervised domain adaptation (UDA) paradigm

[29, 34, 25, 11] presumes the availability of a label-rich
source domain and a label-scarce target domain. The goal is
to learn a domain-independent representation space where a
classifier trained on the source domain can generalize well
on the target data. The closed-set UDA has majorly been re-
searched where both the domains share the same categories
[23, 25]. However, this is a very restricted setup and is of-
ten easy to handle in practice. In open-set UDA [21, 16],
the target domain may contain outliers arising from previ-
ously unknown classes. On the other hand, substantial an-
notations may not be available in the source domain since
labeling is expensive and laborious whereas it is easy to ob-

Figure 1: FosDA is a novel problem definition combining
the challenges of few-shot DA and open-set DA, respec-
tively. Similar to FSDA, FosDA has a small number of la-
beled samples in the source domain. Further, FosDA does
not have any prior knowledge regarding the novel classes
in the target domain. Our goal is to learn a discriminative
feature space aligning the known-class samples of both the
domains while identifying the unknown-class data.

tain sufficient unlabeled data. The recently studied few-shot
DA (FSDA) problem [33, 13] concerns a type of closed-set
UDA setting where the source domain contains very few
labeled and many unlabeled samples per class. A more re-
alistic situation would be to extend FSDA to assume the
presence of outlier samples in the target domain. In this re-
gard, we propose to tackle the novel problem of few-shot
open-set DA (FosDA) in this paper (Fig. 1). We note that
FosDA is very different from the semi-supervised DA [20]
(target domain supervision available) and the generic few-
shot open-set learning [15] (base classes with ample super-
vision are present) and is more challenging to deal with.

The existing OSDA methods [21, 16] cannot handle
FosDA effectively given that the distributions of the source
domain classes cannot be approximated meaningfully from
a small set of labeled data. The existing FSDA tech-
niques [33, 13] employ the notion of self-supervised learn-
ing (SSL) in terms of cross-domain instance-to-instance
matching. Although such matching may be useful for a
closed-set setup, it will fail in an open-set setting where an
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outlier sample from the target domain may erroneously be
mapped to the instances of the source domain. Hence, a
naive extension of such techniques is not advocated to solve
FosDA. In this regard, we outline three requisites to deal
with FosDA: i) to learn a discriminative latent space given
all the source domain samples, ii) to classwise align the
known-class target domain samples with the source-domain
data, and iii) to ensure separation between the known and
unknown-class target domain samples. The main challenge
in solving (i) lies in generating confident pseudo-labels for
the unlabeled source data. Similarly, (ii) and (iii) require
learning a soft boundary to demarcate the unknown-class
samples from known-class data with high precision.

Contributions: Considering the aforesaid concerns, we
propose a novel architecture called FosDANet to tackle
FosDA. We expand the proportion of labeled data in
the source domain by pseudo-labeling the unlabeled data,
which aids in better domain alignment. For pseudo-
labeling, we ensure good feature learning from both the
labeled and unlabeled source domain samples, and further
constrain the feature space to be class-discriminative. While
we depend on the instance discrimination based SSL strat-
egy [30] for instance-level feature learning (Sec. 5.1), a
novel relation network is proposed to relate different in-
stances through a metric loss (Sec. 5.3), thereby defining
a way to distinguish between classes. As a result, confident
pseudo-labeling of the unlabeled source samples can be per-
formed through an ensemble of two classifiers (Sec. 5.2).
Besides pseudo-labeling, the classifier system is utilized to
deploy the domain alignment loss functions. Specifically,
a dual adversarial learning strategy to align the domains is
implemented by forcing adversarial games between both the
classifiers and the shared feature extractor (Sec. 5.4). The
first classifier relies on the adversarial model of [21] to di-
rectly learn the open-set boundary and also align the do-
mains. However, this is not sufficient because [21] does not
assume any prior regarding the open-set. This leads to a
low-confidence prediction for the outliers. To combat this,
we force the second classifier also to play an adversarial
game with the feature extractor through a novel adversarial
loss, where the classifier believes that all the target samples
are outliers. This will encourage the feature extractor to
learn distinctive features for the open-set samples, thereby
enhancing the confidence on outlier prediction. We high-
light our major contributions as follows:

i) We introduce the problem of FosDA to the commu-
nity and propose an end-to-end trainable network called
FosDANet as a solution. ii) FosDaNet improves the fea-
ture learning capability of instance discrimination based
SSL through the relation network. A combination of both
the modules is able to generate higher quality pseudo-
labels than the direct probability thresholding method. iii)
Our dual adversarial learning performs better source-target

alignment while ensuring separability from the unknown-
class data. iv) We devise the experimental protocol for
FosDA and conduct extensive experiments on five bench-
mark and large-scale datasets, among these we newly curate
NPU-RSDA and Mini-domainNet.

2. Related works
Open-Set domain adaptation (OSDA): The OSDA prob-
lem comes in a variety of flavours where classes in both
the domains can be divided into two groups, viz. shared
classes and domain-specific classes. For example, the un-
labelled target domain may contain samples from an addi-
tional previously unknown set of classes, thus making the
target task an open-set recognition problem. One of the
early attempts [12] used the class-wise probability thresh-
olds to recognise the open-set samples. Subsequently, [21]
tackled the OSDA problem through adversarial learning to
distinguish the unseen and seen-class samples and perform
adaptation between domains. [16, 6] are two recent meth-
ods that used the concept of adversarial learning for domain
alignment by virtue of a coarse to fine level sample weight-
ing scheme. [6] exploited the semantic structure of the la-
tent space to identify the outliers. The notion of rotation
angle prediction based SSL has been used in [1] for OSDA.
Few-shot domain adaptation (FSDA): As already pointed
out, FSDA is a type of UDA setup where the source domain
contains very few labeled samples (eg. 1-shot) together
with a large pool of unlabelled data. FSDA is a compar-
atively newly studied problem and only a handful of works
exist in the literature. [33] leveraged in-domain and cross-
domain prototypical learning through SSL followed by the
notion of instance to prototype matching. Another endeavor
in this regard [13] is based on the paradigm of instance dis-
crimination for cross-domain instance-level matching. Both
the methods follow the closed-set setup and to best of our
knowledge, no prior attempt has been made to solve FosDA.
Self-supervised learning (SSL): SSL is a type of unsuper-
vised learning which is used to highlight meaningful ab-
stract concepts from the data without any semantic infor-
mation. A common tendency to achieve self-supervision is
through designing a pretext task, such as image coloriza-
tion, image imprinting, jigsaw puzzle [2, 3], to be solved
jointly with the downstream task. Some recent contrastive
learning based SSL approaches [9, 4] have gained impres-
sive performance in the area of representation learning. The
notion of instance discrimination seeks to classify the sam-
ples into different instance identities with the hope to learn
improved class-wise feature representations [30, 28].

Self-supervision has also been incorporated within some
of the UDA models. Reconstruction based SSL has been
used in [7, 8] to learn a domain invariant feature space.
Besides, jigsaw puzzle [2] and instance discriminator [33]
have also been utilized to obtain domain invariant features
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from images. [24] incorporated multiple SSL tasks within a
DA framework in a multi-task fashion. The use of SSL for
FSDA and OSDA has already been mentioned above.

3. Problem definition
Let us consider a source domain S equipped with very

few labeled samples per-class: Ds = {(xs
i , y

s
i )}

Ns
i=1 to-

gether with a large volume of unlabeled samples Dsu =
{(xsu

j )}Nsu
j=1 , where (i) Ns ≪ Nsu, (ii) a given xi represents

the image data and (iii) the samples from both Ds and Dsu

use the same label-set, Cs = {1, 2, · · · , C}. The target do-
main T consists of unlabeled test samples Dt = {(xt

k)}
Nt

k=1

spreading over the label set Ct. As per the proposed set-
ting, Cs ⊂ Ct and Ct/s = Ct − Cs denotes the set of class
labels private to T . Further, Ds and Dsu arise from the
same underlying distributions: P (Ds) = P (Dsu) whereas
the data distributions of Dt are different from Ds ∪ Dsu:
P (Dt) ̸= P (Ds ∪ Dsu).

We seek to perform empirical risk minimization for S
leveraging Ds ∪ Dsu in a domain-invariant latent space
where P (Dt) ≈ P (Ds ∪ Dsu) such that the trained clas-
sifier is able to discriminate the samples from Dt into C+1
class labels where the C + 1th index denotes the common
’reject’ class referring to the outliers.

4. Model overview
Broadly, the model architecture of FosDaNet (Fig. 2)

consists of three sub-modules, namely, a shared feature ex-
tractor F , two separate C + 1-class classifiers (G1,G2), and
a module for discriminative feature learning for S consist-
ing of an instance discriminator based SSL network H and
the triplet-based relational network R, respectively.
Feature extractor (F): To extract features from the im-
ages, we consider the Resnet-50 [10] pre-trained on Ima-
geNet as our backbone architecture where we generate the
features from the final convolution layer followed by aver-
age pooling. F is shared by both S and T , respectively.
Instance discriminator network (H): The main goal of
this part is to learn a meaningful F given Ds ∪Dsu by cap-
turing the inherent similarities of the samples. For this pur-
pose, the SSL method based on the notion of instance dis-
crimination is considered by imposing a distinctive instance
identifier to every image. Features are learned by training
F such that an image is classified to its own identity while
treating all the other images as negatives. The instance dis-
criminator network H consists of a linear layer and it con-
siders the input F(Ds ∪ Dsu) to produce an output of size
(Ns +Nsu) through a softmax-type activation function.
Relation network (R): The prime focus of the relation net-
work R is to maximize the pairwise similarity of the source
domain samples sharing the class labels in the latent space
produced by F while making different-class data more sep-

arable. R is driven by the notion of pairwise similarity op-
timization and works with triplets of data. Given a triplet
(xa, x+, x−), R is composed of a multi-layer perceptron
with a sigmoid activation at the final layer and considers
|F(xa);F(x+/x−)| as input where |; | defines the vector
concatenation operation. R outputs a single value in the
range [0, 1] depicting the similarity of xa with x+/x−.
Classifiers (G1,G2): We use two classifiers on top of F ,
each outputting a C+1-dimensional class membership vec-
tor. The classifiers are made of two dense layers each and
are utilized for multiple purposes: i) to classify the sam-
ples from S into one of the C categories, ii) to estimate the
pseudo-labels for the samples in Dsu, and iii) to align the
known-class samples from Dt with S while enforcing the
unknown-class samples from T to take the label C + 1.

5. Training & inference

In this section, we discuss the loss functions applied on
S and T separately. We define three loss functions based
on Ds ∪ Dsu: classification loss for (G1,G2), instance dis-
crimination loss for H, and the similarity learning loss for
R, respectively. The adversarial domain alignment losses
are used for Dt. Details are presented below.

5.1. Instance discrimination based SSL on S

Since Ds has limited supervisory signal, the classifiers
trained on Ds are bound to overfit. Alternatively, Dsu

can be utilized along with Ds to learn generic features
for the classes in S. With this aim, non-parametric in-
stance discrimination [30] is used to learn abstract visual
representations in F for S by discriminating the input im-
ages of Ds ∪ Dsu into different identities and overlook-
ing the presence of the semantic class-labels. A mem-
ory bank Vs is initialized on source domain features as:
Vs = [v1, v2, · · · , vNs+Nsu ] where vi = H(F(xi)) for a
given image xi. After the initialization, Vs is subsequently
updated with a momentum in every batch. To perform in-
stance discrimination on S, we compute the similarity dis-
tribution P s given the features fs

i = H(F(xi)) as per Eq.
1. Following [30], we use two different notations v and f to
distinguish between the memory bank elements and the fea-
tures, respectively. The feature normalization is performed
for both v and f by calculating Eq. 1.

  \centering P^s_{ij} = \frac {\exp ((v_j^s)^T f_i^s / \tau )}{\sum _{l=1}^{N_s+N_{su}} \exp ((v_l^s)^T f_i^s / \tau )} \label {Eq:1} 






 




(1)

τ is the temperature parameter and controls the concentra-
tion level of P s and is set to 0.005 following [30]. The
instance discrimination is optimized via the cross-entropy
loss, LID, where i is considered to be the instance label for
a given xi.

  \centering \mathcal {L}_{ID} = \sum _{i=1}^{N_s+N_{su}} - i \log P^s_{ii} 




 
 (2)
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Figure 2: A detailed illustration of the FosDANet model. The major model components are the feature extractor F , the
instance discriminator H, the relation network R, and the classifiers G1 and G2.

5.2. Classifiers training and pseudo-labeling on S

The classifiers G1 and G2 are trained with respect to the
multi-class cross-entropy loss functions L1

CE and L2
CE , re-

spectively. Although the training commences with the avail-
able labeled data Ds, subsequently, samples from Dsu are
pseudo-labeled, and a set of confident pseudo-labeled sam-
ples Dsu

pl (Ds
pl ⊂ Dsu) are used together with Ds (Ds∪Dsu

pl )
to train the classifiers. Here, only the first C indices are used
in L1

CE and L2
CE since S contains samples from C classes.

In order to inject diversity in training G1 and G2, the train-
ing batches are made partially non-overlapping so that the
classifiers get to observe disjoint samples.
Generation of the pseudo-labeled samples Dsu

pl : The
main goal of pseudo-labeling is to expand the label infor-
mation of S. The initial training iterations for (G1,G2)
are based on Ds only, letting the classifiers gain enough
knowledge to predict informatively regarding the class-
distributions for the samples in Dsu. Subsequently, we eval-
uate the class probability scores for these samples with re-
spect to both G1 and G2. For a given sample, if we find
that the predicted softmax probabilities for a specific class
are more than a pre-defined threshold of α for both G1 and
G2 (α is set to 0.95 for ensuring high confidence), then the
sample is included in Dsu

pl together with the concerned class
label. Employing an ensemble of two classifiers instead of a
single classifier enforces a degree of confidence in the pre-
dictions. We note that a given sample, once included in
Dsu

pl , is not considered for pseudo-labeling subsequently.

5.3. Similarity optimization on S using R

Although the instance discriminator is expected to high-
light some meaningful features from the samples, it does
not ensure a dense feature space as LID does not utilize the
semantic class information. Furthermore, the inherent im-
age ambiguities may hamper the feature learning abilities
of F if it is optimized solely based on LID. If the fea-
ture space is not class discriminative, then it remains diffi-

cult for (G1,G2) to generate highly confident pseudo-labels.
Hence, we aim to ensure feature-level consistency for the
samples class-wise using the relation network R, which, in
turn, makes the latent space highly class-concentrated. In
some sense, R and H demonstrate mutual co-regularization
effects. As already mentioned, R works with triplets of
data. However, triplet selection is a non-trivial problem in
our context. Our goal is to select a moderate number of
highly representative triplets in such a way that R can sub-
sequently ensure a globally discriminative feature space for
S. Our proposal in this regard is as follows.
Triplets mining: The triplets are curated from the updated
Ds ∪ Dsu

pl at a given iteration. We leverage the fact that H
promotes similarity between instances akin to how super-
vised class learning promotes similarity between classes.
Hence, for an anchor image xa ∈ Ds ∪ Dsu

pl , selected as
the one having a high P s score, we define (i) a hard posi-
tive as the least similar sample x+ to xa sharing the same
semantic class label, i.e. x+ is selected from the same class
as xa with lowest P s score, (ii) a hard negative as the most
similar instance x− to xa from another semantic category,
i.e. x− is selected from a class different from that of xa

with a high P s value. The premise behind such a selection
strategy signifies that while H is able to bring out superior
semantic features from xa, the features of x+ are relatively
poor. The goal of R is to bring such extreme samples of
a given class closer, which subsequently reduces the intra-
class variations. Similarly, pushing xa and x− far will direct
F to learn class-discernible features.
Proposed similarity loss: Given |(F(xa);F(x+))| and
|(F(xa);F(x−))| as the inputs, we seek R to produce a
high similarity score (≈ 1) for (xa, x+) and a low similar-
ity score for (xa, x−) (≈ 0) simultaneously, as follows,

  \begin {split} \mathcal {L}_{similarity} = \mathbb {E}_{(x_a,x_+,x_-) \in \mathcal {S}} [(\mathcal {R}(|(\mathcal {F}(x_a);\mathcal {F}(x_+))|)-1)^2 + \\ (\mathcal {R}(|(\mathcal {F}(x_a);\mathcal {F}(x_-))|)^2] \end {split}    


(3)
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We note that the pseudo-labeling is not considered for T
given the unknown openness factor which may severely af-
fect the outcomes of the instance discriminator by wrongly
matching open and closed-set samples.

5.4. Dual adversarial alignment of S and T

We propose an adversarial learning based framework to
align the known-class samples of Dt with Ds ∪ Dsu and
identify the unknown class samples in T . We define two
adversarial loss objectives L1

st and L2
st, implemented by G1

and G2, respectively, to carry out these goals. The adversar-
ial games are played between F and the classifiers G1 and
G2: the classifiers aim to minimize L1

st and L2
st respectively,

while F tries to deceive the classifiers. While the adver-
sarial loss on G1 performs a coarse-level alignment by pur-
posefully discriminating the samples from Dt between the
open-set and closed-set super-classes, the adversarial loss
on G2 performs a more confident class assignment for the
target data, in particular, the unknown-class samples.

Our coarse-level alignment loss is inspired by the
OSDA-BP [21] idea which seeks to learn a pseudo open-
class boundary separating the open-set samples from the
inliers. In this way, the inlier samples of T are aligned
with S by sharing the first C class labels as produced by
G1 whereas the potential outlier samples are assigned the
label C + 1. The loss is implemented as a binary cross-
entropy loss with the ground-truth probabilities for the open
and closed classes set to 0.5 each.

  \begin {split} \mathcal {L}^{1}_{st} = \max _{\mathcal {F}} \min _{\mathcal {G}_1} \frac {1}{N_t} \sum _{k=1}^{N_t} - 0.5 \log (\mathcal {G}_{1}(y_{k}^t = \mathcal {C} + 1| \mathcal {F}(x_{k}^{t})) \\ - 0.5 \log (1- \mathcal {G}_{1}(y_{k}^t = \mathcal {C} + 1| \mathcal {F}(x_{k}^{t})) \end {split} \label {adv1} 
 














   



 

   



(4)

We highlight the potential issues of L1
st in confidently clas-

sifying the open-set samples from T . If an open-set sample
is highly similar to some of the closed-set classes (e.g, a
pair of fine-grained classes are present in the open-set and
closed-set), Eq. 4 shares the posterior probability between
those classes, thus reducing its open-set posterior proba-
bility G1(yt = C + 1|F(xt)) incorrectly. Also, since the
ground-truth is set to 0.5, a little deviation in the posterior
probability provides F with the signal to fool G1. Hence,
the average open-set probability scores for the unknown-
class samples are not very high in this case, leading to their
less confident predictions and occasional misclassifications.

We propose another adversarial loss between F and
G2 to combat the aforesaid issues judiciously through the
multi-class loss as follows, where the ground-truth labels
for all the target samples are fixed as C + 1.

  \begin {split} \mathcal {L}^{2}_{st} = \max _{\mathcal {F}} \min _{\mathcal {G}_2} - \frac {1}{N_t} \sum _{k=1}^{N_t} \log (\mathcal {G}_{2}( y_{k}^t=\mathcal {C}+1|\mathcal {F}(x_{k}^t)) \end {split} \label {adv2} 
 














   

 (5)

Now for the potential known-class samples from T , F
tries to reduce their open-class probability to deceive both

G1 and G2, making those samples to overfit with the sam-
ples from S. Let us consider two types of open-set samples
in T : less-open samples which have some similarity with
the known-class data, and more-open samples, respectively.
For these samples, F tries to make G1(y

t
k = C+1|F(xt

k)) >
0.5 (as per Eq. 4) and G2(y

t
k = C +1|F(xt

k)) < 1.0 (as per
Eq. 5) simultaneously while G1 and G2 will restrict G1(y

t
k =

C+1|F(xt
k)) = 0.5 and G2(y

t
k = C+1|F(xt

k)) = 1.0. This
provides a dual restriction to the potential open-set samples
and restricts their open-class probability from going < 0.5.
As a result, the more-open samples will have an open-class
probability much higher while the open-class probability
for the less-open samples will be higher than Eq. 4 alone.

5.5. Total loss
We follow an alternate optimization strategy to train Fos-

DaNet. The model is trained for multiple repeats with a
number of training epochs taking place within each repeat.
The pseudo-labeling is performed at the end of the final
epoch of each repeat. The sequence of the training losses
are mentioned below with the weighting parameter γ,

  \centering \min _{\mathcal {F}, \mathcal {H}, \mathcal {R}} (\mathcal {L}_{ID} + \mathcal {L}_{similarity}) + \min _{\mathcal {G}_1, \mathcal {G}_2} (\mathcal {L}_{CE}^1 + \mathcal {L}_{CE}^2 + \mathcal {L}^1_{st} + \gamma \mathcal {L}_{st}^2) \label {e5} 


  






 



(6)

  \centering \min _{\mathcal {F}} (\mathcal {L}_{CE}^1 + \mathcal {L}_{CE}^2 - \mathcal {L}^1_{st} - \gamma \mathcal {L}_{st}^2) \label {e6} 



 

 
 

 (7)

The first part of Eq. 6 is devoted to the SSL task and
optimizes the ID loss together with the similarity loss. The
remaining part of Eq. 6 and Eq. 7 implement the dual ad-
versarial loss together with the classification losses on S
in the min-max optimization fashion given F and (G1,G2),
respectively. During inference, we combine the class pre-
dictions for both G1 and G2 through average pooling, and
the class-label with the maximum probability is considered.

6. Experiments
Datasets: We evaluate the performance of FosDANet on
five datasets, out of which two are introduced in this paper.
For Office-31 [19] (three domains: Amazon (A), Webcam
(W), DSLR (D), 31 classes), Office-Home [27] (four do-
mains: Art (A), Clipart (C), Product (P), Realworld (W),
65 classes), and Adaptiope [18] (three domains: Prod-
uct (P), Real (R), Synthetic (S), 123 classes), we consider
[20, 40, 63] closed-set classes selected in the alphabetical
order whereas the remaining classes constitute the open-
set (label C + 1). Mini-domainNet: is created from the
publicly available very large-scale DomainNet dataset [17]
and tailored to the few-shot task as the FosDA performance
on domainNet was found to be extremely poor. Out of the
original six domains, we consider three (Real (R), paint-
ing (P) and sketch (S)) in Mini-domainNet with 200 classes
per domain selected in the alphabatical order and 50 im-
ages per class. If a given class contains less than 50 images
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in domainNet, then all the images are taken. Alphabeti-
cally, the first 70 of them constitute the closed-set, whereas
the remaining classes denote the open-set. The new NPU-
RSDA1 dataset is created from three benchmark optical
remote sensing datasets, UC-Merced (U), PatternNet (P),
and NWPU-RESISC45 (N), respectively, captured across
the globe. The task is to perform scene recognition from
the images. The images in UC-Merced [32] are extracted
from the USGS National Map Urban Area Imagery collec-
tion. A total of 21 categories are present in UC-Merced and
the spatial resolution of the images is 0.3 m. The NWPU-
RESISC45 [5] dataset contains 45 scene categories which
are extracted from the Google Earth Engine platform. The
spectral resolution of the images varies in the range of 0.2m
to 30m. Finally, PatternNet [35] is a high resolution dataset
created from the Google Earth Engine containing 38 land-
cover classes. The spectral resolution varies from 0.062m
to 4.693m. We identify the 17 common classes to consti-
tute the three domains containing a total of 27000 images.
Alphabetically, the first ten classes are considered as the
closed-set and the remaining classes comprise the open-set.
Experimental and evaluation protocols: The training
samples were considered randomly and the same set of sam-
ples was used for all the comparative methods. We train the
model using the SGD optimizer with a batch size of 32 and
an initial learning rate of 0.1 for training (R,H,G1,G2) and
0.001 for training F , respectively. We fix γ = 0.6 so that
Eq. 5 can provide a soft regularization effect to Eq. 4 in
confidently classifying the outliers. The entire model in-
cluding the feature extractor is trained. We consider five re-
peats and 50 epochs inside each repeat. Model convergence
could be observed for all the cases. We report the OS and
OS∗ scores (mean±std over three runs) to denote the aver-
age class-wise accuracy measures for the known+unknown
and the known classes, respectively. The classification per-
formance for the outlier samples (UNK) can be calculated
as OS× (C+1)−OS∗×C. For unbiased comparisons, we
report the harmonic mean (HOS)[1] of OS∗ and UNK.

6.1. Comparison to the literature

We compare FosDANet with three representative OSDA
techniques from the literature: OSDA-BP [21], STA [16],
and an SSL based approach: ROT [1], respectively, whereas
open-set SVM (OSVM) [22] is selected as the baseline.
We consider two variants of these algorithms for fair com-
parison: one without any pseudo-labeling and the other
with pseudo-labeling on Dsu with a probability thresh-
old of 0.95. Note that pseudo-labeling is not possible for
OSVM as it does not include unlabeled data during training.
For Office-31 and NPU-RSDA, we report the results of 1-
shot and 3-shot source labels per class (Detailed results for
NPU-RSDA is mentioned in the supplementary text). For

1More details about the dataset in the supplementary text.

office-home, we conducted experiments with 3% and 6%
labeled images per class following [14]. For Adoptiape and
Mini-domainNet, we consider 3% per-class labeled images,
which means not more than three labeled samples exist at
the class-level. As we observe from Tables 1-4, FosDANet
is able to sharply outperform the other approaches for all
the datasets. For example, FosDANet produces an OS
score of 73.1% (1-shot) and 79.1% (3-shot) for office-31,
47.7% (3%) and 48.1% (6%) for Office-Home, and 80.7%
(3-shot) for NPU-RSDA, respectively. For Adaptiope and
Mini-domainNet, our OS values are 47% and 38.8% for
the 3% case. We further observe that FosDA with pseudo-
labeling outperform the naive FosDANet without pseudo-
labeling substantially (by more than 25% and around 15%
for Adaptiope and Mini-domainNet, respectively). Barring
a few cases in Tables 1-4, most of the methods from litera-
ture report comparable or lower performance with the naive
probability thresholding based pseudo-labeling against the
case without pseudo-labeling. One reason could be that
naive probability thresholding can introduce many noisy la-
bels, which can confuse the classifier. This is in complete
contrast to our FosDANet which significantly benefits from
pseudo-labeling, underlining the pseudo-labeling strategy
adopted here. For example, Fig. 5 (a) shows a compari-
son on the number of correctly retrieved pseudo-labels after
the first repeat by all the methods on W-D (Office-31). As
can be observed, FosDANet produces the most number of
correct pseudo-labels (270) while the next best performing
ROT [1] produces only 170 pseudo-labels. The other reason
could be the inability of the models to deal with fine-grained
classes unlike our FosDANet. In fact, the t-SNE [26] plots
for W-A (Office-31) in Fig. 3 lucidly highlight the signifi-
cantly better class-discriminative feature space learnt by our
FosDANet, in comparison to the other methods.

6.2. Ablation analysis 2

We analyze the effects of each component of the pro-
posed cost function in Table 5 for two cases: R − A
(Office-Home), U−N (NPU-RSDA), respectively. We first
consider the base model consisting of L1

CE + L2
CE , L1

St,
L2
St and without any pseudo-labeling on Dsu. The use of

pseudo-labeling in the base model shows an improvement
of around 8 to 9% for both the cases. We consider two
pseudo-labeling strategies here, i) randomly picking up one
classifier with a probability of 0.5 and use it for obtaining
the pseudo-label (PL-random), ii) the proposed confidence
based pseudo-labeling combining G1 and G2 (PL). Ours is
found to be better. At convergence, both G1 and G2 pro-
duce identical class distributions, hence, the best compo-
nent classifier and the ensemble do not show much differ-
ences in performance. We subsequently include LID and
Lsimilarity to the base model sequentially which shows fur-

2The cross domain retrieval results are shown in the supplementary text.
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(a) Resnet50 features. (b) OSDA-BP [21]. (c) STA [16]. (d) ROT [1]. (e) FosDANet (Full).

Figure 3: t-SNE plots for W-D (Office-31) (3-shot) by different techniques. Red and Green represent the known-class samples
from S and T whereas Blue denotes the open-set samples private to T .

Method A - W A - D W - D W - A D - A D - W AVG
OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS HOS

OSVM[12] 4.7 4.4 5.2 5.0 4.6 4.4 4.9 4.6 5.1 4.8 5.2 5.1 -/ 4.9 -/ 4.7 -/6.9
0.7 5.4 3.3 7.9 17.7 21.6 9.8 14.1 5.1 4.9 5.0 4.8 -/ 6.9 -/ 12.1 -/9.8

OSDA-BP[21] 16.7 17.3 19.7 19.8 29.0 31.8 15.0 18.3 13.5 16.4 34.7 32.8 21.4(±0.8)/14.4 22.7(±0.7)/15.8 29.7/21.7
19.1 21.2 21.4 22.0 35.6 32.8 18.8 21.2 17.2 19.1 23.9 27 22.7(±0.8)/17.0 23.9(±0.5)/18.6 30.8/25.3

STA[16] 8.7 7.7 7.0 6.4 34.5 37.2 17.3 20.6 30.2 32.4 39.3 40.6 22.8(±1.3)/17.9 24.1 (±0.9)/18.3 31.3/21.3
40.6 41.3 37.5 37.2 64.4 63.7 35.4 36.8 33.9 34.9 63.5 64.7 45.9(±0.4)/40.9 46.4(±0.5)/40.5 50.6/36.2

ROT[1] 24.7 25.2 18.9 19.1 56.2 57.8 24.9 27.9 24.5 27.4 26.8 29.0 29.3(±0.6)/27.9 31.0(±0.8)/27.4 40.4/21.4
62.1 62.2 62.2 61.0 73.6 74.7 34.3 36.1 52.3 52.7 73.8 74.7 61.0(±0.5)/48.3 60.2(±0.4)/47.6 51.3/39.6

FosDANet 57.6 57.1 69.1 68.6 91.3 89.2 67.6 66.5 66.2 65.5 93.3 92.5 74.1(±1.1)/64.2 73.3(±1.3)/63.3 64.6/53.1
80.2 79.7 73.1 72.7 96.4 95.9 64.5 64.1 66.5 66.2 99.2 97.2 79.9(±0.8)/68.7 79.1(±0.9)/68.4 70.5/65.4

Table 1: Comparison to the literature for the Office-31 dataset for 1-shot and 3-shot cases. For each method, the first row
denotes the results of 1-shot and the second row (in gray) shows the results of 3-shot settings, respectively. For the average
values (last column), we show the performance of the model with (in black) and without (in blue) the pseudo-labeling. (%)

ther improvements of at least 4%. Finally, given all the
source domain loss functions, we consider the two adver-
sarial losses individually to analyze their effects. We find
that the combination of Eq. 4-5 boosts the performance of
the individual adversarial loss measures by 2−4% majorly.
Openness analysis: Openness is defined as O = 1 − |Cs|

|Ct|
where |Cs|/|Ct| denotes the number of classes in S and T ,
respectively. A large O signifies that the number of un-
known classes is higher than the number of known classes.
We compare different values of O for FosDANet to the
other approaches for two experimental cases of Office-31
and Office-Home datasets. As per Fig. 4a-4b, FosDANet
maintains high OS scores for different O.

6.3. Critical analysis

Effects of the weight γ: The selection of γ affects the target
performance substantially. If a small γ (≈ 0) is chosen, it
does not help in enhancing the confidence of Eq. 4 whereas
a large γ (≈ 1) may force all the target domain samples
to be misclassified as closed-set. We find an intermediate
value of 0.6 provides a balanced classification (Fig. 4d).
Analysis of relation network and the adversary (G2,F):
In order to assess the effects of the relation network R,
we consider the average class-probability for the known-
classes with and without the usage of Lsimilarity for W-D
(Office-31). Basically, the feature learning is governed by
LID when R is inactive. As can be observed from Fig. 5c,

(a) Openness analysis for
Office-Home (R-A).

(b) Openness analysis for
Office-31 (A-W).

(c) Sensitivity to more labels. (d) Sensitivity analysis of γ.

Figure 4: Critical analysis of FosDANet.

R enforces the source samples to be class-concentrated as
the class probability is very high with R. Further, the use
of R helps in generating more pseudo-labels (at least 10%)
than the models only with classifiers and H. Fig. 5b shows
the importance of the dual adversarial alignment over the
individual loss of Eq. 4 for W-D (Office-31). Here, we
plot the probability for the top two classes for the potential
outliers. Ideally, a large gap between the probabilities signi-
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Method A - C A - P A - R C - A C - P C - R P - A P - C P - R R - C R - A R - P AVG
OS OS OS OS OS OS OS OS OS OS OS OS OS HOS

OSVM[12](Source only) 7.1 8.3 3.5 6.1 2.5 3.0 6.1 6.2 5.2 2.5 2.5 2.5 -/ 4.6 -/7.0
2.5 2.5 4.5 15.3 27.1 7.5 14.4 16.5 13.3 27.1 25.2 43.0 -/16.6 -/20.5

OSDA-BP[21] 7.2 6.2 10.9 7.1 9.3 6.1 10.7 8.9 13.0 9.5 9.3 12.4 9.2(±0.9)/10.1 10.3/14.5
8.8 10.8 12.5 10.1 9.6 7.9 8.4 9.0 15.4 13.1 10.5 16.0 11.0(±0.5)/11.2 15.2/15.5

STA[16] 5.1 11.2 12.0 5.9 11.1 12.8 15.1 11.4 15.9 12.2 16.8 20.6 12.5(±0.6)/11.4 17.5/14.2
12.9 15.0 21.0 12.4 18.4 19.4 17.4 19.4 26.9 20.3 21.4 25.7 19.2(±0.4)/27.9 25.3/35.8

ROT[1] 8.0 13.5 11.5 13.9 10.5 17.6 17.2 15.3 23.2 16.0 28.2 28.8 16.9(±1.3)/16.2 24.6/21.2
12.9 18.3 25.3 17.6 14.9 20.9 20.1 24.4 38.9 29.4 51.8 46.8 26.8(±0.9)/24.7 36.1/31.4

FosDANet 28.29 37.2 47.1 43.5 49.3 51.9 46.7 44.2 61.3 44.7 56.0 62.5 47.7(±1.9)/40.0 49.6/48.6
32.3 36.1 47.3 45.1 49.4 52.2 47.9 44.9 63.4 44.9 56.2 63.1 48.1(±1.2)/40.9 53.2/51.6

Table 2: Comparison to the literature for Office-Home when 3% and 6% labeled training data are used in S. For each method,
the first row denotes the results of 3% whereas the second row (in gray) shows the results of 6% settings, respectively. In the
last column, the average OS values are reported for each case with (in black) and without (in blue) pseudo-labeling. (%)

Method AVG
OS* OS HOS

OSVM[12](Source only) -/ 24.4 -/ 25.5 -/29.2
OSDA-BP[21] 24.5(±1.1)/ 24.3 24.1(±0.6)/23.6 22.1/19.7

STA[16] 43.8(±0.7)/45.0 45.9(±0.4)/46.9 52.9/53.5
ROT[1] 28.9 (±0.3)/36.5 32.2(±0.4)/35.0 40.0/25.8

FosDANet 84.5(±0.7)/73.9 80.7(±1.3)/71.5 56.7/57.8

Table 3: Average accuracy comparisons in % for NPU-
RSDA dataset with (in black) and without (in blue) the
pseudo-labeling for 3-shot case.

Method Adaptiope Mini-domainNet
OS* OS HOS OS* OS HOS

OSDA-BP[21] 6.0/6.3 6.7/6.6 10.7/10.1 3.9/3.9 4.2/4.0 6.7/5.8
STA[16] 11.8/11.5 12.4/12.0 19.1/18.2 5.7/3.3 5.8/3.4 7.9/5.0
ATD[31] 3.8/3.7 4.6/4.2 7.1/6.7 3.2/3.3 3.5/3.4 5.7/5.0
ROT[1] 4.6/2.7 5.7/2.8 8.7/4.3 3.7/3.8 3.8/3.9 5.5/5.6

FosDANet 46.5/20.2 47.0/20.1 58.4/16.4 38.1/23.5 38.9/24.2 54.4/35.6

Table 4: Average accuracy comparisons in % for Adaptiope
and Mini-domainNet with (in black) and without (in blue)
the application of pseudo-labeling for 3% labeled data. De-
tailed report is provided in the supplementary text.

Loss function NPU-RSDA Office-Home
U-N R-A

OS* OS OS* OS
L1
CE + L2

CE + Eq. 4-5 76.2 72.4 43.2 43.2
L1
CE + L2

CE + pseudo-labeling (PL) + Eq. 4-5 84.1 80.2 52.4 51.2
L1
CE + L2

CE + PL + LID+ Eq. 4-5 86.9 83.6 54.8 54.1
L1
CE + L2

CE + PL + LID + Lsimilarity + Eq. 4 86.4 82.3 53.7 54.2
L1
CE + L2

CE + PL + LID + Lsimilarity + Eq. 5 85.9 80.6 54.1 51.8
FosDANet with PL-random 86.7 84.1 54.3 54.9

FULL FosDANet 88.8 85.5 57.0 56.2

Table 5: Ablation analysis on the loss components for two
cases: U-N (NPU-RSDA) and R-A (Office-Home). (%)

fies a more confident open-set classification which is clearly
achieved by FosDANet.
Effect of the amount of labeled samples in S: In order
to analyze the scalability of FosDANet with more labeled
data in S, we plot the performance comparison of all the
methods with increasing label information in Fig. 4c for W-

(a) W-D (Office-31). (b) W-D (Office-31). (c) W-D / U-N.

Figure 5: (a) Correct pseudo-labeled samples after first re-
peat by different methods. (b) Effect of Eq. 5 on classifying
the outliers. (c) Impact of R on enhancing the confidence
on source domain classification.

D (Office-31) for a fixed O (O = 0.36 here). It is found
that FosDANet provides superior and more consistent per-
formance for all the cases than the comparative techniques.

7. Conclusions

We introduce the novel and realistic problem definition
of few-shot open-set DA in this paper and propose an end-
to-end trainable model called FosDANet as a solution. Fos-
DANet aims to generate a discriminative feature space for
the source domain by combining SSL and similarity met-
ric learning based on a novel relation network. This subse-
quently helps in producing confident pseudo-labels for the
unlabeled source data. A dual adversarial learning strategy
is then introduced to align the known-class samples from
the target domain with the source data in the latent space
while rejecting the unknown-class samples with high con-
fidence. Our experimental results on five datasets confirm
that FosDANet outperforms the relevant literature by a large
margin consistently. We introduce a new benchmark DA
dataset consisting of optical satellite images from three vi-
sual domains and propose a Mini-domainNet version of the
large-scale domainNet dataset. We hope that the consid-
ered problem and the proposed solution will open up new
avenues in DA research in the low-data regime.
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