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Abstract

Few or zero-shot adaptation to novel tasks is impor-
tant for the scalability and deployment of machine learning
models. It is therefore crucial to find properties that encour-
age more transferable features in deep networks for gener-
alization. In this paper, we show that models that learn
uniformly distributed features from the training data, are
able to perform better transfer learning at test-time. Moti-
vated by this, we evaluate our method: uniformity regular-
ization (UR) on its ability to facilitate adaptation to unseen
tasks and data on six distinct domains: Few-Learning with
Images, Few-shot Learning with Language, Deep Metric
Learning, 0-Shot Domain Adaptation, Out-of-Distribution
classification, and Neural Radiance Fields. Across all ex-
periments, we show that using UR, we are able to learn
robust vision systems which consistently offer benefits over
baselines trained without uniformity regularization and are
able to achieve state-of-the-art performance in Deep Metric
Learning, Few-shot learning with images and language.

1. Introduction

Deep Neural Networks have enabled great success in
various machine learning domains such as computer vision
[14,19,38] and , natural language processing [3,9,68]. De-
spite their success, they still suffer from not adapting well
to a novel data distribution that they have not previously en-
countered during training time due to a distribution shift.
This motivates the problem of learning more transferable
features at training time, that can then adapt to a novel data
distribution that the model encounters at test-time.

Understanding how to achieve generalization under such
distributions shifts is an active area of research. In the
few-shot Meta-Learning setting [6,11,57], a meta-learner is
tasked to quickly adapt to novel test data given its training
experience and a limited labeled data budget. Similarly, in
Deep Metric Learning (DML) [16, 51] and Zero-Shot Do-
main Adaptation (ZSDA), [30, 67] study generalization at
the limit of such adaptation, where predictions on novel test

data are made without any test-time finetuning. Yet, despite
the motivational differences, each of these fields require
representations to be learned from the training data that al-
low for better generalization to novel tasks and data. Al-
though there exists a large corpus of domain-specific train-
ing methods, in this paper we seek to determine fundamen-
tal properties that learned features and feature spaces should
have to facilitate such generalization.

Fortunately, recent literature provides pointers towards
one such property: the notion of “feature uniformity” for
improved generalization. Feature uniformity suggests that
if we are able to learn representations that are more uni-
formly distributed at training time, then the model is able to
generalize better to a novel data distribution. For unsuper-
vised representation learning, [70] highlight a link between
the uniform distribution of hyperspherical feature represen-
tations and the transfer performance in downstream tasks,
which has been implicitly adapted in the design of modern
contrastive learning methods [2, 62, 63].

Similarly, [51] show that for Deep Metric Learning, uni-
formity in coverage and uniform singular value distribu-
tion of the learned embedding spaces are strongly con-
nected to zero-shot generalization performance. Both [70]
and [51] link uniformity in the feature space to preservation
of maximal “reusable” information for zero-shot general-
ization. This suggests that actively imposing a uniformity
prior on learned feature representations should encourage
better transfer properties by retaining more information and
reducing bias towards training tasks, which in turn facilitate
better adaptation to novel tasks at test time.

However, while both [70] and [51] propose methods to
incorporate this notion of uniformity, they are defined only
for hyperspherical embedding spaces or contrastive learning
approaches1, thus severely limiting the applicability to other
domains such as supervised learning and meta-learning.

To address these limitations and leverage the benefits
of uniformity for all novel task and data adaptation for
deep neural networks, we propose uniformity regulariza-

1By imposing a Gaussian potential over hyperspherical embedding dis-
tances or pairwise sample relations.
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tion, which places a uniform hypercube prior on the learned
feature space during training, without being limited to the
contrastive training approaches or a hyperspherical repre-
sentation space. Unlike e.g. a multivariate Gaussian, the
uniform prior puts equal likelihood over the feature space,
which then enables the network to make fewer assump-
tions about the data, limiting model overfitting to the train-
ing task. Our uniformity regularization follows adversarial
learning frameworks that allow us to apply our proposed
uniformity prior over features without the need to assume
an explicit parameterization for the network feature distri-
bution to define a closed-form KL-Divergence objective.

Using this setup, we experimentally demonstrate that
uniformity regularization aids generalization in zero-shot
setups such as Deep Metric Learning, Domain Adapta-
tion, Out-of-Distribution Detection, few-shot learning for
both vision and language, and neural radiance fields. Fur-
thermore, for Deep Metric learning and few-shot learning,
we are able to set a new state-of-the-art over large-scale
datasets [31, 66, 73].

2. Related Work
Adversarial Representation Learning. Latent variable

models (e.g. [39, 65]) have used GAN-style training in the
latent space to learn a rich posterior. Recent efforts have
made such training effective in different contexts like ac-
tive learning [26, 56] or domain adaptation [22, 67]. Our
work more closely follows [21], who applied a similar ad-
versarial objective to impose certain properties on the fea-
tures learned through self-supervised representation learn-
ing. While [21] also matched their representations to a
uniform distribution, no detailed reasons for this specific
choice were given. Instead, our work shows that it is ex-
actly the uniformity of feature distributions introduced by
our uniformity regularization that facilitate fast adaptation
and transfer to novel data and tasks in neural networks, re-
gardless of the specific application domain.

Deep Metric Learning and Generalization. The goal
of a Deep Metric Learning (DML) algorithm is to learn a
metric space that encodes semantic relations as distances
and which generalizes sufficiently that at test-time zero-shot
retrieval on novel classes and samples can be performed.
Representative methods in DML commonly differ in their
proposed objectives [5,16,71,74,79], which are commonly
accompanied with tuple sample methods [18, 50, 72, 74].
Extension to the basic training paradigm, such as with self-
supervision [4, 41] have also shown great promise. Re-
cently, [51] performed an extensive survey on various DML
objectives to study driving factors for generalization among
these methods. In that regard, recent work by [70] has of-
fered theoretical insights into the benefits of learning on a
Uniform hypersphere for zero-shot generalization.
Achieving Out-of-Distribution generalization from differ-

Figure 1. Incorporating Uniform Priors. The network is tasked
to adversarially learn features that fool a discriminator trained to
classify samples drawn a uniform distribution, allowing us to im-
pose a uniform distribution prior over the feature distribution with-
out requiring a closed-form KL-Divergence.

ent point of views has also been of great interest, ranging
from work on zero-shot domain adaptation [22, 30, 67] to
the study of invariant correlations [1].

Meta-Learning Many types of meta-learning algo-
rithms for few-shot learning (but also for zero-shot learn-
ing such as [44]) have recently been proposed, building
on memory-augmented methods [43, 47, 54], metric-based
approaches [57, 59, 69] or optimization-based techniques
[11, 36, 46, 77]. Finetuning using ImageNet pretraining
[6, 13] has also been proposed as alternative approaches.
Meta-learning has also been explored for fast adaptation
of novel tasks in reinforcement learning [24, 29, 81]. More
closely related to our approach is [25], proposing inequal-
ity measures between different tasks for less task-dependent
representations. However, this is still limited to episodic
learning akin to most few-shot learning approaches. Unifor-
mity regularization is much more generic, being applicable
to domains outside of Meta-Learning, and does not depen-
dent on the choice of inequality measure. Fast adaptation
has recently been popularized by different meta-learning
strategies [11, 57]. These methods assume distinct meta-
training and meta-testing task distributions, where the goal
of a meta-learner is to adapt fast to a novel task given lim-
ited samples for learning it.

3. Background

Generative Adversarial Networks (GANs) Generative
Adversarial Networks (GANs) were proposed to optimize
a min-max game between a generator G and a discrimina-
torD. The generatorG(z) is trained to map samples from a
prior z ∼ p(z) to the target space, while the discriminator is
trained to be an arbiter between the target data distribution
p(x) and the generator distribution. The training objective
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can be written as:

LD = max
D

Ez∼p(z)[1− logD(G(z))]

+ Ex∼p(x)[logD(x)]
(1)

LG = min
G

Ez∼p(z)[1− logD(G(z))] (2)

with p(z) the generator prior and p(x) a defined target dis-
tribution (e.g. natural images).

Generalization to novel data While meta-learning ap-
proaches assumes the availability of a finetuning budget for
adaptation at test time, zero-shot approaches introduce the
limit scenario of fast adaptation, in which generalization has
to be achieved without access to any examples. Such a set-
ting can be found in metric learning [60,76], where a model
is evaluated on the ability to perform zero-shot retrieval on
novel data. Most commonly, metric models are trained on
a training data distribution Dtrain and evaluated on a test-
ing distribution Dtest which share no classes. However, the
data generating function is assumed to be similar between
Dtrain and Dtest, such as natural images of birds [73]. Sim-
ilar to DML, Zero-Shot Domain Adaptation (ZSDA) intro-
duces a learner that is also trained and evaluated on two dis-
tinct Dtrain and Dtest in a zero-shot setting. However, unlike
DML, in ZSDA, the labels between the data distributions
are shared. Instead, training and test distribution come from
distinct data generative functions, such as natural images of
digits [15] and handwritten images of digits [34].

4. Training with Uniformity Regularization
In this section, we introduce the proposed uniformity

regularization and detail the employed alternating GAN-
like optimization scheme to perform it in a computationally
tractable manner.

Prior Matching. Given a neural network q(y|x) that
is parameterized by θ we formally define the training ob-
jective as LT (q(y|x), y) where LT is any task-specific loss
such as a cross-entropy loss, (x, y) are samples from the
training distribution Dtrain and q(y|x) is the probability of
predicting label y under q. This is a simplified formulation;
in practice, there are many different ways to train a neu-
ral network, such as ranking-based training with tuples [7].
We define the embedding space z as the output of the final
convolutional layer of a deep network. Accordingly, de-
note the conditional distribution for that embedding space
by q(z|x) which, due to the neural network being a deter-
ministic mapping, is a Dirac delta distribution at the value
of the final convolutional layer. Section 5.1 further details
how to apply uniformity regularization in practice.

As we ultimately seek to impose a uniformity prior
over the learned aggregate feature/embedding “posterior”
q(z) =

∫
x
q(z|x)p(x)dx, we begin by augmenting the

generic task-objective to allow for the placement of a prior
r(z). For priors r(z) with closed-form KL-divergences
DKL and a parametrization for the feature distribution q(z)
(e.g. by assuming z ∼ N (µ, σ)), one can define a prior-
regularized task objective as

L =min
θ

E(x,y)∼Dtrain [LT (q(y|x), y)]

+DKL
x∼Dtrain

(q(z|x)‖r(z)) ,
(3)

similar to the Variational Autoencoder formulation in [28].
However, this requires us to have an explicit formulation for
the distribution of embeddings, which severely impacts the
general applicability while requiring prior knowledge about
the expected feature distribution. In addition to that, defin-
ing a KL-Divergence of the form DKL

x∼Dtrain
(q(z|x)‖r(z))

where r(z) is our uniform distribution U(−α, β) with lower
and upper bounds −α and β, is not well-defined outside of
[−α, β] (where U(−α, β) is zero), while q(z|x) can have
non-zero probability density in that region.

Uniformity Regularization. To address the practical
limitation of solving Eqn. 3 with a uniform prior and
without constraining potential feature distributions q(z|x),
we draw upon the GAN literature (as briefly introduced in
section 3, in which alternate adversarial optimization has
been successfully used to match a generated to a predefined
target distribution using implicit divergence minimization.
Latent variable models such as the Adversarial Autoen-
coder [39] have successfully used such a GAN-style
adversarial loss instead of a KL divergence in the latent
space of the autoencoder to learn a rich posterior. Such
implicit divergence minimization allows us to match any
well-defined distribution as a prior, but more specifically,
ensures that we can successfully match learned embedding
spaces to U(−α, β), which we set to the unit hypercube
U(−1, 1) by default.

To this end, we adapt the GAN objective in Eqns. 1 and
2 for uniformity regularization optimization and train a dis-
criminator, D, to be an arbiter between which samples are
from the learned distribution q(z|x) and from the uniform
prior r(z). As such, the task model q (parameterized by θ)
aims to fool the discriminator D into thinking that learned
features, q(z|x), come from the chosen uniform target dis-
tribution, r(z), while the discriminator D learns to distin-
guish between learned features and samples taken from the
prior, z̃ ∼ r(z). Note that while the task-model defines
a deterministic mapping for q(z|x) instead of a stochastic
one, the aggregate feature “posterior”

∫
x
q(z|x)p(x)dx, on

which we apply our uniformity prior, is indeed a stochastic
distribution [39].

Concretely for our uniformity regularization, we rewrite
the discriminator objective from Eqn. 1 to account for the
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Table 1. Influence of Feature Space Uniformity on Generalization. We study the influence of feature space uniformity on generalization
in ZSDA by matching the feature space to prior distributions r(z) of increasing uniformity (left to right). We report mean accuracy and
standard deviation over 5 runs on the task of MNIST → USPS and USPS → MNIST zero-shot domain adaptation using ResNet-18.

Task Baseline N (0, 0.1× I) N (0, I) N (0, 5× I) N (0, 10× I) N (0, 25× I) U(−1, 1)
MNIST→ USPS 49.0 ± 0.20 43.98 ± 0.23 43.45 ± 0.16 56.45 ± 0.36 59.80 ± 0.12 50.11 ± 0.23 67.2 ± 0.11
USPS→MNIST 42.8 ± 0.07 27.23 ± 0.28 26.02 ± 0.87 37.96 ± 0.32 43.76 ± 0.48 32.90 ± 0.45 56.2 ± 0.10

uniform prior matching, giving

LD = max
D

Ex∼Dtrain [log(1−D(q(z|x)))]

+ Ez̃∼U(−1,1)[logD(z̃)].
(4)

Consequently, we reformulate the generator objective from
Eqn. 2 to reflect the task-model q,

Lmax = min
θ

Ex∼Dtrain [log(1−D(q(z|x)))], (5)

where we used the notation Lmax to reflect that the opti-
mization maximizes the feature uniformity by learning to
fool D. Our final min-max uniformity regularized objective
for θ and the Discriminator is then given as

L = min
θ

max
D

E(x,y)∼Dtrain [LT (qθ(y|x), y)]

+ γEx∼Dtrain [log(1−D(qθ(z|x)))]
+ Ez̃∼U(−1,1)[logD(z̃)]

(6)

with task-objective LT and training data distribution Dtrain.
Using this objective, the learned feature space is implic-
itly encouraged to become more uniformly distributed. The
amount of regularization is controlled by the hyperparame-
ter γ, balancing generalization of the model to new tasks
and performance on the training task at hand. Large γ
values hinder effective feature learning from training data,
while values of γ that are too small result in weak regular-
ization, leading to a non-uniform learned feature distribu-
tion with reduced generalization capabilities.

5. Experiments
We begin by highlighting the link between feature space

uniformity and generalization performance (§5.2). In a
large-scale experimental study covering settings in which
samples are available for adaptation (Meta-Learning, §5.3),
or not (Deep Metric Learning & Zero-Shot Domain Adap-
tation, §5.4) and Out-of-Distribution Detection (§5.5), we
then experimentally showcase how uniformity regulariza-
tion can facilitate generalizability of learned features and
the ability of a model to perform fast adaptation to novel
tasks and data.

For all experiments, no hyperparameter tuning on base
algorithms is done, and the same hyperparameters that the
respective original papers proposed are used; we simply add
the uniformity regularization, along with the task loss as in
Eqn. 6.

5.1. Experimental Details

Uniformity regularization was added to the output of the
CNNs for all networks. For ResNet-variants [19, 75, 78],
it was applied to the output of the CNNs, just before the
single fully-connected layer. For meta-learning, the regu-
larization is applied directly on the learned metric space for
the metric-space based meta-learners [37, 57, 69], and ap-
plied to the output of the penultimate layer for MAML [11].
The discriminator is parameterized using a three-layer MLP
with 100 hidden units in each layer and trained using the
Adam optimizer [27] with a learning rate of 10−5. The
value of γ is chosen to be 0.1 for all experiments, except
for Deep Metric Learning. For Deep Metric Learning, a
value of γ = 0.4 is chosen, since the effect of regulariza-
tion needs to be stronger, as Deep Metric Learners (com-
monly a ResNet-50 [19] or Inception-V1 [61] with Batch-
Norm [23]) start off with networks that are already pre-
trained on ImageNet [52].

5.2. Feature Space Uniformity is linked to General-
ization Performance

We first investigate the connection between feature space
uniformity and generalization, measured by generalization
performance in Zero-Shot Domain Adaptation (more exper-
imental details in §5.4). Unfortunately, the uniform hyper-
cube prior in our uniformity regularizer does not provide a
way for intuitive and explicit uniformity scaling - one can
not make the uniform prior “more or less uniform“.

As such, we make use of a Gaussian priorN (µ, σ2). Un-
der the fair assumption that the learned embedding space
of deep neural networks does not have infinite support in
practice (especially given regularization methods such as
L2 regularization), the variance σ2 provides a uniformity
scaling factor - with increased variance, the Gaussian prior
reduces mass placed around embeddings near µ, effectively
encourageing the network to learn a more uniform embed-
ding space. We can therefore directly evaluate the impor-
tance of feature space uniformity by using our GAN-based
regularization scheme to match feature space distribution to
Gaussian priors with different σ2 scales.

Table 1 compares feature space uniformity against the
model’s ability to perform ZSDA from MNIST to USPS
(and respective backward direction) using a ResNet-18 [19]
(with “Baseline” the unregularized model). As can be seen,
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Table 2. Meta-Learning. 1) Comparing with the state of the art wrt different regularization techniques, e.g. Dropout, L2, vs our uniformity
alignment on Omniglot, Double MNIST, CIFAR-FS and miniIMageNet with the same setting as [70].We report the mean error rate for
Omniglot & Double MNIST and mean accuracies for CIFAR-FS and miniImageNet over 5 seeds. We use the exact hyperparameters as
proposed in the original paper of each meta-learner. 2) Applying our UR with Universal Representation Transformer Layers [37] on the
Meta-Dataset to establish the new state-of-the-art (blue).

1) Baseline Study Omniglot Double MNIST CIFAR-FS miniImageNet

Methods ↓ (5, 1) (5,5) (5, 1) (5,5) (5, 1) (5,5) (5, 1) (5,5)

MAML 4.8± 0.4 1.5 ± 0.4 7.9± 0.7 1.9± 0.3 52.1 ± 0.8 67.1 ± 0.9 47.2 ± 0.7 62.1 ± 1.0
MAML + UR 4.1± 0.5 1.3± 0.2 7.3 ± 0.2 1.5 ± 0.5 52.9 ± 0.4 67.1 ± 0.9 48.9 ± 0.8 64.1 ± 1.0

Matching Networks 2.1 ± 0.2 1.0 ± 0.2 4.2 ± 0.2 2.7 ± 0.2 46.7 ± 1.1 62.9 ± 1.0 43.2 ± 0.3 50.3 ± 0.9
Matching Networks + Dropout 2.4 ± 0.2 1.3 ± 0.2 4.4 ± 0.2 2.9 ± 0.4 45.3 ± 1.1 63.0 ± 0.7 42.9 ± 0.9 50.0 ± 1.0
Matching Networks + L2 reg. 2.1 ± 0.2 1.0 ± 0.1 4.1 ± 0.2 2.6 ± 0.2 46.9 ± 1.1 63.0 ± 0.9 43.3 ± 0.8 50.1 ± 1.0
Matching Networks + U-A 2.0 ± 0.1 0.9 ± 0.1 3.9 ± 0.3 2.7 ± 0.1 47.3 ± 1.0 63.1 ± 0.8 43.5 ± 0.7 50.3 ± 1.0
Matching Networks + UR 1.7± 0.1 0.9± 0.1 3.2± 0.1 2.3± 0.3 49.3 ± 0.4 63.1 ± 0.7 47.1 ± 0.8 53.1 ± 0.7

Prototypical Network 1.6 ± 0.2 0.4 ± 0.1 1.3 ± 0.2 0.2 ± 0.2 52.4 ± 0.7 67.1 ± 0.5 45.4 ± 0.6 61.3 ± 0.7
Prototypical Network + Dropout 1.9 ± 0.2 0.5 ± 0.2 1.4 ± 0.2 0.5 ± 0.1 51.9 ± 0.8 66.0 ± 0.4 44.8 ± 0.7 61.2 ± 0.9
Prototypical Network + L2 reg. 1.6 ± 0.2 0.4 ± 0.1 1.3 ± 0.1 0.3 ± 0.2 52.5 ± 0.8 66.3 ± 0.4 45.0 ± 0.7 61.4 ± 0.7
Prototypical Network + U-A 1.5 ± 0.3 0.4 ± 0.1 1.2 ± 0.1 0.2 ± 0.2 52.6 ± 0.7 66.3 ± 0.5 45.4 ± 0.5 61.8 ± 0.8
Prototypical Network + UR 1.2 ± 0.3 0.4 ± 0.1 1.0 ± 0.2 0.2 ± 0.2 52.6 ± 0.8 66.8 ± 0.5 46.8 ± 0.5 64.4 ± 0.9

2) Meta-Dataset Avg.
ILSVRC Omniglot Aircrafts Birds Textures QuickDraw Fungi VGGFlower TrafficSigns MSCOCO Rank

TaskNorm 50.6 ± 1.1 90.7 ± 0.6 83.8 ± 0.6 74.6 ± 0.8 62.1 ± 0.7 74.8 ± 0.7 48.7 ± 1.0 89.6 ± 0.6 67.0 ± 0.7 43.4 ± 1.0 4.5
SUR 56.3 ± 1.1 93.1 ± 0.5 85.4 ± 0.7 71.4 ± 1.0 71.5 ± 0.8 81.3 ± 0.8 63.1 ± 1.0 82.8 ± 0.7 70.4 ± 0.8 52.4 ± 1.1 3.2
SimpleCNAPS 58.6 ± 1.1 91.7 ± 0.6 82.4 ± 0.7 74.9 ± 0.8 67.8 ± 0.8 77.7 ± 0.7 46.9 ± 1.0 90.7 ± 0.5 73.5 ± 0.7 46.2 ± 1.1 3.2

URT 55.7 ± 1.0 94.4 ± 0.4 85.8 ± 0.6 76.3 ± 0.8 71.8 ± 0.7 82.5 ± 0.6 63.5 ± 1.0 88.2 ± 0.6 69.4 ± 0.8 52.2 ± 1.1 2.6
URT + UR 58.3 ± 0.9 95.2 ± 0.2 88.0 ± 0.9 76.7 ± 0.8 74.9 ± 0.9 84.0 ± 0.3 62.8 ± 1.1 90.3 ± 0.4 72.9 ± 0.8 54.6 ± 1.1 1.5

when the uniformity of the (Gaussian) prior r(z) is in-
creased up to a certain breaking point, the ability to perform
domain adaptation also improves. When σ2 is small, the
model is unable to effectively adapt to the novel data, and
as the uniformity of r(z) is increased, the network signif-
icantly improves its ability to perform the adaptation task.
However, for very large sigma, value scales become an is-
sue, and training becomes less stable, with performance
dropping. This motivates the use of our maximally uni-
form hyper-cube prior U(−1, 1), which significantly im-
proves the performance, coinciding with insights made in
[70] and [51].

The impact of our uniformity regularization is even more
evident on the backward task of USPS → MNIST, since
there are less labels present in the USPS dataset, thereby
making overfitting a greater issue when trained on USPS.

5.3. Uniform Priors benefit Meta-Learning

We now study the influence of uniformity regularization
on meta-training for few-shot learning tasks, which we di-
vide into two experiments.

First, we evaluate how uniformity regularization impacts
the performance of three distinct meta-learning baselines:

Matching Networks [69], Prototypical Networks [57] and
MAML [11]. Performance is evaluated on four few-shot
learning benchmarks: Double MNIST [34], Omniglot [33],
CIFAR-FS [32] and miniImagenet [69]. For our implemen-
tation, we utilize TorchMeta [8]. Results for each meta-
learning method with and without regularization are sum-
marized in Table 2a)2. We observe that, adding unifor-
mity regularization benefits generalization across method
and benchmark, in some cases notably. This holds regard-
less of the number of shots used at meta-test-time, though
we find the largest performance gains in the 1-shot scenario.

In addition, when compared to other regularization
methods such as Dropout [58], L2-regularization [64] and
hyperspherical uniformity regularization [70], it compares
favorably, especially on more complex datasets such as
miniImageNet. Compared to [70], this is especially impres-
sive given the much wider application range. Overall, the
results highlight the benefit of reduced training-task bias in-
troduced by uniformity regularization for fast adaptation to
novel test tasks.

Second, we examine uniformity regularization on the
Meta-Dataset [66], which contains data from diverse do-

2For Double MNIST and Omniglot, we list error rates, not accuracies.
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Table 3. Few-Shot Language Relation Classification using
transformers (BERT pretrained) on non-image data.

Method ↓ 5-way 1-shot Method ↓ 5-way 1-shot

Bert-PAIR 85.4 ± 0.3 Bert-Proto 78.7 ± 0.8
+ UR 86.4 ± 0.2 + UR 80.6 ± 0.6

mains such as natural images, objects and drawn charac-
ters. We follow the setup suggested by [66], used in [37],
in which eight out of the ten available datasets are used for
training, while evaluation is done over all. Results are av-
eraged across varying numbers of ways and shots. We ap-
ply uniformity regularization on the state-of-the-art Univer-
sal Representation Transformer (URT) [37], following their
implementation and setup without hyperparameter tuning.
Table 2b), uniformity regularization shows consistent im-
provements upon URT, matching or even outperforming the
state of the art on all sub-datasets.

To highlight that a uniformity prior does not only bene-
fit specific convolutional architectures in the vision domain,
we also evaluate few-shot generalization capacities in the
language domain. Specifically, we select the complex task
of fewshot relation classification as proposed in [17]. Here,
given some support object relations (taken from [17]) such
as “London is the the capital of the U.K.” or “Newton served
as the president of the Royal Society” as well as their re-
spective relation class (in this case “capital of ” and “mem-
ber of ”, respectively), the goal is then to classify unseen
query relations (s.a. “Euler was elected a foreign member
of the Royal Swedish Academy of Sciences” being a “mem-
ber of”-relation). As reference methods, we select BERT-
Proto and BERT-PAIR introduced in [12], with BERT-PAIR
providing competitive, near state-of-the-art performance.
Both of these methods leverage a BERT-transformer-base
[9,68], on top of which the respective few-shot models Pro-
totypical Networks and PAIR are applied.

Results are reported in Tab. 3 following the official
dataset and code provided in [17], with scores represent-
ing performance on the official validation set, as the official
test set is submission-locked. For training, we thus used a
85% − 15% training-validation split of the original train-
ing dataset. As can be seen, a consistent improvement in
the most challenging 5-way 1-shot setting can seen, show-
casing a general applicability of uniform priors beyond just
image-data and networks.

5.4. Uniform Priors for Zero-Shot Generalization

Going further, we study limit cases of fast adaption and
look at how uniformity regularization affects zero-shot re-
trieval in Deep Metric Learning and zero-shot classification
for domain adaptation. Here, the model is evaluated on a
different distribution than the training distribution without

Table 4. Deep Metric Learning (Zero-Shot Generalization).
1) Evaluating our UR wrt state-of-the-art DML methods as in
[51] with a ResNet-50 backbone [19] on CUB200-2011 [73]
& CARS196 [31] datasets. We report Recall@1 and Normal-
ized Mutual Information (NMI). 2) With standard learning rate
scheduling, our UR boosts performance of baseline objectives in
the DML literature corpus.For table 2), numbers in bold represent
the best performance for a given benchmark setting and metric.

1) Ablations CUB200-2011 CARS196

Methods ↓ R@1 NMI R@1 NMI

ResNet50, Embedding Dim.: 128

Softmax [79] 61.7 ± 0.3 66.8 ± 0.4 78.9 ± 0.3 66.4 ± 0.3
Softmax + UR 65.0 ± 0.1 68.8 ± 0.2 80.6 ± 0.2 68.3 ± 0.2

Margin [74] 63.1 ± 0.5 68.2 ± 0.3 79.9 ± 0.3 67.4 ± 0.3
Margin + UR 65.0 ± 0.3 69.5 ± 0.2 82.5 ± 0.1 68.9 ± 0.2

Msim [71] 62.8 ± 0.7 68.6 ± 0.4 81.7 ± 0.2 69.4 ± 0.4
Msim + UR 65.4 ± 0.4 70.3 ± 0.3 82.2 ± 0.2 70.5 ± 0.3

2) Literature CUB200-2011 CARS196

Methods ↓ R@1 NMI R@1 NMI

ResNet50, Embedding Dim.: 128

Div&Conq [53] 65.9 69.6 84.6 70.3
MIC [49] 66.1 69.7 82.6 68.4
PADS [50] 67.3 69.9 83.5 68.8
Msim+UR 66.3 ± 0.4 70.5 ± 0.3 84.0 ± 0.2 71.3 ± 0.5

Inception-V1 + BatchNorm, Embedding Dim.: 512

Msim [71] 65.7 - 84.1 -
Softtriple [45] 65.4 69.3 84.5 70.1
Group [10] 65.5 69.0 85.6 72.7
Msim+UR 68.5 ± 0.3 71.7 ± 0.5 85.8 ± 0.3 72.2 ± 0.5

finetuning, highlighting the benefits of uniformity regular-
ization for learning task-agnostic & reusable features.

Deep Metric Learning. We apply uniformity regular-
ization on four benchmark DML objectives (Contrastive
Loss [16], Margin Loss [74], Softmax Loss [79] and Multi-
Similarity Loss [71]) studied in [51], and evaluate them over
two standard datasets: CUB-200 [73], and Cars-196 [31].
The results summarized in Table 4a) reveal substantial gains
over all evaluation metrics and benchmarks and a diverse
set of baseline, for example for more than 3% when ap-
plied to Softmax Loss [79] on CUB200-2011 [73]. But
even stronger baselines s.a. MultiSimilarity [71] see sub-
stantial gains on both datasets across all evaluation metrics,
This showcases the effectiveness in fighting against over-
fitting for generalization, even without finetuning at test-
time. Finally, when evaluated in two different common lit-
erature settings and compared against recent methods, we
find that simple uniformity regularized objectives can match
or even outperform these, in some cases significantly, as
seen e.g. when applied jointly with the MultiSimilarity Loss
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Table 5. Zero-Shot Domain Adaptation. Comparing several
zero-shot domain adaptation strategies on the digit recognition
task (“From/To”) w and w/o UR reporting mean accuracy and
std over 5 random seeds. The results for ADDA and the “Source
Only” + LeNet (LN) backbone are taken directly from [67]. “Tar-
get Only” refers to direct training and evaluation on the target dis-
tribution. We perform no hyperparameter tuning, and the exact
hyperparameters are used as in [67].

Method↓ MNIST/USPS USPS/MNIST SVHN/MNIST

Source Only (R18) 49.0 ± 0.20 42.8 ± 0.07 69.7 ± 0.06
+ UR (R18) 67.2 ± 0.11 56.2 ± 0.10 71.3 ± 0.13

Source Only (LN) 75.2 ± 0.02 57.1 ± 0.02 60.1 ± 0.01
+ UR (LN) 79.6 ± 0.04 62.6 ± 0.01 65.8 ± 0.03

ADDA [67] (LN) 89.4 ± 0.01 90.1±0.01 76.0 ± 0.02
+ UR (LN) 93.5 ± 0.09 94.8 ± 0.03 81.6 ± 0.03

Target Only (R18) 98.1 ± 0.2 99.8 ± 0.1 99.8 ± 0.1

on CUB200-2011, where we e.g. beat multi-proxy Soft-
Triple [45] by more than 3%.

Zero-Shot Domain Adaptation. For Zero-Shot Do-
main Adaptation, we conduct digit recognition experiments,
transferring models between MNIST [34], SVHN [15] and
USPS [55]. In this setting, we train the model on a source
dataset, and test it directly on the test dataset. Since each
of the datasets contain digits, the networks are assessed on
their ability to classify digits on the target dataset, with-
out any training. We evaluate different architectures, LeNet
[35] and ResNet-18 [19], as well as a distinct domain adap-
tation approach (Adversarial Discriminative Domain Adap-
tation, ADDA) [67]).

Results in Tab. 5 show that when training on only the
source data, networks with uniformity regularization signif-
icantly outperform baseline models by as much as 18% on
the target dataset. The gain in performance for ResNets and
LeNets trained only on the source data demonstrates that
such models disproportionately overfit to the training (or
source) data, which we can alleviate via uniformity regular-
ization to learn better data-agnostic features. Performance
gains are also evident in ADDA, which operates under an
adversarial training setting different from “Source Only”
baseline models. In addition, ADDA with uniformity reg-
ularization achieves Zero-Shot Domain Adaptation perfor-
mance close to that of a supervised learner trained directly
on target data (“Target Only”), highlighting the strong bene-
fits of uniformity regularization for transfer tasks especially
under notable distribution shifts.

5.5. Uniform Priors benefit OOD Classification

In this section, we evaluate trained models on their abil-
ity to detect Out-of-Distribution (OOD) data. For that,
we investigate two benchmarks. First, on CIFAR-10 data
[32], we perform severe image augmentations using ran-

Table 6. Out-of-Distribution Classification. Comparing OOD
classification performance for various networks with mean accu-
racy and std over 5 seeds. OOD samples are generated via random
translations, rotations, and scaling. The base task classification
performance shows no performance degradation with UR.

Task ↓ ResNet-18 + UR
OOD Accuracy 35.6 ± 1.2 41.3 ± 1.3
Standard Test Accuracy 91.4 ± 0.6 91.8 ± 0.3

WideResNet-50 + UR ResNeXt-50 + UR
39.6 ± 1.2 43.9 ± 0.9 40.1 ± 0.8 43.8 ± 1.1
94.7 ± 0.3 94.6 ± 0.3 95.3 ± 0.3 95.9 ± 0.5

Table 7. The mean error rate/Corruption Error (mCE) on the
CIFAR-100-C benchmark (lower is better) indicates increased
network robustness (lower error rates on corrupted data) with UR.

Noise Blur

Setting Clean Gauss. Shot Impulse Defocus Glass Motion Zoom

WRN-50 16.7 79.1 68.3 70.6 41.9 70.1 43.2 40.7
WRN-50 + UR 14.3 73.4 61.5 70.2 38.6 66.9 41.7 38.7

Weather Digital

Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE

49.6 51.8 18.4 20.1 36.4 39.9 50.6 50.9 46.8
43.8 44.6 17.0 17.4 29.8 36.9 39.8 39.9 41.0

dom translations of [−4, 4] pixels, random rotations be-
tween [−30, 30] degrees and scaling by a factor between
[0.75, 1.25], These transformations are physical transforma-
tions which preserve the semantics of the image. We then
train the network on the standard dataset without any aug-
mentations, and test three standard architectures [19,75,78]
on the OOD testing set with the aforementioned augmenta-
tions. In addition to that, we also check OOD classification
robustness on the corrupted CIFAR-100 variant, CIFAR-
100-C, proposed in [20] to study network robustness.

Results are provided in Tables 6 and Table 7, respec-
tively. In both cases, we find improvements in OOD classi-
fication accuracy. More specifically, our results in Tab. 63

highlight that across backbone networks, the ability to clas-
sify even under severe, unseen physical augmentations at
test time is improved (while even retaining or partly improv-
ing base classification accuracy, see “Standard Test Acc.”),
while Tab. 7 showcases improved robustness towards com-
mon image corruptions (such as noise and blurring) on
CIFAR-100-C. Both results again detail the the dispropor-
tionate usefulness of uniformity regularization for transfer
under different distribution shifts at test time.

3We note that the relatively high variance in Table 6 is due to the
stochastic nature of the data augmentation techniques.

4023



Table 8. Single Scene View Synthesis using NeRF [42] trained
on the Co3D dataset [48].

Method ↓ PSNR LPIPS l1 depth

NeRF 23.7 0.18 0.37
+ UR 24.1 0.16 0.37

Figure 2. Qualitative feature space study. Evaluation of feature
space changes caused by imposing a uniformity prior and produc-
ing a 2-d feature map using UMAP [40] in zero-shot Deep Met-
ric Learning, showing representations spaces for a DML baseline
model (Multisimilarity Loss [71]) with and without UR. As the
density increases with UR, the generalization [51] improves (as
shown quantitatively in section 5.7).

5.6. Uniform Priors and Neural Fields

Neural Radiance Fields (NeRFs) are trained to overfit to
a scene while being able to generalize and produce novel
views [42]. The need to generalize to novel views can be
a bottleneck while training NeRFs, as they have shown to
produce better results on known views in the training set,
compared to unknown views that they are evaluated on [48].
Similar to before, we simply add the uniformity prior to the
penultimate layer of the colour and densities MLPs used to
train NeRFs. We then train a baseline NeRF both with and
without uniformity regularization on the Co3D dataset [48],
a recently proposed, large-scale dataset of “common ob-
jects” from multiple views. We report the results in Ta-
ble 8, where we find, similar to before, that we are able
to improve the NeRF baseline on two key metrics evalu-
ated on novel views, namely PSNR (Peak-Signal-to-Noise-
Ratio, [42]) and LPIPS (Learned Perceptual Image Patch
Similarity, [80]) on the test set, showcasing the applicabil-
ity of uniformity regularization to improve generalisability
even for implicit generative modeling tasks.

5.7. How Uniform Priors change the feature space

Finally, we examine both qualitatively and quantitatively
the influence of uniformity regularization on the feature
space. For that, we look at the feature space changes in
the Deep Metric Learning problem. Deep Metric Learning

naturally lends itself to this study, as changes in the feature
space are more strongly reflected in the underlying objec-
tive as well as the downstream performance, which primar-
ily evaluate the goal of learning generalizing metric embed-
ding spaces operating on top of learned image features.

Figure 2 qualitatively shows increased feature space den-
sity (less overclustering) when applying uniformity regular-
ization and mapping to 2-d with UMAP [40], especially on
the test data, showcasing that uniformity regularization has
an impact on the feature distribution. As important and sub-
tle changes are likely lost in the dimensionality reduction
process, we also perform a quantitative evaluation of the ac-
tual feature space density, following the definition in [51].
Here, we find a 30% increase on the training feature density
when applying uniformity regularization, which is consis-
tent with [51] that link increased embedding space density
on training data to improved test generalization. We note
that [51] performed their embedding space studies on final
embeddings produced by a linear mapping from the feature
space, and thus believe insights to be transferable.

6. Conclusion
In this paper, we propose a regularization technique for

generalization to novel tasks in Deep Learning. We present
a simple and general solution, uniformity regularization, to
reduce training bias and encourage networks to learn more
reusable features. In a large experimental study, we show
benefits across multiple, distinct domains studying varying
degrees of fast adaptation and generalization such as Meta-
Learning over both vision and language modalities, Deep
Metric Learning, Zero-Shot Domain Adaptation and Out-
of-Distribution Classification, and highlight the role of uni-
formity of the prior over learned features for generalization
and adaptation. We further show that uniformity regulariza-
tion achieves competitive performance on large-scale Few-
Shot and Metric Learning tasks.
Broader Impact and Limitations We study the notion of
uniform feature distributions for deep network training, of-
fering a general regularization methods for Deep Learning
tasks that require improved generalization. With this comes
the chance for misuse in the respective domains. However,
the improvements gained, while notable, are not significant
enough to alter societal use in the respective areas. One of
the limitations and future works for this paper is related to
theoretical contributions. In the paper, we propose a prac-
tical framework for uniformity regularization. However,
while we provide intuition and motivation and strong ex-
perimental support, we do not offer direct theoretical proofs
for the experimental benefits we find.
Acknowledgements. Karsten Roth thanks the Interna-
tional Max Planck Research School for Intelligent Systems
(IMPRS-IS) and the European Laboratory for Learning and
Intelligent Systems (ELLIS) PhD program for support.

4024



References
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